
Proceedings of the Eighteenth Conference on Computational Language Learning, pages 78–86,
Baltimore, Maryland USA, June 26-27 2014. c©2014 Association for Computational Linguistics

Lexicon Infused Phrase Embeddings for Named Entity Resolution

Alexandre Passos, Vineet Kumar, Andrew McCallum

School of Computer Science

University of Massachusetts, Amherst

{apassos,vineet,mccallum}@cs.umass.edu

Abstract

Most state-of-the-art approaches for

named-entity recognition (NER) use semi

supervised information in the form of

word clusters and lexicons. Recently

neural network-based language models

have been explored, as they as a byprod-

uct generate highly informative vector

representations for words, known as word

embeddings. In this paper we present

two contributions: a new form of learn-

ing word embeddings that can leverage

information from relevant lexicons to

improve the representations, and the first

system to use neural word embeddings

to achieve state-of-the-art results on

named-entity recognition in both CoNLL

and Ontonotes NER. Our system achieves

an F1 score of 90.90 on the test set for

CoNLL 2003—significantly better than

any previous system trained on public

data, and matching a system employing

massive private industrial query-log data.

1 Introduction

In many natural language processing tasks, such

as named-entity recognition or coreference reso-

lution, syntax alone is not enough to build a high

performance system; some external source of in-

formation is required. In most state-of-the-art

systems for named-entity recognition (NER) this

knowledge comes in two forms: domain-specific

lexicons (lists of word types related to the de-

sired named entity types) and word representa-

tions (either clusterings or vectorial representa-

tions of word types which capture some of their

syntactic and semantic behavior and allow gener-

alizing to unseen word types).

Current state-of-the-art named entity recogni-

tion systems use Brown clusters as the form of

word representation (Ratinov and Roth, 2009;

Turian et al., 2010; Miller et al., 2004; Brown et

al., 1992), or other cluster-based representations

computed from private data (Lin and Wu, 2009).

While very attractive due to their simplicity, gen-

erality, and hierarchical structure, Brown clusters

are limited because the computational complex-

ity of fitting a model scales quadratically with the

number of words in the corpus, or the number of

“base clusters” in some efficient implementations,

making it infeasible to train it on large corpora or

with millions of word types.

Although some attempts have been made to

train named-entity recognition systems with other

forms of word representations, most notably those

obtained from training neural language models

(Turian et al., 2010; Collobert and Weston, 2008),

these systems have historically underperformed

simple applications of Brown clusters. A disad-

vantage of neural language models is that, while

they are inherently more scalable than Brown clus-

ters, training large neural networks is still often

expensive; for example, Turian et al (2010) re-

port that some models took multiple days or weeks

to produce acceptable representations. Moreover,

language embeddings learned from neural net-

works tend to behave in a “nonlinear” fashion, as

they are trained to encourage a many-layered neu-

ral network to assign high probability to the data.

These neural networks can detect nonlinear rela-

tionships between the embeddings, which is not

possible in a log-linear model such as a condi-

tional random field, and therefore limiting how

much information from the embeddings can be ac-

tually leveraged.

Recently Mikolov et al (Mikolov et al., 2013a;
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Mikolov et al., 2013b) proposed two simple log-

linear language models, the CBOW model and the

Skip-Gram model, that are simplifications of neu-

ral language models, and which can be very effi-

ciently trained on large amounts of data. For ex-

ample it is possible to train a Skip-gram model

over more than a billion tokens with a single ma-

chine in less than half a day. These embeddings

can also be trained on phrases instead of individual

word types, allowing for fine granularity of mean-

ing.

In this paper we make the following contribu-

tions. (1) We show how to extend the Skip-Gram

language model by injecting supervisory train-

ing signal from a collection of curated lexicons—

effectively encouraging training to learn similar

embeddings for phrases which occur in the same

lexicons. (2) We demonstrate that this method

outperforms a simple application of the Skip-

Gram model on the semantic similarity task on

which it was originally tested. (3) We show that

a linear-chain CRF is able to successfully use

these log-linearly-trained embeddings better than

the other neural-network-trained embeddings. (4)

We show that lexicon-infused embeddings let us

easily build a new highest-performing named en-

tity recognition system on CoNLL 2003 data

(Tjong Kim Sang and De Meulder, 2003) which

is trained using only publicly available data. (5)

We also present results on the relatively under-

studied Ontonotes NER task (Weischedel et al.,

2011), where we show that our embeddings out-

perform Brown clusters.

2 Background and Related Work

2.1 Language models and word embeddings

A statistical language model is a way to assign

probabilities to all possible documents in a given

language. Most such models can be classified

in one of two categories: they can directly as-

sign probabilities to sequences of word types, such

as is done in n-gram models, or they can oper-

ate in a lower-dimensional latent space, to which

word types are mapped. While most state-of-

the-art language models are n-gram models, the

representations used in models of the latter cate-

gory, henceforth referred to as “embeddings,” have

been found to be useful in many NLP applications

which don’t actually need a language model. The

underlying intuition is that when language models

compress the information about the word types in

a latent space they capture much of the common-

alities and differences between word types. Hence

features extracted from these models then can gen-

eralize better than features derived from the word

types themselves.

One simple language model that discovers use-

ful embeddings is known as Brown clustering

(Brown et al., 1992). A Brown clustering is a

class-based bigram model in which (1) the prob-

ability of a document is the product of the proba-

bilities of its bigrams, (2) the probability of each

bigram is the product of the probability of a bi-

gram model over latent classes and the probability

of each class generating the actual word types in

the bigram, and (3) each word type has non-zero

probability only on a single class. Given a one-to-

one assignment of word types to classes, then, and

a corpus of text, it is easy to estimate these proba-

bilities with maximum likelihood by counting the

frequencies of the different class bigrams and the

frequencies of word tokens of each type in the cor-

pus. The Brown clustering algorithm works by

starting with an initial assignment of word types

to classes (which is usually either one unique class

per type or a small number of seed classes corre-

sponding to the most frequent types in the corpus),

and then iteratively selecting the pair of classes to

merge that would lead to the highest post-merge

log-likelihood, doing so until all classes have been

merged. This process produces a hierarchical clus-

tering of the word types in the corpus, and these

clusterings have been found useful in many appli-

cations (Ratinov and Roth, 2009; Koo et al., 2008;

Miller et al., 2004). There are other similar models

of distributional clustering of English words which

can be similarly effective (Pereira et al., 1993).

One limitation of Brown clusters is their com-

putational complexity, as training takes O(kV 2 +
N)x time to train, where k is the number of base

clusters, V size of vocabulary, and N number of

tokens. This is infeasible for large corpora with

millions of word types.

Another family of language models that pro-

duces embeddings is the neural language mod-

els. Neural language models generally work by

mapping each word type to a vector in a low-

dimensional vector space and assigning probabil-

ities to n-grams by processing their embeddings

in a neural network. Many different neural lan-

guage models have been proposed (Bengio et al.,

2003; Morin and Bengio, 2005; Bengio, 2008;
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Mnih and Hinton, 2008; Collobert and Weston,

2008; Mikolov et al., 2010). While they can cap-

ture the semantics of word types, and often gen-

eralize better than n-gram models in terms of per-

plexity, applying them to NLP tasks has generally

been less successful than Brown clusters (Turian

et al., 2010).

Finally, there are algorithms for computing

word embeddings which do not use language mod-

els at all. A popular example is the CCA family of

word embeddings (Dhillon et al., 2012; Dhillon et

al., 2011), which work by choosing embeddings

for a word type that capture the correlations be-

tween the embeddings of word types which occur

before and after this type.

2.2 The Skip-gram Model

A main limitation of neural language models is

that they often have many parameters and slow

training times. To mitigate this, Mikolov et

al. (2013a; 2013b) recently proposed a family

of log-linear language models inspired by neu-

ral language models but designed for efficiency.

These models operate on the assumption that, even

though they are trained as language models, users

will only look at their embeddings, and hence all

they need is to produce good embeddings, and not

high-accuracy language models.

The most successful of these models is

the skip-gram model, which computes the

probability of each n-gram as the product of

the conditional probabilities of each context

word in the n-gram conditioned on its central

word. For example, the probability for the n-

gram “the cat ate my homework” is represented as

P (the|ate)P (cat|ate)P (my|ate)P (homework|ate).

To compute these conditional probabilities the

model assigns an embedding to each word type

and defines a binary tree of logistic regression

classifiers with each word type as a leaf. Each

classifier takes a word embedding as input and

produces a probability for a binary decision cor-

responding to a branch in the tree. Each leaf in the

tree has a unique path from the root, which can be

interpreted as a set of (classifier,label) pairs. The

skip-gram model then computes a probability of a

context word given a target word as the product of

the probabilities, given the target word’s embed-

dings, of all decisions on a path from the root to

the leaf corresponding to the context word. Figure

1 shows such a tree structured model.

...

...A An San Diego New York City

...

...

Figure 1: A binary Huffman tree. Circles repre-

sent binary classifiers. Rectangles represent to-

kens, which can be multi-word.

The likelihood of the data, then, given a set N

of n-grams, with mn being n-gram n’s middle-

word, cn each context word, wcn

i the parameters

of the i-th classifier in the path from the root to

cn in the tree, lcn

i its label (either 1 or −1), ef the

embedding of word type f , and σ is the logistic

sigmoid function, is

∏

n∈N

∏

cn∈n

∏

i

σ(lcn

i wcn

i
T
emn

). (1)

Given a tree, then, choosing embeddings emn

and classifier parameters wcn

i to maximize equa-

tion (1) is a non-convex optimization problem

which can be solved with stochastic gradient de-

scent.

The binary tree used in the model is com-

monly estimated by computing a Huffman coding

tree (Huffman, 1952) of the word types and their

frequencies. We experimented with other tree esti-

mation schemes but found no perceptible improve-

ment in the quality of the embeddings.

It is possible to extend these embeddings to

model phrases as well as tokens. To do so,

Mikolov et al (2013b) use a phrase-building cri-

terion based on the pointwise mutual information

of bigrams. They perform multiple passes over

a corpus to estimate trigrams and higher-order

phrases. We instead consider candidate trigrams

for all pairs of bigrams which have a high PMI

and share a token.

2.3 Named Entity Recognition

Named Entity Recognition (NER) is the task of

finding all instances of explicitly named entities

and their types in a given document. While
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detecting named entities is superficially simple,

since most sequences of capitalized words are

named entities (excluding headlines, sentence be-

ginnings, and a few other exceptions), finding all

entities is non trivial, and determining the correct

named entity type can sometimes be surprisingly

hard. Performing the task well often requires ex-

ternal knowledge of some form.

In this paper we evaluate our system on two

labeled datasets for NER: CoNLL 2003 (Tjong

Kim Sang and De Meulder, 2003) and Ontonotes

(Weischedel et al., 2011). The CoNLL dataset

has approximately 320k tokens, divided into 220k

tokens for training, 55k tokens for development,

and 50k tokens for testing. While the training and

development sets are quite similar, the test set is

substantially different, and performance on it de-

pends strongly on how much external knowledge

the systems have. The CoNLL dataset has four

entity types: PERSON, LOCATION, ORGANIZA-

TION, AND MISCELLANEOUS. The Ontonotes

dataset is substantially larger: it has 1.6M tokens

total, with 1.4M for training, 100K for develop-

ment, and 130k for testing. It also has eighteen

entity types, a much larger set than the CoNLL

dataset, including works of art, dates, cardinal

numbers, languages, and events.

The performance of NER systems is commonly

measured in terms of precision, recall, and F1 on

the sets of entities in the ground truth and returned

by the system.

2.3.1 Baseline System

In this section we describe in detail the baseline

NER system we use. It is inspired by the system

described in Ratinov and Roth (2009).

Because NER annotations are commonly not

nested (for example, in the text “the US Army”,

“US Army” is treated as a single entity, instead

of the location “US” and the organization “US

Army”) it is possible to treat NER as a sequence

labeling problem, where each token in the sen-

tence receives a label which depends on which en-

tity type it belongs to and its position in the en-

tity. Following Ratinov and Roth (2009) we use

the BILOU encoding, where each token can either

BEGIN an entity, be INSIDE an entity, be the LAST

token in an entity, be OUTSIDE an entity, or be the

single UNIQUE token in an entity.

Our baseline architecture is a stacked linear-

chain CRF (Lafferty et al., 2001) system: we train

two CRFs, where the second CRF can condition

on the predictions made by the first CRF as well as

features of the data. Both CRFs, following Zhang

and Johnson (2003), have roughly similar features.

While local features capture a lot of the clues

used in text to highlight named entities, they can-

not necessarily disambiguate entity types or detect

named entities in special positions, such as the first

tokens in a sentence. To solve these problems most

NER systems incorporate some form of external

knowledge. In our baseline system we use lexi-

cons of months, days, person names, companies,

job titles, places, events, organizations, books,

films, and some minor others. These lexicons were

gathered from US Census data, Wikipedia cate-

gory pages, and Wikipedia redirects (and will be

made publicly available upon publication).

Following Ratinov and Roth (2009), we also

compare the performance of our system with a

system using features based on the Brown clusters

of the word types in a document. Since, as seen

in section 2.1, Brown clusters are hierarchical, we

use features corresponding to prefixes of the path

from the root to the leaf for each word type.

More specifically, the feature templates of the

baseline system are as follows. First for each token

we compute:

• its word type;

• word type, after excluding digits and lower-

casing it;

• its capitalization pattern;

• whether it is punctuation;

• 4-character prefixes and suffixes;

• character n-grams from length 2 to 5;

• whether it is in a wikipedia-extracted lexicon

of person names (first, last, and honorifics),

dates (months, years), place names (country,

US state, city, place suffixes, general location

words), organizations, and man-made things;

• whether it is a demonym.

For each token’s label we have feature templates

considering all token’s features, all neighboring

token’s features (up to distance 2), and bags of

words of features of tokens in a window of size

8 around each token. We also add a feature mark-

ing whether a token is the first occurrence of its

word type in a document.

When using Brown clusters we add as token

features all prefixes of lengths 4, 6, 10, and 20,

of its brown cluster.

For the second-layer model we use all these fea-

tures, as well as the label predicted for each token
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Figure 2: Chain CRF model for a NER system

with three tokens. Filled rectangles represent fac-

tors. Circles at top represent labels, circles at bot-

tom represent binary token based features. Filled

circles indicate the phrase embeddings for each to-

ken.

by the first-layer model.

As seen in the Experiments Section, our base-

line system is competitive with state-of-the-art

systems which use similar forms of information.

We train this system with stochastic gradient as-

cent, using the AdaGrad RDA algorithm (Duchi et

al., 2011), with both ℓ1 and ℓ2 regularization, au-

tomatically tuned for each experimental setting by

measuring performance on the development set.

2.4 NER with Phrase Embeddings

In this section we describe how to extend our base-

line NER system to use word embeddings as fea-

tures.

First we group the tokens into phrases, assign-

ing to each token a single phrase greedily. We

prefer shorter phrases over longer ones, sinceour

embeddings are often more reliable for the shorter

phrases, and since the longer phrases in our dic-

tionary are mostly extracted from Wikipedia page

titles, which are not always semantically meaning-

ful when seen in free text. We then add factors

connecting each token’s label with the embedding

for its phrase.

Figure 2 shows how phrase embeddings are

plugged into a chain-CRF based NER system.

Following Turian (2010), we scale the embed-

ding vector by a real number, which is a hyper-

parameter tuned on the development data. Con-

necting tokens to phrase embeddings of their

neighboring tokens did not improve performance

for phrase embeddings, but it was mildly benefi-

cial for token embeddings.

3 Lexicon-infused Skip-gram Models

The Skip-gram model as defined in Section 2.2 is

fundamentally trained in unsupervised fashion us-

ing simply words and their n-gram contexts. In-

jecting some NER-specific supervision into the

embeddings can make them more relevant to the

NER task.

Lexicons are a simple yet powerful way to pro-

vide task-specific supervisory information to the

model without the burden of labeling additional

data. However, while lexicons have proven use-

ful in various NLP tasks, a small amount of noise

in a lexicon can severely impair the its usefulness

as a feature in log-linear models. For example,

even legitimate data, such as the Chinese last name

“He” occurring in a lexicon of person last names,

can cause the lexicon feature to fire spuriously

for many training tokens that are labeled PERSON,

and then this lexicon feature may be given low or

even negative weight.

We propose to address both these problems by

employing lexicons as part of the word embedding

training. The skip-gram model can be trained to

predict not only neighboring words but also lexi-

con membership of the central word (or phrase).

The resulting embedding training will thus be

somewhat supervised by tending to bring together

the vectors of words sharing a lexicon member-

ship. Furthermore, this type of training can effec-

tively “clean” the influence of noisy lexicons be-

cause even if “He” appears in the PERSON lexicon,

it will have a sufficiently different context distribu-

tion than labeled named person entities (e.g. a lack

of preceding honorifics, etc) that the presence of

this noise in the lexicon will not be as problematic

as it was previously.

Furthermore, while Skip-gram models can be

trained on billions of tokens to learn word em-

beddings for over a million word types in a sin-

gle day, this might not be enough data to cap-

ture reliable embeddings of all relevant named en-

tity phrases. Certain sets of word types, such as

names of famous scientists, can occur infrequently

enough that the Skip-gram model will not have

enough contextual examples to learn embeddings

that highlight their relevant similarities.

In this section we describe how to extend the

Skip-gram model to incorporate auxiliary infor-

mation from lexicons, or lists of related words, en-

couraging the model to assign similar embeddings

to word types in similar lexicons.
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New YorkThe ofstate is often referred

...

...

...

...

stateThe ... New York

US-STATE

WIKI-LOCATION

BUSINESS

Figure 3: A Semi supervised Skip-gram Model.

“New York” predicts the word “state”. With

lexicon-infusion, “New York” also predicts its lex-

icon classes: US-State, Wiki-location

.

In the basic Skip-gram model, as seen in Sec-

tion 2.2, the likelihood is, for each n-gram, a prod-

uct of the probability of the embedding associated

with the middle word conditioned on each context

word. We can inject supervision in this model by

also predicting, given the embedding of the mid-

dle word, whether it is a member of each lexicon.

Figure 3 shows an example, where the word “New

York” predicts “state”, and also its lexicon classes:

Business, US-State and Wiki-Location.

Hence, with subscript s iterating over each lex-

icon (or set of related words), and lmn

s being a la-

bel for whether each word is in the set, and ws

indicating the parameters of its classifier, the full

likelihood of the model is

(2)

∏

n ∈N

(

∏

cn∈n

∏

i

σ(lcn

i wcn

i
T
emn

)

)

(

∏

s

σ(lmn

s wT
s emn

)

)

.

This is a simple modification to equation (1) that

also predicts the lexicon memberships. Note that

the parameters ws of the auxiliary per-lexicon

classifiers are also learned. The lexicons are not

inserted in the binary tree with the words; instead,

each lexicon gets its own binary classifier.

Algorithm 1 Generating the training examples for

lexicon-infused embeddings

1: for all n-gram n with middle word mn do

2: for all Context-word cn do

3: for all Classifier, label pair (wcn

i ,lcn

i )

in the tree do

4: Add training example

emn
, wcn

i , lcn

5: end for

6: end for

7: for all Lexicon s, with label lmn

s do

8: Add training example emn
, ws, l

mn

s

9: end for

10: end for

In practice, a very small fraction of words are

present in a lexicon-class and this creates skewed

training data, with overwhelmingly many negative

examples. We address this issue by aggressively

sub-sampling negative training data for each lex-

icon class. We do so by randomly selecting only

1% of the possible negative lexicons for each to-

ken.

A Skip-gram model has V binary classifiers. A

lexicon-infused Skip-gram model predicts an ad-

ditional K classes, and thus has V + K binary

classifiers. If number of classes K is large, we can

induce a tree over the classes, similarly to what is

done over words in the vocabulary. In our trained

models, however, we have one million words in

the vocabulary and twenty-two lexicons, so this is

not necessary.

4 Experiments

Our phrase embeddings are learned on the combi-

nation of English Wikipedia and the RCV1 Cor-

pus (Lewis et al., 2004). Wikipedia contains 8M

articles, and RCV1 contains 946K. To get candi-

date phrases we first select bigrams which have

a pointwise mutual information score larger than

1000. We discard bigrams with stopwords from a

manually selected list. If two bigrams share a to-

ken we add its corresponding trigram to our phrase

list. We further add page titles from the English

Wikipedia to the list of candidate phrases, as well

as all word types. We get a total of about 10M

phrases. We restrict the vocabulary to the most fre-

quent 1M phrases. All our reported experiments

are on 50-dimensional embeddings. Longer em-

beddings, while performing better on the semantic

similarity task, as seen in Mikolov et al (2013a;
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Model Accuracy

Skip-Gram 29.89

Lex-0.05 30.37

Lex-0.01 30.72

Table 1: Accuracy for Semantic-Syntactic task,

when restricted to Top 30K words. Lex-0.01 refers

to a model trained with lexicons, where 0.01% of

negative examples were used for training.

2013b), did not perform as well on NER.

To train phrase embeddings, we use a con-

text of length 21. We use lexicons derived from

Wikipedia categories and data from the US Cen-

sus, totaling K = 22 lexicon classes. We use a

randomly selected 0.01% of negative training ex-

amples for lexicons.

We perform two sets of experiments. First, we

validate our lexicon-infused phrase embeddings

on a semantic similarity task, similar to Mikolov et

al (Mikolov et al., 2013a). Then we evaluate their

utility on two named-entity recognition tasks.

For the NER Experiments, we use the base-

line system as described in Section 2.3.1. NER

systems marked as “Skip-gram” consider phrase

embeddings; “LexEmb” consider lexicon-infused

embeddings; “Brown” use Brown clusters, and

“Gaz” use our lexicons as features.

4.1 Syntactic and Semantic Similarity

Mikolov et al. (2013a) introduce a test set to mea-

sure syntactic and semantic regularities for words.

This set contains 8869 semantic and 10675 syn-

tactic questions. Each question consists of four

words, such as big, biggest, small, smallest. It

asks questions of the form “What is the word that

is similar to small in the same sense as biggest is

similar to big”. To test this, we compute the vec-

tor X = vector(“biggest”) − vector(“big”) +
vector(“small”). Next, we search for the word

closest to X in terms of cosine distance (exclud-

ing “biggest”, “small”, and “big”). This question

is considered correctly answered only if the clos-

est word found is “smallest”. As in Mikolov et

al (Mikolov et al., 2013a), we only search over

words which are among the 30K most frequent

words in the vocabulary.

Table 1 depicts the accuracy on Semantic Syn-

tactic Task for models trained with 50 dimensions.

We find that lexicon-infused embeddings perform

better than Skip-gram. Further, lex-0.01 performs

System Dev Test

Baseline 92.22 87.93

Baseline + Brown 93.39 90.05

Baseline + Skip-gram 93.68 89.68

Baseline + LexEmb 93.81 89.56

Baseline + Gaz 93.69 89.27

Baseline + Gaz + Brown 93.88 90.67

Baseline + Gaz + Skip-gram 94.23 90.33

Baseline + Gaz + LexEmb 94.46 90.90

Ando and Zhang (2005) 93.15 89.31

Suzuki and Isozaki (2008) 94.48 89.92

Ratinov and Roth (2009) 93.50 90.57

Lin and Wu (2009) - 90.90

Table 2: Final NER F1 scores for the CoNLL 2003

shared task. On the top are the systems presented

in this paper, and on the bottom we have base-

line systems. The best results within each area are

highlighted in bold. Lin and Wu 2009 use massive

private industrial query-log data in training.

the best, and we use this model for further NER

experiments. There was no perceptible difference

in computation cost from learning lexicon-infused

embeddings versus learning standard Skip-gram

embeddings.

4.2 CoNLL 2003 NER

We applied our models on CoNLL 2003 NER data

set. All hyperparameters were tuned by training

on training set, and evaluating on the development

set. Then the best hyperparameter values were

trained on the combination of training and devel-

opment data and applied on the test set, to obtain

the final results.

Table 2 shows the phrase F1 scores of all sys-

tems we implemented, as well as state-of-the-

art results from the literature. Note that us-

ing traditional unsupervised Skip-gram embed-

dings is worse than Brown clusters. In contrast,

our lexicon-infused phrase embeddings Lex-0.01

achieves 90.90—a state-of-the-art F1 score for the

test set. This result matches the highest F1 previ-

ously reported, in Lin and Wu (2009), but is the

first system to do so without using massive private

data. Our result is signficantly better than the pre-

vious best using public data.

4.3 Ontonotes 5.0 NER

Similarly to the CoNLL NER setup, we tuned the

hyperparameters on the development set. We use
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System Dev Test

Baseline 79.04 79.85

Baseline + Brown 79.95 81.38

Baseline + Skip-gram 80.59 81.91

Baseline + LexEmbd 80.65 81.82

Baseline + Gaz 79.85 81.31

Baseline + Gaz + Brown 80.53 82.05

Baseline + Gaz + Skip-gram 80.70 82.30

Baseline + Gaz + LexEmb 80.81 82.24

Table 3: Final NER F1 scores for Ontonotes 5.0

dataset. The results in bold face are the best on

each evaluation set.

the same list of lexicons as for CoNLL NER.

Table 3 summarize our results. We found that

both Skip-gram and Lexicon infused embeddings

give better results than using Brown Clusters as

features. However, in this case Skip-gram embed-

dings give marginally better results. (So as not to

jeopardize our ability to fairly do further research

on this task, we did not analyze the test set errors

that may explain this.) These are, to the best of our

knowledge, the first published performance num-

bers on the Ontonotes NER task.

5 Conclusions

We have shown how to inject external supervision

to a Skip-gram model to learn better phrase em-

beddings. We demonstrate the quality of phrase

embeddings on three tasks: Syntactic-semantic

similarity, CoNLL 2003 NER, and Ontonotes 5.0

NER. In the process, we provide a new public

state-of-the-art NER system for the widely con-

tested CoNLL 2003 shared task.

We demonstrate how we can plug phrase em-

beddings into an existing log-linear CRF System.

This work demonstrates that it is possible to

learn high-quality phrase embeddings and fine-

tune them with external supervision from billions

of tokens within one day computation time. We

further demonstrate that learning embeddings is

important and key to improve NLP Tasks such as

NER.

In future, we want to explore employing embed-

dings to other NLP tasks such as dependency pars-

ing and coreference resolution. We also want to

explore improving embeddings using error gradi-

ents from NER.
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Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH, pages 1045–1048.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed repre-
sentations of words and phrases and their composi-
tionality. arXiv preprint arXiv:1310.4546.

Scott Miller, Jethran Guinness, and Alex Zamanian.
2004. Name tagging with word clusters and discrim-
inative training. In HLT-NAACL, volume 4, pages
337–342. Citeseer.

Andriy Mnih and Geoffrey E Hinton. 2008. A scal-
able hierarchical distributed language model. In
Advances in neural information processing systems,
pages 1081–1088.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
Proceedings of the international workshop on artifi-
cial intelligence and statistics, pages 246–252.

Fernando Pereira, Naftali Tishby, and Lillian Lee.
1993. Distributional clustering of english words. In
Proceedings of the 31st annual meeting on Associa-
tion for Computational Linguistics, pages 183–190.
Association for Computational Linguistics.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Com-
putational Natural Language Learning, pages 147–
155. Association for Computational Linguistics.

Jun Suzuki and Hideki Isozaki. 2008. Semi-supervised
sequential labeling and segmentation using giga-
word scale unlabeled data. In ACL, pages 665–673.
Citeseer.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4,
pages 142–147. Association for Computational Lin-
guistics.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 384–394. Association for
Computational Linguistics.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw,
Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2011. OntoNotes Release 4.0. Lin-
guistic Data Consortium.

Tong Zhang and David Johnson. 2003. A robust
risk minimization based named entity recognition
system. In Proceedings of the seventh conference
on Natural language learning at HLT-NAACL 2003-
Volume 4, pages 204–207. Association for Compu-
tational Linguistics.

86


