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Abstract

We introduce a stochastic graph-based method for computing relative importance of
textual units for Natural Language Processing. We test the technique on the problem
of Text Summarization (TS). Extractive TS relies on the concept of sentence salience
to identify the most important sentences in a document or set of documents. Salience
is typically defined in terms of the presence of particular important words or in terms
of similarity to a centroid pseudo-sentence. We consider a new approach, LexRank, for
computing sentence importance based on the concept of eigenvector centrality in a graph
representation of sentences. In this model, a connectivity matrix based on intra-sentence
cosine similarity is used as the adjacency matrix of the graph representation of sentences.
Our system, based on LexRank ranked in first place in more than one task in the recent
DUC 2004 evaluation. In this paper we present a detailed analysis of our approach and
apply it to a larger data set including data from earlier DUC evaluations. We discuss
several methods to compute centrality using the similarity graph. The results show that
degree-based methods (including LexRank) outperform both centroid-based methods and
other systems participating in DUC in most of the cases. Furthermore, the LexRank
with threshold method outperforms the other degree-based techniques including continuous
LexRank. We also show that our approach is quite insensitive to the noise in the data that
may result from an imperfect topical clustering of documents.

1. Introduction

In recent years, natural language processing (NLP) has moved to a very firm mathematical
foundation. Many problems in NLP, e.g., parsing (Collins, 1997), word sense disambigua-
tion (Yarowsky, 1995), and automatic paraphrasing (Barzilay & Lee, 2003) have benefited
significantly by the introduction of robust statistical techniques. Recently, robust graph-
based methods for NLP have also been gaining a lot of interest, e.g., in word clustering
(Brew & im Walde, 2002) and prepositional phrase attachment (Toutanova, Manning, &
Ng, 2004).

In this paper, we will take graph-based methods in NLP one step further. We will
discuss how random walks on sentence-based graphs can help in text summarization. We
will also briefly discuss how similar techniques can be applied to other NLP tasks such as
named entity classification, prepositional phrase attachment, and text classification (e.g.,
spam recognition).
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Text summarization is the process of automatically creating a compressed version of
a given text that provides useful information for the user. The information content of
a summary depends on user’s needs. Topic-oriented summaries focus on a user’s topic of
interest, and extract the information in the text that is related to the specified topic. On the
other hand, generic summaries try to cover as much of the information content as possible,
preserving the general topical organization of the original text. In this paper, we focus
on multi-document extractive generic text summarization, where the goal is to produce a
summary of multiple documents about the same, but unspecified topic.

Extractive summarization produces summaries by choosing a subset of the sentences
in the original document(s). This contrasts with abstractive summarization, where the
information in the text is rephrased. Although summaries produced by humans are typically
not extractive, most of the summarization research today is on extractive summarization.
Purely extractive summaries often give better results compared to automatic abstractive
summaries. This is due to the fact that the problems in abstractive summarization, such
as semantic representation, inference and natural language generation, are relatively harder
compared to a data-driven approach such as sentence extraction. In fact, truly abstractive
summarization has not reached to a mature stage today. Existing abstractive summarizers
often depend on an extractive preprocessing component. The output of the extractor is cut
and pasted, or compressed to produce the abstract of the text (Witbrock & Mittal, 1999;
Jing, 2002; Knight & Marcu, 2000). SUMMONS (Radev & McKeown, 1998) is an example
of a multi-document summarizer which extracts and combines information from multiple
sources and passes this information to a language generation component to produce the
final summary.

Early research on extractive summarization is based on simple heuristic features of
the sentences such as their position in the text, the overall frequency of the words they
contain, or some key phrases indicating the importance of the sentences (Baxendale, 1958;
Edmundson, 1969; Luhn, 1958). A commonly used measure to assess the importance of
the words in a sentence is the inverse document frequency, or idf, which is defined by the
formula (Sparck-Jones, 1972):

idfi = log
(N

ni

)

(1)

where N is the total number of the documents in a collection, and ni is the number of
documents in which word i occurs. For example, the words that are likely to occur in
almost every document (e.g. articles “a” and “the”) have idf values close to zero while rare
words (e.g. medical terms, proper nouns) typically have higher idf values.

More advanced techniques also consider the relation between sentences or the discourse
structure by using synonyms of the words or anaphora resolution (Mani & Bloedorn, 1997;
Barzilay & Elhadad, 1999). Researchers have also tried to integrate machine learning into
summarization as more features have been proposed and more training data have become
available (Kupiec, Pedersen, & Chen, 1995; Lin, 1999; Osborne, 2002; Daumé III & Marcu,
2004).

Our summarization approach in this paper is to assess the centrality of each sentence in
a cluster and extract the most important ones to include in the summary. We investigate
different ways of defining the lexical centrality principle in multi-document summarization,
which measures centrality in terms of lexical properties of the sentences.
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In Section 2, we present centroid-based summarization, a well-known method for judging
sentence centrality. Then we introduce three new measures for centrality, Degree, LexRank
with threshold, and continuous LexRank, inspired from the “prestige” concept in social net-
works. We propose a graph representation of a document cluster, where vertices represent
the sentences and edges are defined in terms of the similarity relation between pairs of sen-
tences. This representation enables us to make use of several centrality heuristics defined on
graphs. We compare our new methods with centroid-based summarization using a feature-
based generic summarization toolkit, MEAD, and show that our new features outperform
Centroid in most of the cases. Test data for our experiments are taken from 2003 and 2004
summarization evaluations of Document Understanding Conferences (DUC) to compare our
system with other state-of-the-art summarization systems and human performance as well.

2. Sentence Centrality and Centroid-based Summarization

Extractive summarization works by choosing a subset of the sentences in the original doc-
uments. This process can be viewed as identifying the most central sentences in a (multi-
document) cluster that give the necessary and sufficient amount of information related to
the main theme of the cluster. Centrality of a sentence is often defined in terms of the
centrality of the words that it contains. A common way of assessing word centrality is to
look at the centroid of the document cluster in a vector space. The centroid of a cluster
is a pseudo-document which consists of words that have tf×idf scores above a predefined
threshold, where tf is the frequency of a word in the cluster, and idf values are typically
computed over a much larger and similar genre data set. In centroid-based summariza-
tion (Radev, Jing, & Budzikowska, 2000), the sentences that contain more words from the
centroid of the cluster are considered as central (Algorithm 1). This is a measure of how
close the sentence is to the centroid of the cluster. Centroid-based summarization has given
promising results in the past, and it has resulted in the first web-based multi-document
summarization system1 (Radev, Blair-Goldensohn, & Zhang, 2001).

3. Centrality-based Sentence Salience

In this section, we propose several other criteria to assess sentence salience. All of our
approaches are based on the concept of prestige 2 in social networks, which has also inspired
many ideas in computer networks and information retrieval. A social network is a mapping
of relationships between interacting entities (e.g. people, organizations, computers). Social
networks are represented as graphs, where the nodes represent the entities and the links
represent the relations between the nodes.

A cluster of documents can be viewed as a network of sentences that are related to
each other. Some sentences are more similar to each other while some others may share
only a little information with the rest of the sentences. We hypothesize that the sentences
that are similar to many of the other sentences in a cluster are more central (or salient)
to the topic. There are two points to clarify in this definition of centrality. First is how to

1. http://www.newsinessence.com

2. “Prestige” and “centrality” stand for the same concept with the difference that the former is often defined
for directed graphs whereas the latter is defined for undirected graphs.
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input : An array S of n sentences, cosine threshold t
output: An array C of Centroid scores
Hash WordHash;1

Array C;2

/* compute tf×idf scores for each word */3

for i← 1 to n do4
foreach word w of S[i] do5

WordHash{w}{“tfidf”} = WordHash{w}{“tfidf”}+ idf{w};6

end7

end8

/* construct the centroid of the cluster */9

/* by taking the words that are above the threshold*/10
foreach word w of WordHash do11

if WordHash{w}{“tfidf”} > t then12

WordHash{w}{“centroid”} = WordHash{w}{“tfidf”};13

end14

else15
WordHash{w}{“centroid”} = 0;16

end17

end18

/* compute the score for each sentence */19

for i← 1 to n do20

C[i] = 0;21
foreach word w of S[i] do22

C[i] = C[i] + WordHash{w}{“centroid”};23

end24

end25

return C;26

Algorithm 1: Computing Centroid scores.

define similarity between two sentences. Second is how to compute the overall centrality of
a sentence given its similarity to other sentences.

To define similarity, we use the bag-of-words model to represent each sentence as an N -
dimensional vector, where N is the number of all possible words in the target language. For
each word that occurs in a sentence, the value of the corresponding dimension in the vector
representation of the sentence is the number of occurrences of the word in the sentence
times the idf of the word. The similarity between two sentences is then defined by the
cosine between two corresponding vectors:

idf-modified-cosine(x, y) =

∑

w∈x,y tfw,xtfw,y(idfw)2
√

∑

xi∈x(tfxi,xidfxi
)2 ×

√

∑

yi∈y(tfyi,yidfyi
)2

(2)

where tfw,s is the number of occurrences of the word w in the sentence s.

A cluster of documents may be represented by a cosine similarity matrix where each
entry in the matrix is the similarity between the corresponding sentence pair. Figure 1
shows a subset of a cluster used in DUC 2004, and the corresponding cosine similarity

matrix. Sentence ID dXsY indicates the Y th sentence in the Xth document. This matrix
can also be represented as a weighted graph where each edge shows the cosine similarity
between a pair of sentence (Figure 2). In the following sections, we discuss several ways
of computing sentence centrality using the cosine similarity matrix and the corresponding
graph representation.
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3.1 Degree Centrality

In a cluster of related documents, many of the sentences are expected to be somewhat similar
to each other since they are all about the same topic. This can be seen in Figure 1 where
the majority of the values in the similarity matrix are nonzero. Since we are interested
in significant similarities, we can eliminate some low values in this matrix by defining a
threshold so that the cluster can be viewed as an (undirected) graph, where each sentence
of the cluster is a node, and significantly similar sentences are connected to each other.
Figure 3 shows the graphs that correspond to the adjacency matrices derived by assuming
the pair of sentences that have a similarity above 0.1, 0.2, and 0.3, respectively, in Figure 1
are similar to each other. Note that there should also be self links for all of the nodes in
the graphs since every sentence is trivially similar to itself. Although we omit the self links
for readability, the arguments in the following sections assume that they exist.

A simple way of assessing sentence centrality by looking at the graphs in Figure 3 is to
count the number of similar sentences for each sentence. We define degree centrality of a
sentence as the degree of the corresponding node in the similarity graph. As seen in Table 1,
the choice of cosine threshold dramatically influences the interpretation of centrality. Too
low thresholds may mistakenly take weak similarities into consideration while too high
thresholds may lose many of the similarity relations in a cluster.

ID Degree (0.1) Degree (0.2) Degree (0.3)
d1s1 5 4 2
d2s1 7 4 2
d2s2 2 1 1
d2s3 6 3 1
d3s1 5 2 1
d3s2 7 5 1
d3s3 2 2 1
d4s1 9 6 1
d5s1 5 4 2
d5s2 6 4 1
d5s3 5 2 2

Table 1: Degree centrality scores for the graphs in Figure 3. Sentence d4s1 is the most
central sentence for thresholds 0.1 and 0.2.

3.2 Eigenvector Centrality and LexRank

When computing degree centrality, we have treated each edge as a vote to determine the
overall centrality value of each node. This is a totally democratic method where each vote
counts the same. However, in many types of social networks, not all of the relationships
are considered equally important. As an example, consider a social network of people that
are connected to each other with the friendship relation. The prestige of a person does not
only depend on how many friends he has, but also depends on who his friends are.

The same idea can be applied to extractive summarization as well. Degree centrality may
have a negative effect in the quality of the summaries in some cases where several unwanted
sentences vote for each other and raise their centrality. As an extreme example, consider
a noisy cluster where all the documents are related to each other, but only one of them
is about a somewhat different topic. Obviously, we would not want any of the sentences
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SNo ID Text
1 d1s1 Iraqi Vice President Taha Yassin Ramadan announced today, Sunday,

that Iraq refuses to back down from its decision to stop cooperating
with disarmament inspectors before its demands are met.

2 d2s1 Iraqi Vice president Taha Yassin Ramadan announced today, Thursday,
that Iraq rejects cooperating with the United Nations except on the
issue of lifting the blockade imposed upon it since the year 1990.

3 d2s2 Ramadan told reporters in Baghdad that ”Iraq cannot deal positively
with whoever represents the Security Council unless there was a clear
stance on the issue of lifting the blockade off of it.

4 d2s3 Baghdad had decided late last October to completely cease cooperating
with the inspectors of the United Nations Special Commission
(UNSCOM), in charge of disarming Iraq’s weapons, and whose work
became very limited since the fifth of August, and announced it will not
resume its cooperation with the Commission even if it were subjected
to a military operation.

5 d3s1 The Russian Foreign Minister, Igor Ivanov, warned today, Wednesday
against using force against Iraq, which will destroy, according to
him, seven years of difficult diplomatic work and will complicate
the regional situation in the area.

6 d3s2 Ivanov contended that carrying out air strikes against Iraq, who refuses
to cooperate with the United Nations inspectors, “will end the
tremendous work achieved by the international group during the past
seven years and will complicate the situation in the region.”

7 d3s3 Nevertheless, Ivanov stressed that Baghdad must resume working
with the Special Commission in charge of disarming the Iraqi
weapons of mass destruction (UNSCOM).

8 d4s1 The Special Representative of the United Nations Secretary-General
in Baghdad, Prakash Shah, announced today, Wednesday, after
meeting with the Iraqi Deputy Prime Minister Tariq Aziz, that Iraq
refuses to back down from its decision to cut off cooperation with
the disarmament inspectors.

9 d5s1 British Prime Minister Tony Blair said today, Sunday, that the crisis
between the international community and Iraq “did not end” and that
Britain is still “ready, prepared, and able to strike Iraq.”

10 d5s2 In a gathering with the press held at the Prime Minister’s office,
Blair contended that the crisis with Iraq “will not end until Iraq has
absolutely and unconditionally respected its commitments” towards
the United Nations.

11 d5s3 A spokesman for Tony Blair had indicated that the British Prime
Minister gave permission to British Air Force Tornado planes stationed
in Kuwait to join the aerial bombardment against Iraq.

1 2 3 4 5 6 7 8 9 10 11

1 1.00 0.45 0.02 0.17 0.03 0.22 0.03 0.28 0.06 0.06 0.00

2 0.45 1.00 0.16 0.27 0.03 0.19 0.03 0.21 0.03 0.15 0.00

3 0.02 0.16 1.00 0.03 0.00 0.01 0.03 0.04 0.00 0.01 0.00

4 0.17 0.27 0.03 1.00 0.01 0.16 0.28 0.17 0.00 0.09 0.01

5 0.03 0.03 0.00 0.01 1.00 0.29 0.05 0.15 0.20 0.04 0.18

6 0.22 0.19 0.01 0.16 0.29 1.00 0.05 0.29 0.04 0.20 0.03

7 0.03 0.03 0.03 0.28 0.05 0.05 1.00 0.06 0.00 0.00 0.01

8 0.28 0.21 0.04 0.17 0.15 0.29 0.06 1.00 0.25 0.20 0.17

9 0.06 0.03 0.00 0.00 0.20 0.04 0.00 0.25 1.00 0.26 0.38

10 0.06 0.15 0.01 0.09 0.04 0.20 0.00 0.20 0.26 1.00 0.12

11 0.00 0.00 0.00 0.01 0.18 0.03 0.01 0.17 0.38 0.12 1.00

Figure 1: Intra-sentence cosine similarities in a subset of cluster d1003t from DUC 2004.
Source: Agence France Presse (AFP) Arabic Newswire (1998). Manually trans-
lated to English.
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Edge Weights:
[0.3,1.0]
[0.2,0.3)
[0.1,0.2)
[0.0,0.1)

d1s1

d5s3

d5s1

d3s3
d3s2

d3s1

d2s3

d2s1

d2s2
d5s2

d4s1

Figure 2: Weighted cosine similarity graph for the cluster in Figure 1.
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Figure 3: Similarity graphs that correspond to thresholds 0.1, 0.2, and 0.3, respectively, for
the cluster in Figure 1.
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in the unrelated document to be included in a generic summary of the cluster. However,
suppose that the unrelated document contains some sentences that are very prestigious
considering only the votes in that document. These sentences will get artificially high
centrality scores by the local votes from a specific set of sentences. This situation can be
avoided by considering where the votes come from and taking the centrality of the voting
nodes into account in weighting each vote. A straightforward way of formulating this idea
is to consider every node having a centrality value and distributing this centrality to its
neighbors. This formulation can be expressed by the equation

p(u) =
∑

v∈adj[u]

p(v)

deg(v)
(3)

where p(u) is the centrality of node u, adj[u] is the set of nodes that are adjacent to u, and
deg(v) is the degree of the node v. Equivalently, we can write Equation 3 in the matrix
notation as

p = BTp (4)

or

pTB = pT (5)

where the matrix B is obtained from the adjacency matrix of the similarity graph by dividing
each element by the corresponding row sum:

B(i, j) =
A(i, j)

∑

k A(i, k)
(6)

Note that a row sum is equal to the degree of the corresponding node. Since every sentence
is similar at least to itself, all row sums are nonzero. Equation 5 states that pT is the
left eigenvector of the matrix B with the corresponding eigenvalue of 1. To guarantee that
such an eigenvector exists and can be uniquely identified and computed, we need some
mathematical foundations.

A stochastic matrix, X, is the transition matrix of a Markov chain. An element X(i, j)
of a stochastic matrix specifies the transition probability from state i to state j in the
corresponding Markov chain. By the probability axioms, all rows of a stochastic matrix
should add up to 1. Xn(i, j) gives the probability of reaching from state i to state j in
n transitions. A Markov chain with the stochastic matrix X converges to a stationary
distribution if

lim
n→∞

Xn = 1Tr (7)

where 1 = (1, 1, ..., 1), and the vector r is called the stationary distribution of the Markov
chain. An intuitive interpretation of the stationary distribution can be understood by the
concept of a random walk. Each element of the vector r gives the asymptotic probability
of ending up in the corresponding state in the long run regardless of the starting state.
A Markov chain is irreducible if any state is reachable from any other state, i.e. for all
i, j there exists an n such that Xn(i, j) 6= 0. A Markov chain is aperiodic if for all i,
gcd{n : Xn(i, i) > 0} = 1. By the Perron-Frobenius theorem (Seneta, 1981), an irreducible
and aperiodic Markov chain is guaranteed to converge to a unique stationary distribution.
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If a Markov chain has reducible or periodic components, a random walker may get stuck in
these components and never visit the other parts of the graph.

Since the similarity matrix B in Equation 4 satisfies the properties of a stochastic matrix,
we can treat it as a Markov chain. The centrality vector p corresponds to the stationary
distribution of B. However, we need to make sure that the similarity matrix is always
irreducible and aperiodic. To solve this problem, Page et al. (1998) suggest reserving some
low probability for jumping to any node in the graph. This way the random walker can
“escape” from periodic or disconnected components, which makes the graph irreducible and
aperiodic. If we assign a uniform probability for jumping to any node in the graph, we are
left with the following modified version of Equation 3, which is known as PageRank,

p(u) =
d

N
+ (1 − d)

∑

v∈adj[u]

p(v)

deg(v)
(8)

where N is the total number of nodes in the graph, and d is a “damping factor”, which is
typically chosen in the interval [0.1, 0.2] (Brin & Page, 1998). Equation 8 can be written in
the matrix form as

p = [dU + (1 − d)B]Tp (9)

where U is a square matrix with all elements being equal to 1/N . The transition kernel
[dU + (1 − d)B] of the resulting Markov chain is a mixture of two kernels U and B. A
random walker on this Markov chain chooses one of the adjacent states of the current state
with probability 1−d, or jumps to any state in the graph, including the current state, with
probability d. The PageRank formula was first proposed for computing web page prestige,
and still serves as the underlying mechanism behind the Google search engine.

The convergence property of Markov chains also provides us with a simple iterative
algorithm, called power method, to compute the stationary distribution (Algorithm 2).
The algorithm starts with a uniform distribution. At each iteration, the eigenvector is
updated by multiplying with the transpose of the stochastic matrix. Since the Markov
chain is irreducible and aperiodic, the algorithm is guaranteed to terminate.

input : A stochastic, irreducible and aperiodic matrix M

input : matrix size N , error tolerance ε
output: eigenvector p

p0= 1

N
1;1

t=0;2
repeat3

t=t+1;4

pt = MTpt−1;5

δ = ||pt − pt−1||;6

until δ < ε;7

return pt;8

Algorithm 2: Power Method for computing the stationary distribution of a Markov
chain.

Unlike the original PageRank method, the similarity graph for sentences is undirected
since cosine similarity is a symmetric relation. However, this does not make any difference
in the computation of the stationary distribution. We call this new measure of sentence
similarity lexical PageRank, or LexRank. Algorithm 3 summarizes how to compute LexRank
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scores for a given set of sentences. Note that Degree centrality scores are also computed (in
the Degree array) as a side product of the algorithm. Table 2 shows the LexRank scores
for the graphs in Figure 3 setting the damping factor to 0.85. For comparison, Centroid
score for each sentence is also shown in the table. All the numbers are normalized so that
the highest ranked sentence gets the score 1. It is obvious from the figures that threshold
choice affects the LexRank rankings of some sentences.

MInputAn array S of n sentences, cosine threshold t output: An array L of LexRank scores1

Array CosineMatrix[n][n];2

Array Degree[n];3

Array L[n];4

for i← 1 to n do5

for j ← 1 to n do6

CosineMatrix[i][j] = idf-modified-cosine(S[i],S[j]);7

if CosineMatrix[i][j] > t then8
CosineMatrix[i][j] = 1;9

Degree[i] + +;10

end11

else12

CosineMatrix[i][j] = 0;13

end14

end15

end16

for i← 1 to n do17

for j ← 1 to n do18

CosineMatrix[i][j] = CosineMatrix[i][j]/Degree[i];19

end20

end21
L = PowerMethod(CosineMatrix,n,ε);22

return L;23

Algorithm 3: Computing LexRank scores.

ID LR (0.1) LR (0.2) LR (0.3) Centroid
d1s1 0.6007 0.6944 1.0000 0.7209
d2s1 0.8466 0.7317 1.0000 0.7249
d2s2 0.3491 0.6773 1.0000 0.1356
d2s3 0.7520 0.6550 1.0000 0.5694
d3s1 0.5907 0.4344 1.0000 0.6331
d3s2 0.7993 0.8718 1.0000 0.7972
d3s3 0.3548 0.4993 1.0000 0.3328
d4s1 1.0000 1.0000 1.0000 0.9414
d5s1 0.5921 0.7399 1.0000 0.9580
d5s2 0.6910 0.6967 1.0000 1.0000
d5s3 0.5921 0.4501 1.0000 0.7902

Table 2: LexRank scores for the graphs in Figure 3. All the values are normalized so that
the largest value of each column is 1. Sentence d4s1 is the most central page for
thresholds 0.1 and 0.2.

3.3 Continuous LexRank

The similarity graphs we have constructed to compute Degree centrality and LexRank are
unweighted. This is due to the binary discretization we perform on the cosine matrix using
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an appropriate threshold. As in all discretization operations, this means an information
loss. One improvement over LexRank can be obtained by making use of the strength of the
similarity links. If we use the cosine values directly to construct the similarity graph, we
usually have a much denser but weighted graph (Figure 2). We can normalize the row sums
of the corresponding transition matrix so that we have a stochastic matrix. The resultant
equation is a modified version of LexRank for weighted graphs:

p(u) =
d

N
+ (1 − d)

∑

v∈adj[u]

idf-modified-cosine(u, v)
∑

z∈adj[v] idf-modified-cosine(z, v)
p(v) (10)

This way, while computing LexRank for a sentence, we multiply the LexRank values of the
linking sentences by the weights of the links. Weights are normalized by the row sums, and
the damping factor d is added for the convergence of the method.

3.4 Centrality vs. Centroid

Graph-based centrality has several advantages over Centroid. First of all, it accounts for in-
formation subsumption among sentences. If the information content of a sentence subsumes
another sentence in a cluster, it is naturally preferred to include the one that contains more
information in the summary. The degree of a node in the cosine similarity graph is an indi-
cation of how much common information the sentence has with other sentences. Sentence
d4s1 in Figure 1 gets the highest score since it almost subsumes the information in the
first two sentences of the cluster and has some common information with others. Another
advantage of our proposed approach is that it prevents unnaturally high idf scores from
boosting up the score of a sentence that is unrelated to the topic. Although the frequency
of the words are taken into account while computing the Centroid score, a sentence that
contains many rare words with high idf values may get a high Centroid score even if the
words do not occur elsewhere in the cluster.

4. Experimental Setup

In this section, we describe the data set, the evaluation metric and the summarization
system we used in our experiments.

4.1 Data Set and Evaluation Method

We used DUC 2003 and 2004 data sets in our experiments. Task 2 of both DUC 2003 and
2004 involve generic summarization of news documents clusters. There are a total of 30
clusters in DUC 2003 and 50 clusters in DUC 2004. In addition to these two tasks, we
used two more data sets from Task 4 of DUC 2004, which involves cross-lingual generic
summarization. First set (Task 4a) is composed of Arabic-to-English machine translations
of 24 news clusters. Second set (Task 4b) is the human translations of the same clusters.
All data sets are in English.

For evaluation, we used the new automatic summary evaluation metric, ROUGE3, which
was used for the first time in DUC 2004. ROUGE is a recall-based metric for fixed-length

3. http://www.isi.edu/~cyl/ROUGE
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summaries which is based on n-gram co-occurrence. It reports separate scores for 1, 2,
3, and 4-gram matching between the model summaries and the summary to be evaluated.
Among these different scores, unigram-based ROUGE score (ROUGE-1) has been shown
to agree with human judgements most (Lin & Hovy, 2003).

There are 10 different human judges for DUC 2003 Task 2; 8 for DUC 2004 Task 2; and
4 for DUC 2004 Task 4. However, a subset of exactly 4 different human judges produced
model summaries for any given cluster. ROUGE requires a limit on the length of the
summaries to be able to make a fair evaluation. To stick with the DUC 2004 specifications
and to be able to compare our system with human summaries and as well as with other
DUC participants, we produced 665-byte summaries for each cluster and computed ROUGE
scores against human summaries.

4.2 MEAD Summarization Toolkit

We implemented our methods inside the MEAD4 summarization system (Radev et al.,
2001). MEAD is a publicly available toolkit for extractive multi-document summarization.
Although it comes as a centroid-based summarization system by default, its feature set can
be extended to implement any other method.

The MEAD summarizer consists of three components. During the first step, the feature
extraction, each sentence in the input document (or cluster of documents) is converted into
a feature vector using the user-defined features. Second, the feature vector is converted to
a scalar value using the combiner. Combiner outputs a linear combination of the features
by using the predefined feature weights. At the last stage known as the reranker, the scores
for sentences included in related pairs are adjusted upwards or downwards based on the
type of relation between the sentences in the pair. Reranker penalizes the sentences that
are similar to the sentences already included in the summary so that a better information
coverage is achieved.

Three default features that come with the MEAD distribution are Centroid, Position
and Length. Position is the normalized value of the position of a sentence in the document
such that the first sentence of a document gets the maximum Position value of 1, and the last
sentence gets the value 0. Length is not a real feature score, but a cutoff value that ignores
sentences shorter than the given threshold. Several rerankers are implemented in MEAD,
including one based on Maximal Marginal Relevance (MMR) (Carbonell & Goldstein, 1998)
and the default reranker of the system based on Cross-Sentence Informational Subsumption
(CSIS) (Radev, 2000). All of our experiments shown in Section 5 use the CSIS reranker.

A MEAD policy is a combination of three components: (a) the command lines for all
features, (b) the formula for converting the feature vector to a scalar, and (c) the command
line for the reranker. A sample policy might be the one shown in Figure 4. This example
indicates the three default MEAD features (Centroid, Position, LengthCutoff), and our
new LexRank feature used in our experiments. Our LexRank implementation requires the
cosine similarity threshold, 0.2 in the example, as an argument. Each number next to
a feature name shows the relative weight of that feature (except for LengthCutoff where
the number 9 indicates the threshold for selecting a sentence based on the number of the
words in the sentence). The reranker in the example is a word-based MMR reranker with

4. http://www.summarization.com
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feature LexRank LexRank.pl 0.2

Centroid 1 Position 1 LengthCutoff 9 LexRank 1

mmr-reranker-word.pl 0.5 MEAD-cosine enidf

Figure 4: A sample MEAD policy.

a cosine similarity threshold, 0.5. Finally “enidf” specifies the idf database file, which is a
precomputed list of idf’s for English words.

5. Results and Discussion

The following sections show the results of the experiments we have performed on the official
DUC data sets with different implementations of similarity graph based centrality. We
have implemented Degree centrality, LexRank with threshold and continuous LexRank as
separate features in MEAD. All the feature values are normalized so that the sentence
that has the highest value gets the score 1, and the sentence with the lowest value gets
the score 0. In all of the runs, we have used Length and Position features of MEAD as
supporting heuristics in addition to our centrality features. Length cutoff value is set to 9,
i.e. all the sentences that have less than 9 words are discarded. The weight of the Position
feature is fixed to 1 in all runs. Other than these two heuristic features, we used each
centrality feature alone without combining with other centrality methods to make a better
comparison with each other. For each centrality feature we are experimenting with, we
have run 8 different MEAD features by setting the weight of the corresponding feature to
0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0, 10.0, respectively.

5.1 Effect of Threshold on Degree and LexRank Centrality

We have demonstrated that very high thresholds may lose almost all of the information in
a similarity matrix (Figure 3). To support our claim, we have run Degree and LexRank
centrality with different thresholds for our data sets. Figure 5 shows the effect of threshold
for Degree and LexRank centrality on DUC 2004 Task 2 data. We have experimented with
four different thresholds: 0.1, 0.2, 0.3, and 0.4. Eight different data points shown for each
threshold correspond to the runs of the same feature with eight different weights as we
have discussed above. The mean value of the eight different experiments is shown as a
horizontal line. It is apparent in the figures that the lowest threshold, 0.1, produces the
best summaries. This means that the information loss in higher thresholds is high enough
to result in worse ROUGE scores. The loss in ROUGE scores as we move from threshold
0.1 to 0.2 is more significant in Degree centrality.

This effect of threshold is an indication that our new centrality methods actually work
for extractive summarization. The higher the threshold, the less informative, or even mis-
leading, similarity graphs we must have. On the extreme point where we have a very high
threshold, we would have no edges in the graph so that Degree or LexRank centrality would
be of no use.
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Figure 5: ROUGE-1 scores for (a) Degree centrality and (b) LexRank centrality with dif-
ferent thresholds on DUC 2004 Task 2 data.

5.2 Comparison of Centrality Methods

Table 3 shows the ROUGE scores for our experiments on DUC 2003 Task 2, DUC 2004
Task 2, DUC 2004 Task 4a, and DUC 2004 Task 4b, respectively. We show the minimum,
the maximum, and the average ROUGE-1 scores for eight experiments we have run for each
centrality method corresponding to eight different feature weights we have mentioned in
Section 5. We include Degree and LexRank experiments only with threshold 0.1, the best
one we have observed. We also include two baselines for each data set. The first baseline we
have used is extracting random sentences from the cluster. We have performed five random
runs for each data set. The results in the tables are for the median runs. The second
baseline, shown as ‘lead-based’ in the tables, is using only the Position feature without
any centrality method. This is tantamount to producing lead-based summaries, which is a
widely used and very challenging baseline in the text summarization community (Brandow,
Mitze, & Rau, 1995).

The top scores we have got in all data sets come from our new methods. All of our
three new methods (Degree, LexRank with threshold, and continuous LexRank) perform
significantly better than the baselines in all data sets. They also perform better than
centroid-based summaries except for the DUC 2003 data set where the difference between
Centroid and the others is not obvious. 0.1 seems to be an appropriate threshold such
that the results seem as successful as using continuous LexRank. It is also hard to say
that Degree and LexRank are significantly different from each other. This is an indication
that Degree may already be a good enough measure to assess the centrality of a node in
the similarity graph. Considering the relatively low complexity of degree centrality, it still
serves as a plausible alternative when one needs a simple implementation. Computation of
Degree can be done on the fly as a side product of LexRank just before the power method
is applied on the similarity graph.

To have an idea of the relative success of our methods among other summarization sys-
tems, we have compared our ROUGE scores with other participants’ scores in the same
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DUC data sets. Table 4 and Table 5 show the official ROUGE-1 scores for top five par-
ticipants and human summarizers on DUC 2003 and 2004 data, respectively. Most of the
LexRank scores we got are better than the second best system in DUC 2003 and worse than
the best system. Best few scores for each method are always statistically indistinguishable
from the best system in the official evaluations considering the 95% confidence interval. On
all three DUC 2004 data sets, we achieved a better score than the best participant in at
least one of the policies we tried. On the DUC 2003 data, we achieved several scores that
are between the best and the second best system.

2003 Task2
min max average

Centroid 0.3523 0.3713 0.3624

Degree (t=0.1) 0.3566 0.3640 0.3595

LexRank (t=0.1) 0.3610 0.3726 0.3666

Cont. LexRank 0.3594 0.3700 0.3646

2004 Task2
min max average

Centroid 0.3580 0.3767 0.3670

Degree (t=0.1) 0.3590 0.3830 0.3707

LexRank (t=0.1) 0.3646 0.3808 0.3736

Cont. LexRank 0.3617 0.3826 0.3758

baselines: random: 0.3261
lead-based: 0.3575

baselines: random: 0.3238
lead-based: 0.3686

(a) (b)

2004 Task4a
min max average

Centroid 0.3768 0.3901 0.3826

Degree (t=0.1) 0.3863 0.4027 0.3928

LexRank (t=0.1) 0.3931 0.4038 0.3974

Cont. LexRank 0.3924 0.4002 0.3963

2004 Task4b
min max average

Centroid 0.3760 0.3962 0.4034

Degree (t=0.1) 0.3801 0.4147 0.4026

LexRank (t=0.1) 0.3837 0.4167 0.4052

Cont. LexRank 0.3772 0.4082 0.3966

baselines: random: 0.3593
lead-based: 0.3788

baselines: random: 0.3734
lead-based: 0.3587

(c) (d)

Table 3: ROUGE-1 scores for different MEAD policies on DUC 2003 and 2004 data.

5.3 Experiments on Noisy Data

The graph-based methods we have proposed consider a document cluster as a whole. The
centrality of a sentence is measured by looking at the overall interaction of the sentence
within the cluster rather than the local value of the sentence in its document. This is espe-
cially critical in generic summarization where the information unrelated to the main theme
of the cluster should be excluded from the summary. DUC data sets are perfectly clustered
into related documents by human assessors. To observe the behavior of our methods on
noisy data, we have added 2 random documents in each cluster taken from a different clus-
ter. Since originally each cluster contains 10 documents, this means a 2/12 (17%) noise on
the data sets.

The results on the noisy data are given in Table 6. The picture looks similar to Table 3
except for lead-based and random baselines are more significantly affected by the noise. The
performance loss is quite small on our graph-based centrality methods. A surprising point
is that centroid-based summarization also gives good results although still worse than the
others most of the time. This suggests that 17% noise on the data is not enough to make
significant changes on the centroid of a cluster.
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TASK 2
Peer ROUGE-1 95% Confidence

Code Score Interval

C 0.4443 [0.3924,0.4963]
B 0.4425 [0.4138,0.4711]
D 0.4344 [0.3821,0.4868]
E 0.4218 [0.3871,0.4565]
A 0.4168 [0.3864,0.4472]
I 0.4055 [0.3740,0.4371]
G 0.3978 [0.3765,0.4192]
F 0.3904 [0.3596,0.4211]
J 0.3895 [0.3591,0.4199]
H 0.3869 [0.3659,0.4078]
12 0.3798 [0.3598,0.3998]
13 0.3676 [0.3507,0.3844]
16 0.3660 [0.3474,0.3846]
6 0.3607 [0.3415,0.3799]
26 0.3582 [0.3337,0.3828]

Table 4: Summary of official ROUGE scores for DUC 2003 Task 2. Peer codes: manual
summaries [A-J] and top five system submissions.

TASK 2
Peer ROUGE-1 95% Confidence
Code Score Interval

H 0.4183 [0.4019,0.4346]
F 0.4125 [0.3916,0.4333]
E 0.4104 [0.3882,0.4326]
D 0.4059 [0.3870,0.4249]
B 0.4043 [0.3795,0.4291]
A 0.3933 [0.3722,0.4143]
C 0.3904 [0.3715,0.4093]
G 0.3890 [0.3679,0.4101]
65 0.3822 [0.3694,0.3951]
104 0.3744 [0.3635,0.3853]
35 0.3743 [0.3612,0.3874]
19 0.3739 [0.3608,0.3869]
124 0.3706 [0.3578,0.3835]

TASK 4
Peer ROUGE-1 95% Confidence
Code Score Interval

Y 0.4445 [0.4230,0.4660]
Z 0.4326 [0.4088,0.4565]
X 0.4293 [0.4068,0.4517]
W 0.4119 [0.3870,0.4368]

Task 4a
144 0.3883 [0.3626,0.4139]
22 0.3865 [0.3635,0.4096]
107 0.3862 [0.3555,0.4168]
68 0.3816 [0.3642,0.3989]
40 0.3796 [0.3581,0.4011]

Task 4b
23 0.4158 [0.3933,0.4382]
84 0.4101 [0.3854,0.4348]
145 0.4060 [0.3678,0.4442]
108 0.4006 [0.3700,0.4312]
69 0.3984 [0.3744,0.4225]

Table 5: Summary of official ROUGE scores for DUC 2004 Tasks 2 and 4. Peer codes:
manual summaries [A-Z] and top five system submissions. Systems numbered 144
and 145 are University of Michigan’s submission. 144 uses LexRank in combination
with Centroid whereas 145 uses Centroid alone.
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2003 Task2
min max average

Centroid 0.3502 0.3689 0.3617

Degree (t=0.1) 0.3501 0.3650 0.3573

LexRank (t=0.1) 0.3493 0.3677 0.3603

Cont. LexRank 0.3564 0.3653 0.3621

2004 Task2
min max average

Centroid 0.3563 0.3732 0.3630

Degree (t=0.1) 0.3495 0.3762 0.3622

LexRank (t=0.1) 0.3512 0.3760 0.3663

Cont. LexRank 0.3465 0.3808 0.3686

baselines: random: 0.2952
lead-based: 0.3246

baselines: random: 0.3078
lead-based: 0.3418

(a) (b)

2004 Task4a
min max average

Centroid 0.3706 0.3898 0.3761

Degree (t=0.1) 0.3874 0.3943 0.3906

LexRank (t=0.1) 0.3883 0.3992 0.3928

Cont. LexRank 0.3889 0.3931 0.3908

2004 Task4b
min max average

Centroid 0.3754 0.3942 0.3906

Degree (t=0.1) 0.3801 0.4090 0.3963

LexRank (t=0.1) 0.3710 0.4022 0.3911

Cont. LexRank 0.3700 0.4012 0.3905

baselines: random: 0.3315
lead-based: 0.3615

baselines: random: 0.3391
lead-based: 0.3430

(c) (d)

Table 6: ROUGE-1 scores for different MEAD policies on 17% noisy DUC 2003 and 2004
data.

6. Related Work

There have been attempts for using graph-based ranking methods in natural language appli-
cations before. Salton et al. (1997) made one of the first attempts of using degree centrality
in single document text summarization. In the summarization approach of Salton et al.,
degree scores are used to extract the important paragraphs of a text.

Moens, Uyttendaele, and Dumortier (1999) use cosine similarity between the sentences
to cluster a text into different topical regions. A predefined cosine threshold is used to cluster
paragraphs around seed paragraphs (called medoids). Seed paragraphs are determined by
maximizing the total similarity between the seed and the other paragraphs in a cluster. The
seed paragraphs are then considered as the representative descriptions of the corresponding
subtopics, and included in the summary.

Zha (2002) defines a bipartite graph from the set of terms to the set of sentences. There
is an edge from a term t to a sentence s if t occurs in s. Zha argues that the terms that
appear in many sentences with high salience scores should have high salience scores, and the
sentences that contain many terms with high salience scores should also have high salience
scores. This mutual reinforcement principal reduces to a solution for the singular vectors
of the transition matrix of the bipartite graph.

The work presented in this paper started with the implementation of LexRank with
threshold on unweighted graphs. This implementation was first used in the DUC 2004
evaluations which was run in February 2004 and presented in May 2004 (Erkan & Radev,
2004b). After the DUC evaluations, a more detailed analysis and more careful implementa-
tion of the method was presented together with a comparison against degree centrality and
centroid-based summarization (Erkan & Radev, 2004a). Continuous LexRank on weighted
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graphs first appeared in the initial version of this paper submitted in July 2004. An eigen-
vector centrality algorithm on weighted graphs was independently proposed by Mihalcea
and Tarau (2004) for single-document summarization. Mihalcea, Tarau, and Figa (2004)
later applied PageRank to another problem of natural language processing, word sense
disambiguation.

Unlike our system, the studies mentioned above do not make use of any heuristic features
of the sentences other than the centrality score. They do not also deal with the multi-
document case. One of the main problems with multi-document summarization is the
potential duplicate information coming from different documents, which is less likely to
occur in single-document summaries. We try to avoid the repeated information in the
summaries by using the reranker of the MEAD system. This problem is also addressed in
Salton et al.’s work. Instead of using a reranker, they first segment the text into regions
of different subtopics and then take at least one representative paragraph with the highest
degree value from each region.

To determine the similarity between two sentences, we have used the cosine similarity
metric that is based on word overlap and idf weighting. However, there are more advanced
techniques of assessing similarity which are often used in the topical clustering of docu-
ments or sentences (Hatzivassiloglou et al., 2001; McKeown et al., 2001). The similarity
computation might be improved by incorporating more features (e.g. synonym overlap,
verb/argument structure overlap, stem overlap) or mechanisms (e.g. coreference resolution,
paraphrasing) into the system. These improvements are orthogonal to our model in this
paper and can be easily integrated into the similarity relation.

7. Conclusion

We have presented a new approach to define sentence salience based on graph-based cen-
trality scoring of sentences. Constructing the similarity graph of sentences provides us with
a better view of important sentences compared to the centroid approach, which is prone to
over-generalization of the information in a document cluster. We have introduced three dif-
ferent methods for computing centrality in similarity graphs. The results of applying these
methods on extractive summarization are quite promising. Even the simplest approach we
have taken, degree centrality, is a good enough heuristic to perform better than lead-based
and centroid-based summaries. In LexRank, we have tried to make use of more of the
information in the graph, and got even better results in most of the cases. Lastly, we have
shown that our methods are quite insensitive to noisy data that often occurs as a result of
imperfect topical document clustering algorithms.

The graph-based representation of the relations between natural language constructs
provides us with many new ways of information processing with applications to several
problems such as document clustering, word sense disambiguation, prepositional phrase
attachment. The similarity relation we used to construct the graphs can be replaced by any
mutual information relation between natural language entities. We are currently working on
using random walks on bipartite graphs (binary features on the left, objects to be classified
on the right) for semi-supervised classification. For example, objects can be email messages
and a binary feature may be “does the subject line of this message contain the word money”.
All objects are linked to the features that apply to them. A path through the graph can
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then go from an unlabeled object to a set of labeled ones going through a sequence of
other objects and features. In traditional supervised or semi-supervised learning, one could
not make effective use of the features solely associated with unlabeled examples. In this
framework, these features serve as intermediate nodes on a path from unlabeled to labeled
nodes. An eigenvector centrality method can then associate a probability with each object
(labeled or unlabeled). That probability can then in turn be interpreted as belief in the
classification of the object (e.g., there is an 87% per cent chance that this particular email
message is spam). In an active learning setting, one can also choose what label to request
next from an Oracle given the eigenvector centrality values of all objects.
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