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Abstract This paper is about how cortical recurrent inter-
actions in primary visual cortex (V1) together with feed-
back from extrastriate cortex can account for spectral peaks
in the V1 local field potential (LFP). Recent studies showed
that visual stimulation enhances the γ-band (25–90 Hz) of
the LFP power spectrum in macaque V1. The height and
location of the γ-band peak in the LFP spectrum were cor-
related with visual stimulus size. Extensive spatial summa-
tion, possibly mediated by feedback connections from
extrastriate cortex and long-range horizontal connections
in V1, must play a crucial role in the size dependence of the
LFP. To analyze stimulus-effects on the LFP of V1 cortex,
we propose a network model for the visual cortex that in-
cludes two populations of V1 neurons, excitatory and
inhibitory, and also includes feedback to V1 from extrastriate
cortex. The neural network model for V1 was a resonant
system. The model’s resonance frequency (ResF) was in the
γ-band and varied up or down in frequency depending on
cortical feedback. The model’s ResF shifted downward
with stimulus size, as in the real cortex, because increased
size recruited more activity in extrastriate cortex and V1
thereby causing stronger feedback. The model needed to

have strong local recurrent inhibition within V1 to obtain
ResFs that agree with cortical data. Network resonance as a
consequence of recurrent excitation and inhibition appears
to be a likely explanation for γ-band peaks in the LFP
power spectrum of the primary visual cortex.
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1 Introduction

There has been a lot of scientific investigation of the neural
circuit in the primary visual cortex, V1. Experimenters have
studied the spatial scales and structural features of synaptic
summation in V1 (e.g. Lund 1988; Angelucci et al. 2002;
Lund et al. 2003). The temporal dynamics of orientation
tuning has been measured (Ringach et al. 1997). Theorists
have constructed models for the V1 neural circuit in order
to understand orientation selectivity (Ben-Yishai et al.
1995; Somers et al. 1995; Troyer et al. 1998; McLaughlin
et al. 2000) and surround suppression (Schwabe et al.
2006).

There also has been extensive investigation of the local
field potential (LFP) in V1 cortex (Eckhorn et al. 1988;
Gray et al. 1989; Eckhorn et al. 1993; Logothetis et al.
2001; Gieselmann and Thiele 2008). The LFP is usually
thought to be an average of cell membrane-potentials near
the recording electrode and therefore an index of local
synaptic activity in nearby neurons. We measured the visual
dependence of the power spectrum of the LFP in V1 when
the visual system was stimulated by drifting-grating stimuli.
Two significant experimental results were that drifting-
grating stimuli selectively enhance the γ-band (25–90 Hz)
of the LFP power spectrum even for very small stimuli

K. Kang (*)
RIKEN BSI,
Wako, Japan 351-0198
e-mail: kkang@brain.riken.jp

M. Shelley
Courant Institute of Mathematical Sciences, New York University,
New York, NY 10012, USA

M. Shelley : J. A. Henrie :R. Shapley
Center for Neural Science, New York University,
New York, NY 10003, USA

J Comput Neurosci
DOI 10.1007/s10827-009-0190-2



(Henrie and Shapley 2005), and that the peak of the power
spectrum becomes narrower and moves to lower frequen-
cies for larger grating stimuli (Henrie et al. 2005). More
recently, Gieselmann and Thiele (Gieselmann and Thiele
2008).showed that gamma oscillation amplitude increases
as the size of stimulus increases.

One natural question is, how can we understand the
experimental obserbations of the LFP in terms of the neural
circuit in V1? Especially, we need to understand the
mechanism for how the size of a visual stimulus is related
to γ-band spectral peak in the LFP in V1. In this paper, we
study how the power spectrum of neural activity is related
to cortical feedback in a model of V1. The model we
consider is an elaborated version of a recurrent excitatory-
inhibitory network model developed originally to understand
orientation selectivity within a single V1 hypercolumn
(Kang et al. 2003). We report here that power spectral
peaks occur in the V1 model as a consequence of resonance
in the local network. Resonance often is observed in
recurrent excitatory-inhibitory networks and has been
invoked before as a possible source of γ-band peaks
(Freeman 1975; Leung 1982; Rennie et al. 2000). Another
new theoretical result is that, in the V1 model, feedback
from extrastriate cortex sharpens the power spectrum of
neural activity by excitatory feedback. The model’s local
inhibitory feedback loop increases, and its excitatory
feedback loop decreases, the resonance frequency ResF.

Stronger γ-band peaks with larger drifting-grating
stimuli (Henrie et al. 2005) can be explained in our model
by the effect of neuronal thresholds on the effective
strength of feedback. With different parameters, the V1
model offered in this paper can cause cortical sharpening of
orientation selectivity either as a Mexican hat in the
orientation domain (Kang et al. 2003) or in an inhibition-
dominated regime (Ben-Yishai et al. 1995; Kang et al.
2003). We found that the inhibition-dominated scenario is
more likely because the ResF of the Mexican-hat scenario
is too low to be consistent with LFP data.

Here is an outline of the paper. Section I shows that
resonance in the γ-band occurs in a recurrent excitatory-
inhibitory neural network model without 2D structure, and
then offers a calculation of the ResF and damping time
constant, τdamp, for this unstructured model. Section II
introduces the network model of V1. Then in Section III,
based on the analytical results on the unstructured model in
Section I, we study the ResF and τdamp of the V1 model
without extrastriate cortex feedback and ignoring threshold
nonlinearity. In Section IV, we study how the ResF and
τdamp depend on the feedback from extrastriate cortex., In
Section V, we investigate the effect of threshold nonlinear-
ity. The Discussion, Section VI, relates the present work to
previous experimental and theoretical studies of γ-band
activity and of V1 function.

Neural network without 2D structure Before we consider a
model of the neural circuit in V1, we consider a simple
neural network whose 2D connectivity is unstructured (that
is, all-to-all and isotropic) and for which the power
spectrum can be calculated analytically. In Section III we
show that our V1 model with 2D structure can be reduced
to a network model similar to this simpler case if a spatial
average is taken and several relevant conditions are met. It
should be emphasized that we do not consider spontaneous
oscillation with bifurcation but consider oscillations gener-
ated by resonance and noise in this paper.

Consider a population of asynchronous excitatory and
inhibitory neurons interacting with each other through
synaptic connections. The rate functions m(t) and n(t) are
the low-pass filtered presynaptic firing rates of excitatory
and inhibitory neuronal populations with synaptic conduc-
tance time constants τE and τI, respectively. The conduc-
tance rate variables, m(t) and n(t), for excitatory and
inhibitory populations respectively, evolve according to a
standard neural model (Kang et al. (2003); for the
derivation of the rate model from a spiking model, see
Appendix A), and obey the differential equations:

tE
dm

dt
¼ �mþ SEIEm� SEInþ IE½ �

tI
dn

dt
¼ �nþ SIEm� SIInþ II½ �

ð1:0Þ

where IE and II are the excitatory LGN synaptic inputs to
the excitatory and inhibitory populations, respectively. The
parameters SEE and SEI are respectively the efficacies of
excitatory and inhibitory synaptic connections to a post-
synaptic excitatory neuron, while SIE and SII are respec-
tively the efficacies of excitatory and inhibitory synaptic
connections to a postsynaptic inhibitory neuron. While we
do not do so here, a rectifying or sigmoidal nonlinearity
could be introduced and would act upon the terms in
brackets. Here we consider a linearized approximation
ignoring rectification nonlinearity for analytical calculation
of ResF and damping constant, τdamp, and rewrite the
network equations in the following form.

dx
dt

¼ �Axþ bðtÞ ð1:1Þ

where xðtÞ ¼ mðtÞ; nðtÞð ÞT ;

A ¼ 1� SEEð Þ=tE SEI=tE
�SIE=tI 1þ SIIð Þ=tI

� �
ð1:2Þ

b ¼ IEðtÞ=tE
II ðtÞ=tI

� �
: ð1:3Þ

The solution of Eq. 1.1 has the form exp �Atð Þx0 þR
ds exp �A t � sð Þð ÞbðsÞ with the temporal power spectra
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of m(t) and n(t) peaking at ResF, v0. The eigenvalues of the
matrix A have the form 1=tdamp � 2pn0i where τdamp is the
damping time constant of oscillation. Both τdamp and v0 are
calculated analytically to be

tdamp ¼ 2=ðð1� SEEÞt�1
E þ ð1þ SIIÞt�1

I Þ ð1:4Þ

n0 ¼
ffiffiffiffiffi
Z0

p
=2p if Z0 > 0 ð1:5Þ

v0 ¼ 0 if Z0 � 0

where

Z0 ¼ t�1
E t�1

I SIESEI � t�1
E 1� SEEð Þ � t�1

I 1þ SIIð Þ� �2
=4:

ð1:6Þ
Consider the power spectrum of m(t) in Eq.1.1 when the

visual cortex is stimulated by a continuously drifting
grating pattern (Fig. 1). We make the approximation that
IE(t) and II(t) are Gaussian white noise inputs of equal
variance, uncorrelated with each other. By using Fourier
transformation and algebraic rearrangement, one can derive
the following expression for the power spectrum:

~mðwÞj j2
D E

¼
1þ Siið Þ2þt2i w

2
� � ~

IEðwÞ
��� ���2	 


þ S2EI
~
I IðwÞ
��� ���2	 


t2Et
2
I t�2

damp þ 4p2v20 � w2
� �2

þ4t�2
dampw

2

� �
ð1:7Þ

~
f ðwÞ is the Fourier transformation of f(t), where . . .h i is the
average over many different realizations of feed-forward
input, IE(t) and II(t). The power spectrum peaks at w≅2πv0
when the damping time constant τdamp is large (Fig. 1)
because the denominator of Eq. 1.7 has a minimum at
w2 ¼ 4p2n0 � t�2

damp.
Another way to calculate the power spectrum of m(t) is

to integrate Eq. 1.1 numerically. Numerical integration was
done here just to emphasize that we have two different
ways to study the power spectrum in this neural network
model. Since an exact result is available, numerical
integration does not provide a new result, here. But we do
numerical study in Section V for a model in which analytic
calculation is not possible. The numerical integration results
are also displayed in Fig. 1 and agree with the analytic
calculation.

Figure 1 also shows the positions of the power spectrum
peak for various values of SEE calculated from Eq. 1.7 and
numerically, in the inset. For small SEE, the estimation of
the peak position is somewhat less accurate because the
power spectrum is broad. Figure 1’s inset demonstrates that
the ResF of the recurrent excitatory-inhibitory network
decreases with increasing recurrent excitatory coupling.

The resonant frequency v0 is determined by the strengths
of three feedback loops: SEE, SII and SEISIE. Figure 2 shows
constant-frequency contours of v0 as a function of SEE and
SEISIE for τE=3, τI=6 msec and SII=2, while Fig. 3 shows
constant-frequency contours of v0 as a function of SII and
SEISIE for τE=3, τI=6 msec and SEE=1.

The first term of Eq. 1.6 shows that resonance occurs in
this unstructured model even with only the inhibitory loop
between excitatory and inhibitory neurons present, so that
inhibitory neurons are excited by excitatory neurons and
excitatory neurons are inhibited by inhibitory neurons. The
excitatory-inhibitory feedback loop is essential in generating

Fig. 1 Normalized power spectrum of m(t), the excitatory neurons’
conductance rate, and its dependence on recurrent excitation strength
SEE. The solid line is the power spectrum calculated using Eq. 1.7.
* markers show the spectrum calculated from numerical integration of
Eq. 1.1 with SEE=1.5, SEI=1, SIE=4, SII=2. τE=3 msec and τI=
6 msec. The inset shows the position of the power spectrum peak for
different values of the recurrent excitatory coupling strength, SEE. In
the inset also, the solid line shows the peak position of the power
spectrum calculated using Eq. 1.7. * markers show the results of
numerical integration of Eq. 1.1

Fig. 2 A contour plot of ResF and the stability boundary. Curved
lines with numbers on them are contour lines for ResF. A dashed line
and a dotted line are for stability conditions. 1� SEEð Þ 1þ SIIð Þþ
SEISIE > 0(dashed) and SEE < 1þ tE 1þ SIIð Þ=tI (dotted). τE=
3 msec and τI=6 msec. SII=2
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oscillation. The resonant frequency v0 is zero for SEISIE=0. v0
increases monotonically with increasing SEISIE when v0>0.

The damping constant τdamp is independent of SEISIE.
The resonance frequency v0 tends to decrease due to self-
excitatory and self-inhibitory feedback loops because the
effect of SEISIE inhibition is weakened by these feedback
loops. Speaking more precisely, v0 decreases as the self-
inhibitory feedback strength, SII increases unless SII is very
small: when SII > �1þ tI 1� SEEð Þ=tE ¼ 1� 2SEE, v0 de-
creases as SII increases. When SEE > 1� tE 1þ SIIð Þ=tI ¼
0:5� 0:5SII , v0 decreases as SEE increases. In these
calculations we assumed the synaptic time constant for
inhibition was twice that for excitation.

There are two conditions for dynamical stability. The
first is that D ¼ 1� SEEð Þ 1þ SIIð Þ þ SEISIE > 0. The dis-
criminant D determines the cortical gain with the popula-
tion firing rates diverging when D≤0. The second stability
condition is that SEE < 1þ tE 1þ SIIð Þ=tI . This condition
can be written as τdamp>0. When the second stability con-
dition is violated, oscillation amplitudes grow without limit.

2 A model of the V1 neural network

We model the cortical circuitry in V1 cortex by two
populations of excitatory and inhibitory neurons interacting
with each other in a two-dimensional plane. Our model also
has another population of excitatory neurons representing
neurons in extrastriate cortex receiving input from V1
excitatory neurons and sending feedback to V1. When you
take into account the spatial scale of synaptic summation
and the size of stimuli in the experiments of Henrie and
Shapley (Henrie and Shapley 2005), it is crucial to include
in the model long-range synaptic connections such as those
between an extrastriate cortex layer and V1 and also long
range horizontal connections within V1 in order to

reproduce the experimental observations.. Local isotropic
synaptic connections are too short. A similar model of V1
without the extrastriate cortex feedback was used in a
previous study of the orientation tuning of neurons in V1
(Kang et al. 2003). Figure 4 is a schematic view of our model.
In this model, feedforward input from V1 to extrastriate
cortex is only from excitatory neurons, following anatomical
observations (e.g. Angelucci et al. 2002). Just for the sake of
simplicity, we made the approximation that extrastriate cortex
has only excitatory neurons (see Discussion).

A set of mean-field rate model equations with m r!; t
� �

,
n r!; t
� �

and o r!; t
� �

as the dynamic variables describes the
network dynamics (Kang et al. 2003). V1 excitatory cells
located at the two-dimensional cortical coordinate r!
generate the synaptic conductance rate m r!; t

� �
(normalized

by the peak conductance). n r!; t
� �

, and o r!; t
� �

are synaptic
conductance rates similarly defined for inhibitory cells in
V1, and excitatory cells in extrastriate cortex, respectively.
Dynamic equations for these three populations of neurons are

tE
dm ~r;tð Þ

dt ¼ �m ~r; tð Þ þ ½ILGN ~r; tð Þ þ SEEKEE*m ~r; tð Þ
�SEIKEI*n ~r; tð Þ þ UEFKEF*o ~r; tð Þ � TE�þ

ð2:1Þ
tI

dn r!;t
� �
dt ¼ �n r!; t

� �þ ½ILGN r!; t
� �þ SIEKIE*m r!; t

� �
þUIFKIF*o r!; t

� �� TI �þ
ð2:2Þ

tEE
do r!; t

� �
dt

¼ �o r!; t
� �þ UFEKFE*m r!; t

� �� TO
� �

þ

ð2:3Þ
In Eqs. 2.1–2.3, [..]+ is the notation for a simple

rectification nonlinearity, where [x]=x for x>0, and [x]=0
for x<0. Hence, TE,TI and T0 are threshold parameters for
excitatory neurons in V1, inhibitory neurons in V1, and
excitatory neurons in the extrastriate cortex, respectively.

Fig. 4 Schematic view of a model for V1 neural circuitry. E (I)
represents excitatory (inhibitory) neurons

Fig. 3 A contour plot of ResF . Curved lines with numbers on them
are contour lines for ResF. τE=3 msec and τI=6 msec. SEE=1.
Stability conditions are met for all the points in the plot
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The term ILGN in Eqs. 2.1 and 2.2 represents the LGN
drive for excitatory and inhibitory populations. The
function KPP0 r!; r!0� �

denotes the (normalized) spatial pro-
file of cortical interactions. The kernels KPP are normalized
to have unit sums so that SPP denote the total strength of
synaptic connection to P type cells from P′ type cell (P=E,I
and F; E and I represent excitatory and inhibitory neurons
in V1, respectively; F represents excitatory neurons in
extrastriate cortex). For example, the term KEE*m r!; t

� � ¼P
~r0
KEE r!; r!0� �

m r!0
; t

� �
denotes cortical feedback from

excitatory to excitatory neurons in V1. For the synaptic
connections related to extrastriate cortex, we use the
symbol UPP instead of SPP. Extrastriate neurons do not
receive direct LGN input in the model as in the biological
cortex. The feedback from extrastriate cortex excites both
excitatory and inhibitory neurons in V1, based on the
results of Gonchar and Burkhalter (2003).

The synaptic connections of our model can be grouped
into three classes. The first class is that of local isotropic
connections between neurons in V1 (Kang et al. 2003;
McLaughlin et al. 2000). The second class is that of long
range horizontal connections within V1. The third class is
that of feedback connections from extrastriate cortex, which
are known to have a longer range of visual, spatial summa-
tion (Angelucci et al. 2002).

The spatial profile of the strength of isoptropic synaptic
connections such as local V1 connections may be modeled
with normalized two-dimensional Gaussian functions of
cortical distance r!� r!0��� ��� as they were in previous studies
(Kang et al. 2003; Tao et al. 2006): KPP0 r!; r!0� �

¼
G r!; r!0

; sPP0
� �

where G r!; r!0
; sPP0

� �
is a 2D Gaussian dis-

tribution with variance, s2
PP0 .

The strengths of long-range horizontal synaptic connec-
tions are known to depend on the difference of preferred
orientation, q r!� �

and we may model the spatial profile of
the connections as a product of a Gaussian distribution with
a cosine function (Goldberg et al. 2004).

Klong
pp0

r!; r!0� �
¼ 1

G
e
� r!� r!0�� ��2

2s2
K 1þ cos 2q r!� �� q r!0� ��� �� �

ð2:4Þ
where G is a normalization constant. These long-range
synaptic connections are known to be excitatory.

SIE and SEE consist of two parts.

SIE ¼ SshortIE þ SlongIE ð2:5Þ

KIE ¼ Kshort
IE SshortIE þ Klong

IE SlongIE

� �
=SIE ð2:6Þ

SEE ¼ SshortEE þ SlongEE ð2:7Þ

KEE ¼ Kshort
EE SshortEE þ Klong

EE SlongEE

� �
=SEE ð2:8Þ

The LGN afferent input to a neuron is specified by its
preferred orientation (PO), i.e., by its location within the
pinwheel orientation map in the V1 plane, shown in Fig. 5.
The 2D coordinate r! in the V1 plane is represented in
polar coordinates r!¼ r cos q; sin qð Þ where the origin is
the closest pinwheel center. The PO of a cell ranges from 0
to 180 degrees and is equal to one half of its polar angle, in
the cortical map as in Fig. 5. The LGN input is modeled as
ILGN r!; t

� � ¼ Aþ B cos q � 2q0ð Þ þ hðtÞð Þsf r!� �
where A

is the mean LGN input to the cortical cell, and B is its
orientation modulation amplitude and θ0 is the orientation
of the stimuli. The function η(t) is white noise. The function
sf r!� �

is 1 if the stimulus activates LGN neurons at r!, and
is 0 otherwise.

3 ResF of the V1 model for the uniform mode

We calculate ResF and τdamp of the V1 model in this
section, ignoring the rectification nonlinearity of spike
firing threshold, and averaging conductance rates over r!.
In Section V we will calculate the power spectrum of the
neural activity by numerically integrating Eqs. 2.1–3
including the rectification nonlinearity that we are neglecting
in analytical calculations. The parameter sets for such nu-
merical integrations are chosen based on the analytic results.

Note thatZ
d r!d r!0

KPP0 r!; r!0� �
m r!0

; t
� �

¼
Z

d r!0
Z

d~rKPP0 r!; r!0� �� �
m r!0

; t
� �

¼
Z

d r!m r!; t
� �

: ð3:1Þ

Fig. 5 Pinwheel architecture in the model. (a): a single pinwheel
system. Each cell is indexed by its distance r from the pinwheel center
at (1,1), and an angle θ measured relative to the depicted vertical line.
The preferred orientation of the cell is θ/2. (b): four pinwheel system,
with centers at (1,1), (1,3), (3,1), and (3,3). Θ of each cell is defined
relative to the nearest center. The red regions show the two horizontal
columns – each connecting center pairs with opposite parity
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Equation 3.1 is a consequence of the fact that KPP0

r!; r!0� �
P;P0 ¼ E; I andFð Þ are normalized. We integrate

both sides of Eqs. 2.1–3 over space to convert them into
dynamic equations of space-averaged variables:

d

dt

bmbnbo
0
@

1
A ¼ �A

bmbnbo
0
@

1
Aþ B ð3:2Þ

where

A ¼
t�1
E 1� SEEð Þ t�1

E SEI �t�1
E UEF

�t�1
I SIE t�1

I 1þ SIIð Þ �t�1
I UIF

�t�1
EEUFE 0 t�1

EE

0
@

1
A ð3:3Þ

B ¼
t�1
E
bILGN

t�1
I

bILGN
0

0
B@

1
CA ð3:4Þ

Here bf ¼ R
f r!� �

d r! so that bILGN is the space-averaged
LGN input.

Note that the details of the spatial profile of synaptic
connections are not important in deriving Eq. 3.2 and
determining the ResF of the spatially averaged neural
activity. Whether the synaptic connection is patchy or
isotropic, the oscillation frequency is the same. Only total
strengths are important in Eq. 3.2. Later, we show how a
threshold nonlinearity makes the difference (Section V).

When the strength of synaptic connections are symmet-
rical with respect to two positions in the neural network and
the dynamic equations are linear, as we assumed in this
section, the spatial activity pattern can be decomposed into
orthogonal eigenmodes and the evolution of each eigen-
mode can be handled separately. Equations 3.2–4 are the
dynamic equations of this uniform mode derived from
Eqs. 2.1–3. without rectification nonlinearity.

For given spatial profiles of synaptic connections, there
are many other non-uniform eigenmodes and these modes
may oscillate with different ResFs and τdamp s. But we
consider only the uniform mode in this paper for two
related reasons. First, we want to study how the LFP power
spectrum is related to cortical feedback. The uniform mode
is the spatially averaged conductance rate, which is
assumed to be proportional to LFP. Second, spatially
fluctuating components of the feedback activity pattern
should be averaged out and disappear because the feedback
from extrastriate cortex has a broad spatial profile. These
considerations suggest that the resonance effects of the
uniform mode, or in other words spatially-coherent feed-
back, is important in V1. Equations 3.2–4 are the dynamic
equations of this uniform mode derived from Eqs. 2.1–3
when we make approximation that there is no rectification
nonlinearity.

Before we study the effect of the feedback from
extrastriate cortex, consider a simpler case without the
feedback from extrastriate cortex. When the feedback from
extrastriate cortex does not exist (UPP=0), V1 and extras-
triate cortex are decoupled and the dynamic equations are
identical with Eq. 1.1. The ResF and damping time constant
are already studied in Section I and given by Eqs. 1.4–6.

4 ResF with feedback from extrastriate cortex

Here, we focus on how feedback from extrastriate cortex
changes the power spectrum of the neural activity in our
model. Feedback from higher levels of information pro-
cessing is ubiquitous in the brain. For example, LGN
receives massive feedback connections from V1 while V1
receives feedback from extrastriate cortex with a broad
spatial profile (Angelucci et al. 2002).

The feedback from extrastriate cortex increases or
decreases the ResF depending on whether the feedback is
to inhibitory neurons or excitatory neurons. The extrastriate
cortex feedback increases τdamp and thereby sharpens the
peak of the power spectrum in both cases.

When there is feedback from extrastriate cortex UPP≠0,
the extrastriate layer and V1 layer are dynamically coupled
and eigenvalues of the matrix in Eq. 3.3 can be calculated.
The result of the calculation are given in Fig. 6 which
shows how the feedback from extrastriate cortex changes
the ResF for given SEE, SEISIE and SII. Increasing the
excitatory feedback, UFEUEF, tends to decrease the ResF of
the network and increasing the inhibitory feedback,
SEIUIFUFE, increases the ResF. The 80 Hz contour line
from the origin in Fig. 6 is where the two opposing effects
cancel each other in this example. Note that the ResF at the

Fig. 6 Contour plot of ResF for the model with extrastriate feedback.
SEE=1, SEISIE=5.05, SII=1. τE=τEE=3 msec and τI=6 msec. Solid
lines with numbers are contour lines. The dashed line is the stability
line given by Eq. 4.4. The dotted line is the stability line given by
Eq. 4.3. The ResF is 80 Hz at the origin
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origin of Fig. 6 is the ResF of our model without the
extrastriate cortex. The extrastriate cortex increases ResF in
the area above the 80 Hz contour line. The extrastriate
cortex decreases ResF in the area below the 80 Hz contour
line.

There is no general analytic expression of the ResF for
the model with extrastriate cortex feedback, and it must be
calculated by calculating eigenvalues of the matrix in
Eq. 3.3 numerically. But analytic expressions of v = ResF
as a function of strengths of feedback loops are calculable
analytically in several special cases. For example, when
τdamp = ∞, v is (see Appendix B for the derivation),

2pnð Þ2¼ T þ t�1
EE

� ��1
t�1
E t�1

I t�1
EE

Dþ SEIUIFUFE � 1þ SIIð ÞUFEUEFð Þ ð4:1Þ

where

T ¼ t�1
E 1� SEEð Þ þ t�1

I 1þ SIIð Þ
and

D ¼ 1� SEEð Þ 1þ SIIð Þ þ SEISIE:

Excitatory feedback, UFEUEF, decreases v, and inhibitory
feedback, SEIUIFUFE, increases v in Eq. 4.1.

Finally, the ResF of the network is reducible to the
resonant frequency without feedback, v0, when the synaptic
time constant for the feedback from extrastriate cortex, τEE,
is large. Figure 7 shows the ResF for τEE=60 msec. The
NMDA receptor has such a long decay time constant. Note
in Fig. 7 that contour lines of ResF are nearly vertical
showing that the ResF is only very weakly affected by the
feedback loop from the extrastriate cortex. With a large
synaptic time constant, the feedback from extrastriate
cortex does not change ResF and τdamp but the non-
oscillatory component of firing rate is changed by the

feedback. This observation implies that if feedback perturbs
the LFP spectrum in the γ-band, it must do so via fast
(presumably AMPA) excitatory feedback.

τdamp is given by the inverse of the real part of the
eigenvalue of A in Eq. 3.3. and determines the width of the
power spectrum peak. We found that τdamp diverges and
oscillation amplitude grows without limit when the feed-
back from extrastriate cortex is strong. This is so even when
the excitatory feedback from extrastriate cortex is only to
inhibitory neurons in V1. Figure 8 shows how τdamp
depends on the strengths of the feedback from extrastriate
cortex. τdamp is small at the origin and the peak of the
power spectrum is sharpened by the feedback from
extrastriate cortex. For example, when the inhibitory
feedback loop strength, SEIUIFUFE, increases, the real parts
of complex eigenvalues decrease, and the oscillation damps
with a longer time constant, τdamp.

The behavior of the V1 model with feedback can be
studied systematically through its stability conditions (see
Appendix B for the derivation of these conditions).

t�1
E 1� SEEð Þ þ t�1

I 1þ SIIð Þ þ t�1
EE > 0 ð4:2Þ

1� SEE � UFEUEFð Þ 1þ SIIð Þ þ SEISIE þ SEIUIFUFE > 0;

ð4:3Þ
T t�1

E t�1
I Dþ t�1

EET þ t�2
EE

� �� t�1
E t�1

I t�1
EESEIUIFUFE

�t�1
E t�1

EE t�1
EE þ t�1

E 1� SEEð Þ� �
UEFUFE > 0:

ð4:4Þ
The network is unstable when self-excitation SEE

(Eq. 4.2) is too strong. The discriminant (see the end of
Section I) should be positive for the network to be stable
(Eq. 4.3). These two conditions restrict mainly the strengths
of the self-excitatory feedback, SEE, and the excitatory

Fig. 7 Contour plot of ResF when extrastriate feedback time constant
is large. SEISIE=8, SII=3. UEFUFE=0 τE=3 msec, τI=6msecs and τEE=
60 msec. Solid lines with numbers are contour lines. The dash-and-
dot line is stability line given by Eq. 4.2. The dotted line is the
stability line given by Eq. 3.10. The dashed line is stability line given
by Eq. 4.4

Fig. 8 Contour plot of damping time, τdamp, as a function of feedback
strength. SEE=1, SEISIE=5.05, SII=1.τE=τEE=3 msec and τI=6 msec.
Solid lines with numbers are contour lines for damping time constant,
τdamp. The dashed line is the stability line given by Eq. 4.4. The dotted
line is the stability line given by Eq. 4.3. There is no oscillation below
the curved solid line labeled “No Oscillation”
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feedback loop from extrastriate cortex, UFEUEF. The
condition of Eq. 4.4 is related to the stability of oscillation
and restricts the strength of the inhibitory feedback loop,
SEIUIFUFE. When it is violated, the oscillation amplitude of
the firing rate grows without limit. Note that without
feedback from extrastriate cortex, the first term in Eq. 4.4 is
positive when the network is stable.

5 ResF and stimulus size

Here, we show that ResF depends on the size of visual
stimulus because of the effect of threshold nonlinearity. We
calculate the power spectra for the full nonlinear V1 model
(Eqs. 2.1–3, including rectification) for stimuli with various
sizes to study how stimulus size affects the γ-band peak in
the power spectrum. We estimate the power spectrum of
neural activity in our V1 model by numerically integrating
Eqs. 2.1–3 using a 4th-order Runge-Kutta integration
method. We chose LGN input and threshold values such
that V1 neurons without feedforward LGN input, and
extrastriate neurons without strong feed-forward input from
V1, were inactive because of spike-firing thresholds.

We need an additional approximation for this numerical
calculation. It is difficult to integrate the dynamic equations
numerically for a model with long-range patchy connec-
tions because such calculations are very slow for a model
with many hypercolumns. For the model with an isotropic
Gaussian spatial kernel, synaptic summation could be
calculated using the FFT but this is not possible for the
model with horizontal connections in which synaptic
connections depend on the preferred orientation as well as
cortical distance.

Here we omit patchy long range horizontal connections
in V1 and assume that the long range connections from
extrastriate cortex are isotropic. This is an unrealistic
simplification but allows two important conclusions to be
made by means of a numerical calculation. First, ResF of
the neural network is changed little by the threshold
nonlinearity when the visual stimulus is full field. The
power spectrum is significantly different from the linear
case only when population activity is subthreshold over
most of the stimulated area. Second, we found that the peak
position of the power spectrum changed from v0 of Section
I to v of Section III as the size of stimulus increased
because the threshold nonlinearity changes effective
strengths of feedback loops. This result suggests that a
qualitatively similar change should happen in the original
model with patchy long-range horizontal connections and
that the observation of Henrie et al. (2005) on the stimulus-
size dependence of the γ-band peak can be explained in
terms of the recurrent V1 network with feedback from
extrastriate cortex, including neuronal thresholds.

As the stimulus size increases from 40 to 160 (the unit of
area is the area of a single hypercolumn which we assume
to be 4×104μm2), the peak of the power spectrum changes
in a graded manner from v0=103Hz in Section I to v=42Hz
from Section III, as shown in Fig. 9. This roughly matches
the experimental observation of Henrie et al. (2005). We
used v0, v and τdamp as guidelines to choose parameter values
for the simulation. The strengths of synaptic connections are
SEE=1, SEISIE=8, SII=1, UEFUFE=4 and SEIUIFUFE=3 in the
simulation shown in Fig. 9. We assume that σEE=σIE=0.5.
σEI=σII=0.45. σFE=σEF=σIF=3 where the length scale is
the radius of a hypercolumn which is about 100μm. The
results of numerical calculation were not sensitive qualita-
tively to the power of the white noise used in the simulations.

The local inhibitory feedback, with SEISIE=8, is larger
than local excitatory feedback SEE=1in order to obtain a
large value of v0, as in the cortical data. With the strength of
local synaptic connections within V1 fixed, we choose a
point in a phase diagram similar to that in Fig. 6 to decide
the feedback strengths for extrastriate cortex, taking into
consideration also the values of v and τdamp. To make τdamp
large, we choose values of UEF, UIF so that the network is at
a point in the phase plane close to a stability line like the
one given by Eq. 4.4; v is about 40 Hz there. It turns out
that the strengths of excitatory feedback and inhibitory
feedback loops from extrastriate cortex are nearly bal-
anced. This is the result of the two constraints given by v
and τdamp.

The peak of the LFP power spectrum in Fig. 9 moves to
lower frequencies and becomes sharper in this parameter

Fig. 9 A 2D plot of the normalized Power spectrum of m(t) for
various sizes of stimulus. The unit of the stimulus size is the area of
single hypercolumn. SEE=1, SEISIE=8, SII=1. UEFUFE=4 and
SEIUIFUFE=3. τE=3 msecs, τI=6 msecs and τEE=3 msecs. σEE=
σIE=0.5. σEI=σII=0.45. σFE=σEF=σIF=3. Power spectrum is
normalized by the largest value and the bar at right side shows the
normalized powers in a color scale
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regime as stimulus size increases because v0>v and τdamp
become larger when there is extrastriate feedback (see
Figs. 6 and 8). The peak of the V1 power spectrum may
move either to lower or higher frequencies, depending on
the relative amount of feedback onto excitatory and
inhibitory neurons in the local circuit. The dependence of
ResF on stimulus size is present in the nonlinear model but
not in the linearized model analyzed in Section IV.

The result in Fig. 9 can be understood in terms of
effective strengths of total feedback connections. The
strengths of total feedback synaptic connections depend
on the size of the stimulus because of the threshold non-
linearity in the model. For a small stimulus, only neurons in
a small area of extrastriate cortex are active and the
feedback connections from inactive extrastriate neurons do
not return feedback. Figure 10 shows a schematic view of a
neuron in V1 summing up synaptic inputs from extrastriate
cortex. The gray area represents a population of neurons
activated by a visual stimulus.

The change of the power spectrum with stimulus size
depends crucially on the spatial profile of synaptic
connections. There are two different kinds of synaptic
connections in our mode used in this Section l: short range
V1 connections and long-range synaptic connections from
and to extrastriate cortex. For a stimulus whose size is
smaller than the spatial extent of convergent excitatory
input onto extrastriate neurons, the ResF of the network is
close to v0 because the feedback from extrastriate cortex is
too small to change the ResF in V1. For a large stimulus
whose size is bigger than the range of extrastriate
connections, the strong feedback drives the ResF to the
value of v (as in Section IV).

6 Discussion

LFP and the activity of local population of neurons In
relating our models to local field potential (LFP) measure-
ments, we assumed that the LFP represents the activity of a
local population of neurons in cortex. The basis for this

assumption is the following considerations about the LFP.
The LFP is the low frequency (<250 Hz) component of the
extracellularly-recorded field potential. Current flows due
to synaptic activity dominate these low frequency fluctua-
tions, while currents associated with neuron action poten-
tials dominate higher frequency components (> 300 Hz).
The sources of the LFP are thought to be neurons in a
sphere of radius 0.5 mm or less (Logothetis et al. 2001;
Kruse and Eckhorn 1996). Fluctuations in the LFP are
highly correlated with simultaneously measured intracellu-
lar voltage fluctuations that are synaptically driven (e.g.
Steriade et al. 1996; McCormick et al. 2003; Penttonen et
al. 1998; Hasenstaub et al 2005). This observation supports
our assumption of a link between the LFP and neuronal
population activity.

Resonance and γ-band oscillations in cortex We studied
resonant damped oscillations of neuronal activity in a
model of V1 and found how cortical interactions determine
the ResF and τdampof the model. We found that the ResF is
in the γ-band if the local recurrent excitatory synapses have
the kinetics of glutamate AMPA receptors. The resonance is
caused by delayed inhibitory feedback from inhibitory
neurons to excitatory neurons in our model (as in Freeman
1975; Leung 1982; Rennie et al. 2000). The ResF increases
when the strength of the inhibitory cortical feedback loop is
strengthened. When self-excitation and self-inhibition feed-
back loops are made stronger, the ResF decreases. We
found that the ResF and the sharpness of the resonant peak
of the stimulus-driven response of our network model
depends on the size of the stimulus because a larger
stimulus activates neurons in a wider area of V1 cortex and
that causes cortical feedback from extrastriate cortex to V1
to increase.

There have been other ideas proposed for the source of
γ-band oscillations in neural networks. There have been
proposals equivalent or identical to our proposal of
resonance in a recurrent excitatory-inhibitory circuit (Freeman
1975; Leung 1982; Rennie et al. 2000). But there also have
been suggestions for neuronal oscillators in purely
inhibitory networks that becomes synchronized in the
presence of a tonic excitatory drive (Traub et al. 1996).
The resonance model is attractive because it can account
for spectral peaks in population activity when individual
neurons in the population are only weakly coherent with
the population (and LFP) as is often observed in vivo
(Brunel and Wang 2003; Zeitler et al. 2006; Henrie and
Shapley 2005; Montgomery and Buzsaki 2007). The
resonance model for gamma band peaks is also consistent
with analysis of temporal autocoherence in the LFP (Burns
et al. 2008). If the gamma band peak were a result of a
neural oscillator as has been hypothesized before (e.g.
Traub et al. 1996), then one would expect temporal phase

Fig. 10 A Schematic view of a neuron in V1 receiving feedback from
extrastriate cortex (labeled Ex. S.). The regions shaded in gray
represent active populations of neurons. The Cone shape represents
the area where a neuron in V1 has synaptic connections
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coherence to extend over long time periods. However, our
resonant model driven by stochastic inputs would predict
that coherence in the gamma band would be low, and this
is what was found by analyzing the autocoherence of the
LFP in V1 cortex (Burns et al. 2008). Recent experimental
results that employed genetic techniques to stimulate
inhibitory interneurons selectively in somatosensory cor-
tex (Cardin et al. 2009) support our theoretical result that
gamma-band peaks in the LFP spectrum are a conse-
quence of resonance in the local cortical circuit.

Cortical sharpening of orientation tuning in V1 and the
ResF In our previous work (Kang et al. 2003), we found
that a V1 neural network can sharpen the orientation tuning
of LGN input in two different ways: an untuned-inhibitory
mechanism and a tuned-inhibitory, Mexican-hat mecha-
nism. For the untuned-inhibitory mechanism, the inhibitory
feedback loop is stronger than self-excitation. For the
tuned-inhibitory, Mexican-hat mechanism, the inhibitory
feedback loop is more balanced with excitatory feedback. It
is difficult to explain the experimental data on LFP power
spectra in V1 cortex with a Mexican-hat mechanism. The
ResF for the Mexican-hat mechanism is too low compared
to the experimentally measured γ-band peak in the LFP
power spectrum. The fact that increasing stimulus size
shifts the peak of the power spectrum in the γ-band requires
that local inhibitory feedback, SEISIE, must be large
compared to local excitatory feedback, SEE, consistent with
the inhibition-dominated scenario and not the Mexican-hat
balanced scenario. The implication is that the sharpening of
orientation-tuning in V1 is a consequence of the untuned-
inhibition mechanism. Thus, analysis of LFP fluctuations
can be used to decide between different cortical network
models that were devised to explain orientation selectivity.
It is worth mentioning that models of V1 without visual
driven inhibition, such as the modified feedforward model
in the work of Priebe and Ferster (2008), do not account for
the peaks in the visually-driven LFP power spectrum
observed in V1 cortex. Also worth noting is the wealth of
evidence for visually driven inhibition in V1 (e.g.
Volgushev et al. 1993; Borg-Graham et al. 1998; Hirsch
et al. 1998); this evidence supports a basic assumption of
the V1 model.

6.1 Neural coding and oscillation frequency

Oscillations are thought to play an important role in
information processing in the brain (Steriade 2001; Buzsaki
2006). Oscillations in the γ-band (25–90 Hz) have been
suggested to represent signals for temporal encoding and
stimulus-binding in the visual cortex (Eckhorn et al. 1988;
Gray et al. 1989; Womelsdorf et al. 2007). Synchronized
retinal oscillations encode essential information that could

be used in escape behavior in frogs (Ishikane et al. 2005).
Gamma oscillations appear to couple hippocampal CA3
and CA1 regions dynamically during memory-task perfor-
mance (Montgomery and Buzsaki 2007). Neuronal coher-
ence could be a mechanism to control the strength of
neuronal interaction (Womelsdorf et al. 2007). For example,
two simultaneously presented stimuli could be selected
based on oscillation frequencies inherent to each stimulus
(Borgers and Kopell 2008). Belitski et al. showed how the
power of LFPs at different frequencies represents the visual
features in the color movies (Belitski et al. 2008). Mazzoni
et al. simulated a sparsely connected network of excitatory
and inhibitory neurons to determine how LFPs generated
by the network encode information about input stimuli
(Mazzoni et al. 2008). What we propose in this paper is that
γ-band peaks in the power spectrum of cortical network
activity are the consequences of resonance in the cortical
network. Our study suggests a possible mechanism to control
the characteristic oscillation frequency of a neural circuit.
The ResF in a recurrent cortical network with feedback, as in
V1, could be controlled by threshold nonlinearities. Chang-
ing the effective strength of the feedback connections
changes the shape of the power spectrum of LFP.

6.2 More realistic models of V1

More realistic network models of V1 could be designed.
For example, conduction delay time was ignored in our
model. Robinson used a propagator method to study the
generation of Gamma oscillation in a network assuming
that the cortical interaction is governed by damped wave
equations (Robinson 2006). He used a difference-of-
exponential model for the time course of conductance
change and included conduction delay time. Robinson
show that his system can generate Gamma oscillations
and that noticeable spectral peaks are created by resonance.
But due to the complexity of the model, it is not easy to
understand how the power spectrum depends on the
parameters of the model. The structure of the network
interaction is exactly periodic in the Robinson (2006)
model. It is not clear how important this assumption is in
general, either.

Schwabe et al. (2006) suggested that a high threshold/
high gain local interneuron is innervated and activated by
horizontal connections. Surround suppression is explained
by such high threshold interneurons in their model. If we
included such high threshold neurons in our model, the
peak position of the power spectrum might depend on the
contrast of the stimulus because the activation of high
threshold interneuron at higher contrasts should change the
effective total strength of synaptic connections. In fact,
contrast dependence of the power spectrum was experi-
mentally observed (Henrie and Shapley 2005).
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Here, we used a relatively simple model of V1 to
understand the relation between cortical feedback and the
power spectrum of neural activity in V1. For instance we
have not included nonlinear intrinsic properties of neurons,
such as voltage-gated ionic channels, in our model.
Studying more realistic models is not necessarily better in
understanding the mechanism underlying the observed
power spectrum of LFP. Numerical study as well as
analytical study is difficult for complicated, more realistic,
models and one would have to include in such models
unknown parameters and assumptions whose meaning is
not clear. In the future as we learn more about cortical
neurons and networks, we hope that our model can be made
more realistic, and that our study will provide a guideline
for the parameter sets to be used for more elaborate models.
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Appendix A

Rate equation and time course of conductance change

Consider the time evolution of conductance for AMPA
receptors in a neuron. This can be described by an integral.
mðtÞ ¼ R

AE t � að ÞfEðaÞda. fE(t) is
P

j d a� tij

� �
where tij is

ith spikes from jth presynaptic excitatory neurons and δ(t) is
a delta function. AE(t) is the time course of conductance
change of AMPA receptors. The conductance due to
GABAA receptors, n(t) can be described with another
function, AI(t) in the similar way.

When the number of presynaptic neurons is large and the
neural network is in an asynchronous state, fE(t) can be
replaced by the mean firing rate of presynaptic neurons,
f EðtÞ and the mean firing rates are determined by the con-
ductances of the presynaptic neurons: f EðtÞ ¼ f E mðtÞ;ð
nðtÞ; IðtÞÞ where I(t) is the feed-forward input to the
network. Self-consistency requires that m(t) and n(t) should
satisfy the following integral equations.

mðtÞ ¼
Z t

�1
AE t � að Þf E mðaÞ; nðaÞ; IðaÞð Þda ðA:1Þ

nðtÞ ¼
Z t

�1
AI t � að Þf I mðaÞ; nðaÞ; IðaÞð Þda ðA:2Þ

Once we have the solution of the above integral
equations, the firing rate of neurons is given by the time
derivative of m(t) and n(t). But an integral equation is
difficult to analyze and we simplify the integral equations
with two approximations. First, we transform the integral
equations into differential equations assuming that explicit

forms of AE(t) and AI(t) are given. For example, for an
exponential model, AEðtÞ ¼ exp �t=tEð Þ=tE,

tE
dmðtÞ
dt

¼ �mðtÞ þ f EðtÞ: ðA:3Þ

where τE is the decay time constant of the conductance. For
AMPA, τE is a few milliseconds. while for NMDA, τE is
50–100 msec.

For the difference of exponential model (DOE) with time
delay,AEðtÞ ¼ e�ðt�dÞ=tE � e�ðt�dÞ=tE0� �

=ðtE � tE0Þ, we find

tE0
dmðtÞ
dt

¼ �mðtÞ þ m0ðtÞ ðA:4Þ

tE
dm0ðtÞ
dt

¼ �m0ðtÞ þ fE t � dð Þ ðA:5Þ

where δ is the synaptic delay time, and τE0 is the rising time
constant of the conductance’s time course. For small τE0,
Eq. A.4 and A.5 can be merged into one equation.

tE
dmðtÞ
dt

¼ �mðtÞ þ fE t � d � tE0ð Þ ðA:6Þ

Another approximation that achieves the same result as
Eq. 1.0 is to assume an explicit form of the mean firing rate,
fEðtÞ ¼ fE mðtÞ; nðtÞ; IðtÞð Þ. The linear form with rectifying
nonlinearity is known to be a good approximation for
conductance based model neurons (Shriki et al. 2003).
When the firing rate fluctuates with small amplitude, a series
expansion of firing rate in terms of synaptic conductance
variables gives us a linear form as well (Brunel and Wang
2003). See also Shelley and McLaughlin (2002) for a
coarse-grained reduction of an integrate-and-fire,
conductance-based neural network model to a rate model.

Appendix B

Eigenvalue and ResF with feedback from extrastriate cortex

The characteristic equation of the matrix A in Eq. 3.3 is

Det lI � Að Þ ¼ l3 � TrAl2 þ Rl� DetA ¼ 0 ðB:1Þ

TrA ¼ t�1
E ð1� SEEÞ þ t�1

I ð1þ SII Þ þ t�1
EE ðB:2Þ

R ¼ t�1
E t�1

I 1� SEEð Þ 1þ SIIð Þ þ SEISIEð Þ
þ t�1

E t�1
EE 1� SEE � UEFUFEð Þ

þ t�1
EEt

�1
I 1þ SIIð Þ ðB:3Þ

DetA ¼ t�1
E t�1

I t�1
EE

1� SEE � UFEUEFð Þ 1þ SIIð Þ þ SEISIE þ SEIUIFUFEð Þ
ðB:4Þ
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The conditions for Eq. B.1 to have eigenvalues with
positive real part can be obtained by the Routh-Hurwitz
theorem (Weisstein). But here we use a different derivation
showing the stability conditions in Eq. 4.2–4 explicitly. The
three eigenvalues are either three real numbers or one real
number and two complex conjugates. In any case, TrA>0 if
the real parts of all eigenvalues are positive. When one of
the real eigenvalues changes in sign from positive to
negative, DetA is 0 because DetA is the product all
eigenvalues. It means DetA>0. Finally, when the real parts
of two complex eigenvalues change their sign, the three
eigenvalues have the form ε ± αi and β where ε,α and β are
three real numbers. It is easy to prove the following using
the relation between roots and coefficients of the equation.

TrA ¼ 2"þ b; ðB:5Þ

R ¼ "2 þ a2 þ 2"b; ðB:6Þ

DetA ¼ "2 þ a2
� �

b; ðB:7Þ

TrA*R� DetA ¼ 2a2 þ 2b2
� �

"þ O "2
� � ðB:8Þ

Therefore, the conditions for the real parts of all
eigenvalues to be positive are given in the following way.

TrA > 0 ¼> t�1
E 1� SEEð Þ þ t�1

I 1þ SIIð Þ þ t�1
EE > 0

ðB:9Þ
DetA > 0 ¼> 1� SEE � UFEUEFð Þ 1þ SIIð Þ

þSEISIE þ SEIUIFUFE > 0
ðB:10Þ

TrA*R > DetA ¼> T t�1
E t�1

I Dþ t�1
EET þ t�2

EE

� �
�t�1

E t�1
I t�1

EESEIUIFUFE

�t�1
E t�1

EE t�1
EE þ t�1

E 1� SEEð Þ� �
UEFUFE > 0:

ðB:11Þ

where T ¼ t�1
E 1� SEEð Þ þ t�1

I 1þ SIIð Þ and D ¼ 1� SEEð Þ
1þ SIIð Þ þ SEISIE:
When TrA*R=DetA, the real part of the complex

eigenvalues are zero and R ¼ DetA=TrA ¼ 2pnð Þ2:
Since is proportional to the inverse of the real part of the

eigenvalue, τdamp=∞ on the stability line defined by the
Eq. B.11. Equation B.6 shows that R ¼ DetA=TrA ¼
2pnð Þ2 in this case. Then the ResF, v obeys

2pnð Þ2¼ T þ t�1
EE

� ��1
t�1
E t�1

I t�1
EE

Dþ SEIUIFUFE � 1þ SIIð ÞUFEUEFð Þ ðB:12Þ
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