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Light field (LF) semantic segmentation is a newly arisen technology and is widely

used in many smart city applications such as remote sensing, virtual reality and

3D photogrammetry. Compared with RGB images, LF images contain multi-

layer contextual information and rich geometric information of real-world

scenes, which are challenging to be fully exploited because of the complex

and highly inter-twined structure of LF. In this paper, LF Contextual Feature

(LFCF) and LF Geometric Feature (LFGF) are proposed respectively for occluded

area perception and segmentation edge refinement. With exploitation of all the

views in LF, LFCF provides glimpse of some occluded areas from other angular

positions besides the superficial color information of the target view. Themulti-

layer information of the occluded area enhances the classification of partly

occluded objects. Whereas LFGF is extracted from Ray Epipolar-Plane Images

(RayEPIs) in eight directions for geometric information embedding. The solid

geometric information refines object edges, especially for occlusion

boundaries with similar colors. At last, Light Field Robust Segmentation

Network (LFRSNet) is designed to integrate LFCF and LFGF. Multi-layer

contextual information and geometric information are effectively

incorporated through LFRSNet, which brings significant improvement for

segmentation of the occluded objects and the object edges. Experimental

results on both realworld and synthetic datasets proves the state-of-the-art

performance of our method. Compared with other methods, LFRSNet

produces more accurate segmentation under occlusion, especially in the

edge regions.

KEYWORDS

light field, semantic segmentation, contextual feature, geometric feature, smart city

OPEN ACCESS

EDITED BY

Hao Sheng,
Beihang University, China

REVIEWED BY

Wenhui Zhou,
Hangzhou Dianzi University, China
Yuan Xu,
Beijing University of Chemical
Technology, China

*CORRESPONDENCE

Tongyu Zhu,
zhutongyu@nlsde.buaa.edu.cn

SPECIALTY SECTION

This article was submitted to
Environmental Informatics and Remote
Sensing,
a section of the journal
Frontiers in Environmental Science

RECEIVED 17 July 2022
ACCEPTED 29 July 2022
PUBLISHED 07 October 2022

CITATION

Yang D, Zhu T, Wang S, Wang S and
Xiong Z (2022), LFRSNet: A robust light
field semantic segmentation network
combining contextual and
geometric features.
Front. Environ. Sci. 10:996513.
doi: 10.3389/fenvs.2022.996513

COPYRIGHT

© 2022 Yang, Zhu, Wang, Wang and
Xiong. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 07 October 2022
DOI 10.3389/fenvs.2022.996513

https://www.frontiersin.org/articles/10.3389/fenvs.2022.996513/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.996513/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.996513/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.996513/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.996513&domain=pdf&date_stamp=2022-10-07
mailto:zhutongyu@nlsde.buaa.edu.cn
https://doi.org/10.3389/fenvs.2022.996513
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.996513


1 Introduction

Semantic segmentation, which assigns semantic labels for

each pixel in an image, has drawn great attention in recent years.

With high-level understanding of images, it facilitates many

smart city applications like remote sensing (Li F et al., 2022;

Li Y et al., 2022), object tracking (Zhang et al., 2020; Wang H

et al., 2021), virtual reality (Gao et al., 2022; Gu et al., 2022) and

3D photogrammetry (Frangez et al., 2022; Wang H et al., 2022).

Based on fully convolutional networks, semantic segmentation is

successfully conducted with single images, videos and RGB-D

data considering different application scenarios. Compared with

single images, videos provide information from other

perspectives and RGB-D data provide direct geometric

information (depth maps, etc), both of which greatly promote

performance in semantic segmentaion. Light field (LF) captures

both intensity and directions of light rays in the scene. Sub-

aperture images (SAIs) in LF are regularly sampled on angular

domain. Compared with videos, geometric information can be

deduced more easily from LF. And different from RGB-D data,

LF images embed geometric information without need of

additional depth sensors and provide multi-perspective

observation. Hence the introduction of LF can boost the

development of semantic segmentation.

Although LF can greatly benefit semantic segmentation, this

field develops rather slowly because of lack in relevant datasets.

Recently, the first large-scale LF semantic segmentation dataset

named UrbanLF (Sheng et al., 2022) was proposed. Two state-of-

the-art methods, PSPNet (Zhao et al., 2017) and OCR (Yuan

et al., 2020), were modified by the authors to adapt for LF data

and work as baseline methods. In both methods (PSPNet-LF and

OCR-LF), geometric features were extracted from epipolar-plane

images (EPIs) in four directions. The geometric features were

then integrated into the original networks through attention

mechanism for final segmentation of the center view.

However, in these two modifications, more than half of the

SAIs are ignored due to the star-like input structure. The

contextual and geometric information of LF are not fully

explored.

In this paper, Light Field Robust Segmentation Network

(LFRSNet) is designed to fully expoit LF in semantic

segmentation. In LFRSNet, Light Field Contextual Feature

(LFCF) and Light Field Geometric Feature (LFGF) are

proposed. LFCF is extracted through perception of multi-layer

information from all the SAIs, which benefits the classification of

the occluded objects. Whereas LFGF is extracted based on Ray

Epipolar-Plane Images (RayEPIs) in eight directions, which is

more robust to occlusion and is beneficial to the segmentation

along occlusion boundaries. LFRSNet integrates LFCF, LFGF and

the intial features from the center view adaptively with attention

mechanism. Our method achieves state-of-the-art performance

on UrbanLF (Sheng et al., 2022) dataset. On subset UrbanLF-Syn

with ground-truth disparity, based purely on multiple

perpectives of LF, LFRSNet also outperforms state-of-the-art

RGB-D methods.

In summary, the main contributions of this paper are

concluded as follows:

• LFCF is introduced based on an angular-distance-aware

context-perception mechanism to provide perception of

multi-layer information, which promotes classification

accuracy of occluded objects.

• RayEPI is proposed for robustness in occlusion areas and

LFGF is extracted from RayEPIs in eight directions, which

benefits semantic segmentation around occlusion

boudaries.

• LFRSNet is designed by adaptively combining LFCF and

LFGF with attention mechnism, which outperforms state-

of-the-art methods on the public dataset.

The rest of this paper is organized as follows. In Section 2, the

related works are briefly reviewed. In Section 3, two specific

semantic segmentation features from LF, LFCF and LFGF, are

first introduced. Then the architecture of LFRSNet is proposed.

The experimental results are presented in Section 4 and the

conclusion is given in Section 5.

2 Related work

Semantic segmentation has long been studied by researchers.

Because of various practical conditions, it is investigated with all

kinds of datatypes, like single images, videos, RGB-D data, etc.

Due to the fact that LF can be organized as image sequences with

apparent regularity in SAIs, methods developed for videos can

inspire the research in LF semantic segmentation. And different

from RGB-D data, LF contains geometric information without

need of additional depth sensors. It is necessary to include RGB-

D based method into the discussion to learn the exploitation of

geometric information. Hence in this section, previous works in

semantic segementation based on single images, videos, RGB-D

data are first reviewed for latter experiments and analysis. Then

the lage-scale LF semantic segmentation dataset UrbanLF (Sheng

et al., 2022) and its propsoed baseline methods are introduced.

2.1 Single image semantic segmentation

FCN (Shelhamer et al., 2017) first introduces fully

convolutional networks to semantic segmentation. Exploiting

both global and local clues, PSPNet (Zhao et al., 2017)

produces pyramid pooling module (PPM) which is widely

used in research. Different from other methods that encode

the input image as a low-resolution representation, HRNet

(Wang J et al., 2021) keeps high-resolution representations

through the whole process, which causes significant sensitivity
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to small objects. Deeplabv2 (Chen et al., 2018) proposes atrous

spatial pyramid pooling (ASPP) for robust segmentation of

objects at multiple scales. OCR (Yuan et al., 2020) presents

object-contextual representations which characterize a pixel by

exploiting the representation of the corresponding object class.

Cacrfs Net (Ji et al., 1938) designs a cascaded CRFs and integrates

it into the decoder of semantic segmentation model to learn

boundary information from multi-layers. SETR (Zheng et al.,

2021) replaces traditional convolution layers with a pure

transformer to encode an image as a sequence of patches and

a simple decoder is enough to reach state-of-the-art performance.

Because of the limited scene information reserved by single

images, the state-of-the-art single image semantic

segmentation methods still suffers from inferior segmentation

boundaries.

2.2 Video semantic segmentation

Videos provide multiple perspectives of the scene, which

facilitates semantic segmentation. To lower the cost of deep

networks in per-frame evaluation, (Zhu et al., 2017) performs

the expensive convolutional sub-network only on sparse key

frames and propagates their deep feature maps to other frames

based on a flow field. Information across frames are shared by

reusing stable features extracted from deep layers in (Carreira

et al., 2018). Jain et al. (2019) designs a reference branch to

extract high-detail features on a reference keyframe and an

update branch to perform a temporal update at each video

frame, which achieves high accuracy at low inference cost.

TDNet (Hu et al., 2020) achieves fast and accurate video

semantic segmentation by approximating features of high-level

layers with the composition of features extracted from several

shallower sub-networks. (Zhuang et al., 2021). proposes a

distortion-aware feature correction method, which improves

video segmentation performance at a low price. TMANet

(Wang S et al., 2021) adaptively integrates the long-range

temporal relations over the video sequence based on the self-

attention mechanism. Although containing multi-perspective

information, the changes between frames in videos are not

regular, which makes it hard to fully exploit multiple frames.

2.3 RGB-D semantic segmentation

Different from videos, RGB-D data provide direct geometric

information like depth maps, rather than multi-perspective

observation of the scene. With additional depth information,

depth-aware convolution and depth-aware average pooling are

propsed by DCNN (Wang and Neumann, 2018) to seamlessly

incorporate geometry into CNN. Based on attention mechanism,

ACNet (Hu et al., 2019) selectively gathers features from RGB

and depth branches. A novel Pattern-Affinitive Propagation

framework is proposed to jointly predict depth, surface

normal and semantic segmentation in (Zhang et al., 2019).

SA-Gate (Chen et al., 2020) introduces a novel Separation-

and-Aggregation Gating operation to filter and recalibrate

RGB and depth representations before cross-modality

aggregation. MTI-Net (Vandenhende et al., 2020) utilizes

depth data as a supervised signal and a multi-task learning

framework is adopted to jointly train multi-modal tasks to

improve single-task performance. To avoid separate process of

RGB and 3D spatial information, spatial information guided

convolution is proposed in SGNet (Chen et al., 2021), which

allows efficient RGB feature and 3D spatial information

integration. RGB-D data provide accurate geometric

information of the scene. However, on the one hand, the

capture of RGB-D data requires additional depth sensors and

the calibration between depth information and RGB data is also

hard to be conducted correctly. On the other hand, the lack of

multi-perspective information limits the comprehensive

understanding of the scene.

2.4 LF semantic segmentation

Different from videos and RGB-D data, SAIs in LF are

uniformally sampled in angular domain. Reliable geometric

information can be extracted from LF and meanwhile it

provides multi-perspective observation of the scene. This

property of LF facilitates many applications, like light field

super-resolution (Zhang et al., 2021; Wang Y et al., 2022),

disparity estimation (Shin et al., 2018; Huang et al., 2021), etc.

The performance in semantic segmentation can also be greatly

promoted with the introduction of LF. Recently, the first large-

scale LF semantic segmentation dataset (namely UrbanLF) is

constructed by (Sheng et al., 2022). Two state-of-the-art methods

PSPNet (Zhao et al., 2017) and OCR (Yuan et al., 2020) are

modified by the authors to deal with LF. Through simple

modification, the resulting models, PSPNet-LF and OCR-LF,

easily surpasses other state-of-the-art methods. It is obvious

that the potential of LF semantic segmentation is not fully

excavated. In this paper, we also dig into this problem with a

semantic segmentation method specially designed for LF.

3 Light field robust segmentation
network

A 4D LF is denoted as L ∈ RU×V×X×Y where U × V is the

angular resolution and X × Y is the spatial resolution. An SAI

L(u,v) ∈ RX×Y is extracted by fixing the angular coordinate at (u,

v). The task of LF semantic segmentation is to assign semantic

labels to each pixel of the center SAI L(uc,vc).
SAIs in an LF image are uniformly sampled in the angular

domain, which leads to linear displacement of the pixels across
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views. It results in two special properties. One is that the relative

position of the objects in the SAIs changes when viewpoint shifts.

The other is that the geometric information of the scene can be

easily deduced from LF. Considering these properties, two

specific features, LFCF and LFGF, are proposed respectively to

produce multi-layer contextual information and robust

geometric information of the scene to promote performance

in LF semantic segmentation. By adaptively combining LFCF and

LFGF, LFRSNet is proposed based on attention mechanism,

which shows significant improvement for classification of the

occluded objects and segmentation of the object edges.

3.1 Light field contextual feature (LFCF)

In LF images, objects of different distances to the camera

plane have different disparities. Hence objects shift in different

speeds across SAIs and the occluded part of an object in the

center view may be observed in other SAIs. Due to the linear

structure of LF, objects shift in diverse directions and various

degrees in different surrounding views. Therefore many different

occluded areas of the objects can be perceived from other angular

positions, which greatly benefits the classification of occluded

objects. With perception to both the occluders and the occluded

areas, LFCF is proposed accordingly to capture this multi-level

contextual information of the scene.Due to the uniform sampling

in the angular domain, a scene point has consistent disparity

between each pair of adjacent SAIs in an LF image. Objects in an

SAI L(u,v) moves linearly across SAIs:

L u, v, x, y( ) � L u + Δu, v + Δv, x − Δu × d, y − Δv × d( ). (1)

d denotes the disparity of pixel L (u, v, x, y). According to Eq. 1,

when the angular distances (Δu and Δv) between the SAIs grows,

the displacements of the objects in the scene inscrease. The

relative displacements among the objects also rise with

growing (Δu, Δv):

Displacementrelative � Δu × Δd,Δv × Δd( ), (2)

with Δd signifing the difference in disparities between two

objects.

As shown in Figure 1, the red triangle lies behind the yellow

rectangle and has smaller disparity. Assume the disparities of the

triangle and rectangle are d0 an d1 respectively. The relative

displacement between them across views is (Δu × (d1 − d0), Δv ×
(d1 − d0)). When the view point moves rightwards from (uc, vc) to

FIGURE 1
The yellow rectangle lies in front of the red triangle in the scene and it is set semitransparent tomake the triangle visible during the analysis. Their
disparities are d1 and d0 respectively, with d0 < d1. As the view point moves rightwards from (uc, vc), the occluded part of the triangle gradually
becomes visible, which facilitates classification. The occluded object may not be entirely visible with view shift in only one direction. By taking other
directions into consideration, as in view (uc + 1, vc), the left corner of the triangle hidden in (uc, vc + 2) is exposed. Combining (uc + 1, vc) and (uc,
vc+ 2), it is easier to correctly classify the triangle to be an equilateral triangle, rather than a right triangle. With relative displacements of the objects in
all the SAIs, the performance in classification can be greatly improved.
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(uc, vc + 1), the two objects relatively shift for (0, (d1 − d0)) and

part of the occluded area becomes visible. When the view point

continues to shift to (uc, vc + 2), the relative displacement grows

to (0, 2 × (d1 − d0)) and more of the occluded area moves out

from behind the rectangle. With more and more occluded area

being in sight, the classification of the rectangle gets easier.

Due to the relatively small disparities of LF images, the

occluded objects cannot always be entirely visible when the

viewpoint shifts to the border views in a certain direction.

However, Δu and Δv can be either positive and negative

integers. Specifically for the center view of a 9 × 9 LF where

(uc, vc) = (5, 5), Δu, Δv ∈ {±1, ±2, ±3, ±4}. Hence, the search for

the occluded part of an object can be continued in other

directions. As shown in Figure 1, the relative displacement of

the objects in the lower view (uc + 1, vc) is ((d1 − d0), 0). And the

left corner of the triangle is exposed. The relative displacements

in various directions reveal complementary information of the

occluded part of an object.

Combining the additionally exposed parts from the

surrounding views, the triangle can be classified to be an

equilateral triangle with high confidence, rather than a right

triangle. The perception of the occluded part from all the SAIs

can greatly boost the performance of semantic segmentation.

LFCF is introduced to represent this multi-layer contextual

information, covering both the occluders and the occluded parts

of objects. Different from the contextual features for single

images, which mainly covers the relationships among the

surrounding areas inside the view, LFCF additionally learns

the comprehensive representation of the objects themselves

from LF. Specifically, LFCF complements the occluded objects

in the center view with the information from the areas that

become visible in other SAIs, like the occluded half of the triangle

in Figure 1.

According to Eq. 2, the relative displacement of the objects

increases linearly with the angular distance between views. To

cover as much information of the target objects from other views

as possible, an angular-distance-aware context-perception

mechanism is designed to extract LFCF. As shown in

Figure 2, all the SAIs other than the center view participate in

LFCF extraction. The surrounding views are seperated into four

groups based on their maximum angular distances to the center

view, which form four circles around the center view in a 9 × 9 LF.

Let Ci denote a circle around the center view, with i = 1 indicating

the most inside circle. Objects in SAIs of the same circle Ci share

similar degrees of relative displacements according to Eq. 2.

As shown in Figure 2, ResASPP Block from (Wang et al.,

2019) and ResBlock from (He et al., 2016) are adopted for initial

contextual feature extraction:

ResASPPa,b,c x( ) � conv1×1 cat relu conv3×3,d x( )( )|d � a, b, c{ }( )( ) + x,
ResBlock x( ) � relu conv3×3 relu conv3×3 x( )( )( ) + x( ).

(3)

d denotes dilation rate of the convolution. When not specifically

marked, the dilation rate of the convolution is 1. The SAIs in the

FIGURE 2
Given an LF image, the surrounding views are first grouped into circles around the center view according to their angular distances to the center
view. For a 9 × 9 LF, four circles can be constructed. The initial contextual features of SAIs are extracted separately with a sequence of “conv-
ResASPP-ResBlock-ResASPP-ResBlock.” For SAIs in different circles, the dilation rates of the convolutional layers in ResASPP vary to handle the
linearly growing displacement range of the occluded objects. Then the initial contextual features of 80 SAIs are concatenated to form LFCF.
Parameters are shared among branches for SAIs in the same circle.
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same circle are first fed into an convolutional layer for initial

feature extraction. Then two groups of alternate ResASPP Block

and ResBlock are sequentially applied to extract the initial

contextual feature of the jth SAI Ci,j in circle Ci:

finitcontext Ci,j( ) � ResResa,b,c ResResa,b,c conv Ci,j( )( )( ). (4)

ResResa,b,c denotes a ResBlock following a ResASPP Block. a, b

and c are the dilation rates of the convolutions in ResASPP

Blocks. Varying dilation rates are used in ResASPP to cover

different displacement ranges caused by change in angular

distance. Specifically, for SAIs in C1 to C4, (a, b, c) are set to

(1, 2, 3), (1, 2, 4), (1, 3, 5) and (1, 4, 8) respectively. Paremeters are

shared among branches for SAIs in the same circle. In the end,

the initial contextual features from all the SAIs in all the circles

are concatenated to form LFCF:

LFCF � concat finitcontext Ci,j( ){ }( ), i ∈ 1, 2, 3, 4{ }, Ci,j ∈ Ci.

(5)
LFCF provides comprehensive perception of objects in the

center view with both the superficial information of the occluders

and glimpse of the occluded parts from surrounding views. With

multi-layer information of the scene from LFCF, the occluded

objects can be more accurately classified.

3.2 Light field geometric feature (LFGF)

The success of semantic segmentation from RGB-D data has

proved the effectiveness of geometric information. LF images

contain abundant geometric information of the scene which has

been considered by Sheng et al. (2022). However, in the baseline

methods proposed in Sheng et al. (2022), geometric information

was only extracted from EPIs in four directions, which is not

robust in complex scenes. In this subsection, RayEPI is proposed

and LFGF is extracted from RayEPIs in eight directions.

Compared with normal EPI, RayEPI is more robust to

occlusion. Hence geometric information of higher accuracy

can be provided by LFGF.

EPIs are constructed by stacking slices of SAIs in certain

directions, which directly reflect disparities of the scene. To make

full use of angular information in geometric information

extraction, researchers propose multi-direction EPIs. As

shown in Figure 3, EPI with direction α is defined as

EPIα,xp ,yp s, r( ) � L xp + s cos α, yp + s sin α, r cos α, r sin α( ),
s ∈ R, r ∈ R, α ∈ 0, π[ ), (6)

where (xp, yp) and α determine the position and direction of the

sampling lines in the sampling views used to construct EPIs.

Traditionally, multi-direction EPIs are sampled with α of 0, 1/4π,

1/2π and 3/4π. As illustrated in Figure 4, s is the abscissa of EPIα,

which changes in spatial domain. r is the ordinate of EPIα, which

changes in angular domain. We assume the coordinate of the

center view in LF to be (0, 0), which is also set as the coordinate of

the center pixel in each view image.

Normal EPIs have been widely used in previous works (Shin

et al., 2018) for its intuitive reflection of geometric information.

However, they still have two main disadvantages:

1) In the case of general occlusion, where occlusion edge only

exists in one side of the scene point, most of the EPIs are

considered to be unreliable since occlusion affects most of

FIGURE 3
(x, y) and (u, v) denote coordinates in spatial plane Ω and
angular plane Π, respectively. To construct EPIs with direction α,
the views lie on the line with direction α through the center view in
angular plane Π are selected. By varying (x*, y*), different
groups of line segments, which are parallel to the line above, in the
selected view images in spatial plane Ω can be extracted. Each
group of line segments form an EPI with direction α. To construct
RayEPIs, only the views lie on the ray with direction α out from the
center view in angular plane Π are selected. The rest of steps are
the same as the construction of EPIs.

FIGURE 4
A set of multi-direction EPIs in four directions. In EPIα,
abscissa s changes in spatial domain and ordinate r changes in
angular domain. Traditionally, multi-direction EPIs are constructed
in four directions: 0°, 45°, 90° and 135°.
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them. For example, A is a point near the vertical occlusion

edge in Figure 5. Except EPIA,90°, wihch consists of lines

parallel to the occlusion edge, EPIs in all the other

directions are affected by occlusion. Like in EPIA,0°, which

is composed of lines perpendicular to the occlusion edge, the

red line of point A is cut off by the green line of the occlusion

points. It is hard to estimate the slope of the red line due to the

exsitence of occlusion. In traditional EPI-based methods,

EPIA,0° and other EPIs affected by occlusion are usually

ignored or assigned lower weights. The loss of scene

information makes reliable geometric information

extraction much harder.

2) In the areas with dense occlusion, where the scene point is

surrounded or half surrounded by occlusion edges, EPIs are

affected in all the directions. For example, point B locates

behind the dense wire mesh in Figure 5. In traditional multi-

direction EPIs, the white lines of point B are affected by green

lines of occlusion points in all the directions. So the effect of

occlusion cannot be excluded and reliable geometric

information cannot be extracted.

In the case of general occlusion, once a scene point is

captured by the center view, it is usually occluded in half of

the views at most. So the line of occlusion points only affects half

of an EPI, like in EPIA,0°. Therefore, we divide the EPI into two

parts along the rays in opposite directions, named RayEPIs. A

pair of RayEPIs are defined as follows:

RayEPIα,xp ,yp s, rα( ) � L xp + s cos α, yp + s sin α, rα cos α, rα sin α( ),
RayEPIα+π,xp ,yp s, rα+π( ) � L xp + s cos α, yp + s sin α, rα+π cos α, rα+π sin α( ),

s ∈ R, rα ∈ R+
0 , rα+π ∈ R−

0 , α ∈ 0, π[ ),
(7)

where (xp, yp), α, s and r have the same meaning as their

counterparts in Eq. 6. Following the construction of

traditional multi-direction EPIs, RayEPIs are also sampled

with α of 0, 1/4π, 1/2π and 3/4π, which results in RayEPIs in

eight directions.

For general occlusion, where occlusion exists on one side of

the center view, RayEPI in the opposite direction is usually free

from occlusion and reliable geometric information can be

generated. For example, EPIA,0° is divided into RayEPIA,0° and

RayEPIA,180° in Figure 5. RayEPIA,180° is severely occluded, while

RayEPIA,0° is not affected by occlusion. Thus, different from the

traditional EPI whose information is wasted entirely, the RayEPIs

provide as much useful information as possible.

For dense occlusion, at least one occlusion-free RayEPI can be

found for geometric information extraction. For example in Figure 5,

point B is occluded in all the traditional EPIs. However, RayEPIB,0°,

FIGURE 5
In the case of general occlusion, traditional EPIs are affected in most directions. Usually only the EPI which consists of lines parallel to the
occlusion edge is occlusion-free. For example, A is a scene point in the character on the paper bag, near the vertical occlusion edge. In EPIA,90°, the
images of A form a complete line. While in all the other directions, point A is occluded to some extent. Like in EPIA,0°, the red line of point A is cut off by
the green line representing the occlusion edge. Accurate depth estimation can not be made under the influence of occlusion. However, the
general occlusion usually only affects half of the EPI. By separating the EPIA,0° into RayEPIA,180° and RayEPIA,0°, a reliable depth estimation can still be
deduced fromRayEPIA,0°. In the case of dense occlusion, different from traditional EPIs, one non-occluded RayEPI can be found at least. For example,
B is a point on the book in the basket. The white lines of point B is cut off by green lines of occlusion points in all the trational EPIs. While in RayEPIB,0°,
RayEPIB,45°,RayEPIB,270° andRayEPIB,315°, the images ofB all form complete lines and geometric information of higher accuracy can be extracted from
them.
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RayEPIB,45°, RayEPIB,270° and RayEPIB,315° are not affected by

occlusion. Thus different from traditional EPIs which fail in this

case, reliable geometric information can be extracted from RayEPIs.

Algorithm 1. Construction of RayEPIs.

Following previous works, as shwon in Figure 6, RayEPIs are

constructed by stacking view images in certain directions in this

paper to reduce consumption in constructing RayEPIs directly

with Eq. 7. As depicted in Algorithm 1, the construction of

RayEPIs starts from the center view. SAI in each direction α is

saved by the corresponding image stack SRayEPI,α view-by-view.

Then the orders of images in SRayEPI,1/2π, SRayEPI,3/4π, SRayEPI,π and

SRayEPI,5/4π are reversed to ensure the disparities of the same

pixels in all the RayEPIs to be identical.

With RayEPIs in eight directions, initial geometric features

from different directions are separately extracted through three

sequential ResBlocks, the receptive field of which is sufficient to

cover the displacements of the pixels in LF. The intial geometric

features are then concatenated together to form the final LFGF:

LFGF � concat ResBlocks RayEPIα( ){ }( ), α ∈ 1/4kπ, k � 0, 1, 2, 3, 4, 5, 6, 7{ },
(8)

where ResBlocks (·) denotes three sequential ResBlocks. The

detailed structure of ResBlock is depicted in Figure 2 and Eq.

3. In this way, all the useful geometric information is retained

in LFGF.

With the robust geometric information from LFGF, the

shapes of objects can be more accurately estimated, which not

only benefits classification of the object, but also promotes

performance of the segmention along boundaries.

3.3 Architecture of LFRSNet

LFCF contains multi-layer information of the scene,

which is beneficial in the classification of occluded objects.

And LFGF provides robust geometric information, which

boosts performance along occlusion boundaries. In this

subsection, Light Field Robust Segmentation Network is

proposed accordingly through adaptive combination of the

features with attention mechanism. Based on LFCF and

LFGF, LFRSNet produces robust semantic segmentation,

which both classifies occluded objects better, but

also produces clearer and more accurate occlusion

boundaries.

As shown in Figure 7, following previous methods (Zhao

et al., 2017; Chen et al., 2018), ResNet101 (He et al., 2016) is

FIGURE 6
LFGF is extracted from RayEPIs in eight directions. In this paper, RayEPIs are constructed by stacking SAIs in certain directions. RayEPIs are
separatly fed into three sequential ResBlocks for initial geometric feature extraction. The initial geometric features from eight RayEPIs are then
directly concatenated to retain all the useful information.
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adoted as the backbone of LFRSNet. The initial feature Finit of the

center view L(5,5) is extracted with Layer0 of ResNet101:

Finit � ResNet101Layer0 L 5,5( )( ). (9)

LFCF and LFGF are extracted seperately based on Eqs 5, 8.

To adaptively integrate LFCF, LFGF and Finit, as shown in

Figure 8, a simple Attention Block is adopted:

LFCFatten � sigmoid conv LFCF( )( )◦LFCF,
Finitatten � sigmoid conv Finit( )( )◦Finit,

LFGFatten � sigmoid conv LFGF( )( )◦LFGF,
(10)

where ◦ denotes the Hadamard product of two matrices. Then

the attention feature maps are concatenated

Fconcat � concat LFCFatten, Finitatten, LFGFatten( ) (11)
and fed into the rest Bottleneck Blocks of ResNet101 (Layer1 to

Layer4) for feature fusion and refinement:

Ffused � ResNet101Layer1~4 Fconcat( ). (12)

In the end, Pyramid Pooling Module (PPM) from (Zhao et al.,

2017) is adopted to integrate the global and local clues for

prediction with higher reliability. After a final convolutional

layer, reliable pixel-level semantic prediction for the center

view of LF is produced:

P � conv PPM Ffused( )( ), P ∈ RC×X×Y. (13)

C indicates the number of semantic classes to predict. In this

paper, C is set to 14.

4 Experimental results

In this section, we first introduce the implementation details

of the experiments. Then comparison with the state-of-the-art

methods, including methods for single images, videos, RGB-D

data and LF, is conducted. Our LFRSNet outperforms other

methods in all the metrics. Ablation study is performed at last to

verify the contribution of our designs.

4.1 Implementation details

The large-scale LF semantic segmentation dataset UrbanLF

(Sheng et al., 2022) is used in the experiments. UrbanLF includes

two subsets: UrbanLF-Real and UrbanLF-Syn. The former is

captured with LF camera Lytro Illum and the latter is rendered

with Blender. UrbanLF-Syn contains ground-truth disparity and

depth labels. Experiments are conducted separately on the two

subsets to incorporate RGB-D based methods on UrbanLF-Syn

in the comparison.

The training data is augmented with random flipping (left-

right, up-down), scaling and cropping. Our network is

implemented in Pytorch (1.7.0) and trained with one NVIDIA

RTX 3090 GPU. Following (Sheng et al., 2022), SGD optimizer is

adopted with an initial learning rate of 0.01. Momentum and

weight decay are set to 0.9 and 0.0005 respectively. The “poly”

learning rate policy is adopted, where the learning rate is

multiplied by (1 − iter
maxiter)0.9 in each iteration. Comparisons

are conducted on the center view of LF with pixel Accuracy

FIGURE 7
The overall architecture of LFRSNet. ResNet101 is used as the backbone of LFRSNet. LFCF and LFGF are respectively extracted according to Eqs
5, 8. The two features are then adaptively concatenated with the initial feature of the center view from Layer0 of ResNet101. The integrated features
are fed into the rest Bottleneck Blocks of ResNet101 (Layer1 to Layer4) and the output of Layer4 is further fed into a PPM and another convolutional
layer for the final pixel-level prediction.

FIGURE 8
The architecture of AttentionBlock used in LFRSNet. To
accelerate the processing speed, a simple structure with one
convlutional layer followed by sigmoid is adopted for weight map
generation.
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(Acc ↑), mean pixel Accuracy (mAcc ↑) and mean Intersection-

over-Union (mIoU ↑).

4.2 Comparison with the state-of-the-art
methods

4.2.1 Comparison on realworld data
Six state-of-the-art semantic segmentation methods are used

for comparison on realworld data UrbanLF-Real, including

methods for single images (PSPNet (Zhao et al., 2017) and

OCR (Yuan et al., 2020)), videos (TDNet (Hu et al., 2020)

and TMANet (Wang S et al., 2021)) and LFs (PSPNet-LF

(Sheng et al., 2022) and OCR-LF (Sheng et al., 2022)). Note

that for video-based methods, SAIs are organized in S-shape,

starting from the top-left view and scanning horizontally, to form

pseudo videos.

As shown in Table 1, LFRSNet achieves the highest scores on

all the metrics. Video-based methods (TDNet and TMANet)

perform inferior to PSPNet and OCR. The reason lies in the

relatively small baseline of LF cameras. Difference between

adjacent SAIs is much smaller than that between frames of a

video. Hence the ability to construct long-range connections

cannot be fully exerted. The methods modified for LF data

TABLE 1 Comparison with the state-of-the-art methods on UrbanLF-Real. Bold texts indicate the best results and italics indicate the second best
results. LFRSNet outperforms other methods in all metrics.

Method DataType Acc(%) ↑ mAcc(%) ↑ mIoU (%) ↑

PSPNet Zhao et al. (2017) Single 91.21 83.87 76.34

OCR Yuan et al. (2020) Single 92.02 85.17 78.60

TDNet Hu et al. (2020) Video 91.05 83.38 76.48

TMANet Wang H. et al. (2021) Video 91.04 83.54 75.91

PSPNet-LF Sheng et al. (2022) LF 92.14 84.86 78.10

OCR-LF Sheng et al. (2022) LF 92.51 86.31 79.32

LFRSNet LF 92.83 87.10 79.98

FIGURE 9
Visual results of Image260 and Image502 in UrbanLF-Real. With full exploitation of all the SAIs in LF, LFRSNet improves significantly in the
misclassification between neighboring objects with similar colors. The more robust geometric information from RayEPIs also enhances the
identification of fine structures.
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outperform their single-image version with an additional

geometric information extraction branch. However, on the

one hand, they only exploit less than half of the SAIs in an

LF. On the other hand, the use of EPI restricts their performance

along occlusion boundaries. With RayEPIs in eight directions

and full exploitation of all the SAIs, LFRSNet produces the best

results.

As shown in Figure 9, Image260 and Iamge502 of UrbanLF-

Real are used as visual examples. In the red boxes of Image260, a

taxi light is on the roof of the car. It shares the same color with the

window frame in the background. Hence most of the methods

fails to fully find the contour of it. Benefitting from the high-

resolution feature space, OCR manages to partly recover the taxi

light. And with introduction of geometric information from LF,

OCR-LF produces better reconstruction. LFGF, compared with

the feature from EPI in OCR-LF, further provides geometric

information more robust to occlusion. Hence LFRSNet draws the

most complete contour of the taxi light. As for the areas in the

yellow boxes of Image 260, LFCF extracts multi-layer contextual

information. Especially for this scenerio, the area occluded by the

TABLE 2 Comparison with the state-of-the-art methods on UrbanLF-Syn. Bold texts indicate the best results and italics indicate the second best
results. LFRSNet outperforms other methods in all metrics.

Method DataType Acc(%) ↑ mAcc(%) ↑ mIoU (%) ↑

PSPNet Zhao et al. (2017) Single 89.39 84.48 75.78

OCR Yuan et al. (2020) Single 91.50 86.96 79.36

TDNet Hu et al. (2020) Video 89.06 83.43 74.71

TMANet Wang H. et al. (2021) Video 89.47 82.94 74.27

MTINet Vandenhende et al. (2020) RGB-D 91.24 86.94 79.10

SA-Gate Chen et al. (2020) RGB-D 92.10 87.04 79.53

PSPNet-LF Sheng et al. (2022) LF 90.55 85.91 77.88

OCR-LF Sheng et al. (2022) LF 92.01 87.71 80.43

LFRSNet LF 92.32 87.94 80.87

FIGURE 10
Visual results of Image67 and Image77 in UrbanLF-Syn. With the correct depth maps provided by the synthetic data, RGB-D based methods
outperform most of the state-of-the-art methods. However, with full exploitation of all the SAIs in the LF, LFCF provides a more comprehensive
understanding of the multi-layer scene for LFRSNet. LFGF from RayEPIs also provides robust geometric information of complex occlusion. Thus the
classic fine structure of the thin fence is better handled, even compared with RGB-D based methods.
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thin fence can almost all be observed from other SAIs. Therefore

LFRSNet segments the fence clearly and doesnot diffuse it to the

backgroud like OCR-LF does.

In Image502, a traffic cone is placed behind the pole of the

street lamp in the red boxes. Methods for videos (TMANet and

TDNet) fail to separate the two objects. Leveraging geometric

information from multi-direction EPIs, OCR-LF clearly

reconstructs the bottom of the street lamp. And benefitting

from the multi-layer information from LFCF, LFRSNet further

reduces the area of the ground that is misclassified to the same

class as the traffic cone (class Others). Based on the

comprehensive geometric information from multi-direction

RayEPIs, the complex occlusion boundaries of the handlebar

in the yellow boxes are also identified more completely.

4.2.2 Comparison on synthetic data
Because UrbanLF-Syn provides ground-truth depth and

disparity maps, other than previous six methods adopted on

realworld data, two state-of-the-art RGB-D based methods,

MTINet (Vandenhende et al., 2020) and SA-Gate (Chen et al.,

2020), are introduced in the comparison.

As shown in Table 2, LFRSNet outperforms all the other

methods.With reliable depth information, RGB-D basedmethod

SA-Gate achieves second best performance in Acc. However,

depth information can only describe the superficial layer of the

scene. Without use of other views, the improvement is not

uniform across semantic classes. Hence OCR-LF surpasses

SA-Gate in both mAcc and mIoU. It also proves that the

extracted geometric features from multiple perspectives (like

EPIs and RayEPIs) contains geometric information more-

comprehensive than depth maps.

Iamge67 and Image77 of UrbanLF-Syn is used as visual

examples in Figure 10. The red box circles a classic hard area

of the fences with complex occlusion and fine structures. Methods for

videos (TMANet and TDNet) and PSPNet completely fail in the

reconstruction of the thin fence. With geometric information from

EPIs, PSPNet-LF corrects some obvious errors in classification of large

objects but is still unable to reconstruct the fence. Taking advantage of

correct depth information, sensitivity to fine structures is greatly

improved in RGB-D based methods, MTINet and SA-Gate, which

indeed outperform most methods. However, the comprehensive

perception of the geometric and contextual information of the

scene introduced by LFCF and LFGF make LFRSNet better handle

this complex structure. The thin fences are identifiedmore completely

by LFRSNet. Especially in Image67, although provided with depth

ground-truth, the similar color of the fence and the background still

poses difficulties to RGB-D basedmethods.Whereas with observation

from different views helps LFRSNet to better seperate the slender rods

of the fence from the sidewalk.

4.3 Ablation study

In this subsection, LFRSNet is compared with its variations

different in architecture to investigate the potential benefits of the

proposed LF features. The experiments are performed on

UrbanLF-Real.

In LFRSNet, LFCF is constructed to represent the multi-layer

information of the scene and LFGF contains comprehensive geometric

information. As shown in Table 3, three variants are investigated:

without LFCF, without LFGF and without LFCF&LFGF. In without

LFCF andwithout LFGF, LFCF and LFGF are removed from LFRSNet

respectively. And in without LFCF&LFGF, semantic segmentation is

performed with neither LFCF nor LFGF.

The architecture of without LFCF is much simpler compared

with PSPNet-LF. However, by replacing EPI with RayEPI,

without LFCF outperforms PSPNet-LF in all three metrics

(0.26% in Acc, 1.26% in mAcc, 1.03% in mIoU). Different

from previous methods, all SAIs in LF are exploited in

LFRSNet. The improvement of without LFGF over without

LFCF proves that the multi-layer contextual information from

all views in LF contributes more compared with geometric

information from RayEPIs. Removing both features, LFRSNet

degenerates to PSPNet with attention mechanism, which

performs slightly superior to the original PSPNet. Without

LFCF significantly surpasses without LFCF&LFGF (1.10% in

Acc, 2.19% in mAcc, 2.59% in mIoU), verifying the

effectiveness of geometric information in LFGF.

5 Conclusion

In this paper, LFRSNet is designed to fully exploit LF in semantic

segmentation. Sepcifically, LFCF is introduced based on an angular-

distance-aware context-perception mechanism for multi-layer

information extraction. LFGF is proposed based on RayEPI for

robust and comprehensive geometric information representation.

Extensive experimental results show that our method outperforms

other state-of-the art methods, especially in the edge regions. As

demonstrated by the experiments, LFGF and LFCF contains

abundant geometric and contextual information, which greatly

facilitates understanding of the realworld scenes, especially for

smart city applications that contains complex scenarios. In the

future, we will further try to apply the informative features of LF

to other smart city tasks, like 3D reconstruction, understanding of

remote sensing images, etc.

TABLE 3 Investigation of LFRSNet with different designs.

Method Acc(%) ↑ mAcc(%) ↑ mIoU (%) ↑

LFRSNet 92.83 87.10 79.98

Without LFCF 92.40 (−0.43) 86.12 (−0.98) 79.13 (−0.85)

Without LFGF 92.62 (−0.21) 86.56 (−0.54) 79.63 (−0.35)

Without LFCF&LFGF 91.30 (−1.53) 83.93 (−3.17) 76.54 (−3.44)
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