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Abstract

Deep neural networks have made tremendous progress

in 3D point-cloud recognition. Recent works have shown

that these 3D recognition networks are also vulnerable to

adversarial samples produced from various attack meth-

ods, including optimization-based 3D Carlini-Wagner at-

tack, gradient-based iterative fast gradient method, and

skeleton-detach based point-dropping. However, after a

careful analysis, these methods are either extremely slow

because of the optimization/iterative scheme, or not flexible

to support targeted attack of a specific category. To over-

come these shortcomings, this paper proposes a novel label

guided adversarial network (LG-GAN) for real-time flexi-

ble targeted point cloud attack. To the best of our knowl-

edge, this is the first generation based 3D point cloud at-

tack method. By feeding the original point clouds and tar-

get attack label into LG-GAN, it can learn how to deform

the point clouds to mislead the recognition network into the

specific label only with a single forward pass. In detail, LG-

GAN first leverages one multi-branch adversarial network

to extract hierarchical features of the input point clouds,

then incorporates the specified label information into mul-

tiple intermediate features using the label encoder. Finally,

the encoded features will be fed into the coordinate recon-

struction decoder to generate the target adversarial sam-

ple. By evaluating different point-cloud recognition models

(e.g., PointNet, PointNet++ and DGCNN), we demonstrate

that the proposed LG-GAN can support flexible targeted at-

tack on the fly while guaranteeing good attack performance

and higher efficiency simultaneously.

∗Equal contribution, † Corresponding author

1. Introduction

Deep neural networks (DNNs) have been successfully

applied to many computer vision tasks [31, 12, 26, 6, 41,

19]. Recently, pioneering works such as DeepSets [40],

PointNet [5] and its variants [25, 33] explored the possi-

bility of reasoning with point clouds through DNNs for un-

derstanding geometry and recognizing 3D structures. These

methods directly extract features from raw 3D point coordi-

nates without utilizing hand-crafted features, such as nor-

mals and curvatures, and present impressive results for 3D

object classification and semantic scene segmentation.

However, recent works have demonstrated that DNNs

are vulnerable to adversarial examples, which are mali-

ciously created by adding imperceptible perturbations to

the original input by attackers. This would potentially

bring security threats to real application systems such as au-

tonomous driving [2], speech recognition [7] and face veri-

fication [21], to name a few. Similar to images, many recent

works [36, 20, 42] have shown that deep point cloud recog-

nition networks are also sensitive to adversarial examples

and readily fooled by them.

Existing 3D adversarial attack methods can be roughly

categorized into three: optimization-based methods such as

L-BFGS [32] and C&W attack [3], gradient-based meth-

ods such as FGSM [8] and IFGM [9], and skeleton-detach

based methods like [38]. Notwithstanding their demon-

strated effectiveness in attack, they all have some signif-

icant limitations. For example, the former two rely on a

very time-consuming optimization/iterative scheme. This

renders them not flexible enough for real-time attack. In

contrast, the last one is faster but has lower attack success

rates. Moreover, it requires to delete some critical point

cloud structures and only supports the untargeted attack.

To overcome these shortcomings and motivated by im-
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age adversarial attack methods [1, 37, 10], this paper pro-

poses the first generation based point cloud attack method,

which is faster, has better attack performance and supports

flexible targeted attack of a specific category on the fly.

Specifically, we design a novel label guided adversarial

network “LG-GAN”. By feeding the original point clouds

and target attack label into LG-GAN, it learns how to de-

form the point cloud with minimal perturbations to mislead

the recognition network into the specific label only with a

single forward pass. Specifically, LG-GAN first leverages

one multi-branch generative network to extract hierarchi-

cal features of the input point clouds, then incorporates the

specified label information into multiple intermediate fea-

tures by a label encoder. Finally, the transformed features

will be fed into the coordinate reconstruction decoder to

generate the target adversarial sample. To further encourage

the “LG-GAN” to produce a visually pleasant point cloud,

a graph patch-based discriminator network is leveraged for

adversarial training.

To demonstrate the effectiveness, we evaluate the pro-

posed “LG-GAN” by attacking different state-of-the-art

point-cloud recognition models (e.g., PointNet, PointNet++

and DGCNN). Experiments demonstrate that it can achieve

good attack performance and better efficiency simultane-

ously for flexible targeted attack.

In summary, our contributions are three fold:

• Motivated by the limitations of existing 3D adversarial

attack methods, we propose the first generation based

adversarial attack method for 3D point-cloud recogni-

tion networks.

• To support arbitrary-target attack, we design a novel

label guided adversarial network “LG-GAN” by mul-

tiple intermediate feature incorporation.

• Experiments on different recognition models demon-

strate that our method is both more flexible and effec-

tive in targeted attack while being more efficient.

2. Related Work

2.1. 3D point recognition

To obtain great 3D point recognition performance, the

most important component is the feature extractor design.

In the era before deep learning, various kinds of handcraft

3D descriptors are proposed. For example, the shape distri-

bution is exploited in [23] to calculate the similarity based

on distance, angle, area, and volume between random sur-

face points. Based on the native 3D representations of ob-

jects, classical shape-based descriptors include voxel grid

[23], polygon mesh [17], and 3D SIFT and SURF descrip-

tors [27, 16]. Recently, thanks to the strong learning capa-

bility of deep networks, more deep learning-based descrip-

tors are proposed.

In [29], a multi-view convolutional neural network

(MVCNN) is proposed to fuse multiple-view features by

a pooling procedure. The pioneering work PointNet [25]

further designs a novel neural network that can directly con-

sume point clouds and achieves superior recognition perfor-

mance. By considering more local structure information,

it is further improved in the following work PointNet++

[25]. Another representative work is DGCNN [33], which

exploits local geometric structures by constructing a local

neighborhood graph and applying convolution-like opera-

tions on the edges connecting neighboring pairs of points in

the spirit of graph neural networks. To evaluate the effec-

tiveness and generalization ability of our method, we will

try to attack these three representative methods respectively.

2.2. Existing 3D adversarial attack methods

As discussed before, 3D recognition networks are also

vulnerable to adversarial attacks. We can roughly divide

existing 3D adversarial attack methods into three differ-

ent categories: optimization-based methods [36], gradient-

based methods [20, 38, 42], and skeleton-based methods

[38]. For optimization-based methods, Xiang et al. [36]

propose a C&W based framework [3] to generate adver-

sarial point clouds by point perturbation, point adding and

cluster adding. This method uses an optimization objective

to seek the minimal perturbated sample that can make the

recognition network classify incorrectly.

Typical perturbation measurements include L2 norm,

Hausdorff distance, and Chamfer distance. For gradient-

based methods, Liu et al. [20] extended the fast/iterative

gradient method by constraining the perturbation magnitude

onto an epsilon ball surface in different dimensions. Yang et

al. [38] developed a variant of one-pixel attack [30] by us-

ing pointwise gradient method to only update the attached

points without changing the original point cloud. Zheng et

al. [42] proposed point dropping based attack by first con-

structing a gradient-based salience map and dropping points

with lowest salience scores.

Though optimization-based and gradient-based methods

can achieve pretty good attack performance, they are both

extremely slow. Motivated by the fact that the recogni-

tion result of one 3D object in PointNet [24] is often de-

termined by a critical subset, Yang et al. [38] developed a

skeleton-detach based attack method by iteratively detach-

ing the most important points from this critical subset. This

method is faster but its attack success rate is not that high.

More importantly, this method cannot support targeted at-

tack. To overcome all the aforementioned limitations, we

propose the first generation based attack method, which en-

ables faster and better flexible targeted attacking.
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Figure 1: Illustration of the LG-GAN architecture for training the generation of targeted 3D adversarial point clouds. Given an input point cloud P of N

points with XYZ coordinates, a hierarchical feature embedding network (implemented with PointNet++ [25] layers) subsamples and learns deep features on

the points. Besides, a label encoder transforms the label information into a label feature to be better concatenated with the point cloud feature at each feature

level. The decoder network includes interpolation, aggregation, and FC layers. The discriminator network D includes a feature learning net and multiple

residual blocks. Image best viewed in color.

2.3. Existing 3D adversarial defense methods

To defend against the 3D adversarial attacks, we can de-

rive from the well-known image adversarial defense strate-

gies. For example, by augmenting the training set with ad-

versarial examples, adversarial training [8, 18] can signif-

icantly increase the model’s robustness. Other simple de-

fense methods include random point sampling, Gaussian

noising and quantification. Recently, Zhou et al. [43] de-

ploy a statistical outlier denoiser and a data-driven upsam-

pling network as the pre-processing operation before the in-

put is fed into the recognition network. The denoiser con-

tributes to removing outlier based noise patterns as a non-

differentiable layer while the upsampling network help pu-

rify the perturbed point clouds. In this paper, these defense

methods are considered to evaluate the attack performance.

3. Generation-based 3D Point Cloud Attack

Motivated by the shortcomings of existing methods, we

propose a novel generation based 3D point cloud attack

method “LG-GAN”, as shown in Fig. 1. It consists of

two sub-networks: a generative network G that learns how

to transform the input point clouds into targeted adversar-

ial samples and a discriminator network D that encourages

the outputs of G indistinguishable from clean point clouds.

These two sub-networks are trained in an adversarial man-

ner, and the discriminator D is just an auxiliary network and

not needed anymore after training.

3.1. Label guided Adversarial network G

Given a clean point cloud P of total N points and the

target label t to which we want the recognition network to

misclassify, G aims to learn how to transform P into an ad-

versarial sample P̂ with minimal perturbations to P based

on t, which is constrained by three designed losses (clas-

sification loss, reconstruction loss and discriminative loss).

It mainly consists of three different parts: a label encoder

El, a hierarchical point feature encoder Ep, and a point

decoder Dp. Specifically, El is responsible for encoding

label t into a latent label code zt by repeating t for multi-

ple times to match the point number of each feature layer

i, and Ep encodes P into a multi-level feature embedding
−→
FP = (F 1

P , ..., F
m
P ), then zt will be concatenated with

−→
FP

and fed into Dp to obtain the final adversarial sample Padv .

Mathematically:
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−→zt = (z1t , ..., z
l
t) = El(t),

−→
FP = (F 1

P , ..., F
m
P ) = Ep(P),

Padv = Dp(
−→zt ,

−→
FP).

(1)

Here m is the feature level number (4 by default). Note that

t is formatted as a one-hot vector whose tth value is 1.

Hierarchical Point Feature Learning. Progressively ex-

tracting features of different scales in a hierarchical man-

ner has been proven to be an effective strategy for capturing

both the local and global point structures. By default, in this

paper, we use 4 different levels of point cloud representa-

tion from coarse to fine. Specifically, given the point cloud

P consisting of N points, we use the iterative farthest point

sampling algorithm as the sampling layer to evenly sample

the points into four scales (N,N/2, N/4, N/8). Then we

adopt PointNet++ [25] to extract the feature embedding for

each scale. In detail, for each point in level i, PointNet++

will utilize the local structure information and aggregate

the features of neighboring points as the final feature F i
P ,

whose shape is N
2i−1 × (64 · 2i−1).

Feature Decoding and Label Concatenation to Recon-

struct the Final Adversarial Sample. To aggregate the

multi-scale features from each level, we follow the strat-

egy used in [13, 11, 39] that directly combine features from

different levels and let the network learn the importance of

each level. Since the different scales have different point

number, the downsampled point features will be upsam-

pled to the original point number by using the interpolation

method adopted in PointNet++ [25]. Formally, denote the

upsampled feature as F i
P

′
, then:

F i
P

′
(x) =

∑3
j=1 wj(x)F

i
P(xj)

∑3
j=1 wj(x)

, (2)

where wj(x) is the contribution weight of the neighborhood

point xj defined as 1/d(x, xj), and d is the ℓ2 distance by

default. Then each scale upsampled features will be pro-

cessed by one 1 × 1 convolutional layer similar to that in

[39] to have the same dimension.

The m level of features F i
P

′
(x) together with the origi-

nal point cloud coordinates are concatenated together along

the feature dimension to obtain the final aggregated feature

FP
′′(x). Then, l fully connected layers with multi-layered

label concatenation are utilized to reconstruct the detailed

coordinates of the adversarial sample. At each fully con-

nected layer i (except for the last layer), we obtain the inte-

grated feature:

F i+1
P

′′
(x) = FC([zit, F

i
P

′′
(x)]), i = 1, ..., l − 1. (3)

Input feature

Output feature

Graph conv

Leaky ReLU

Graph conv

Leaky ReLU
�

Input points

�

Figure 2: Residual graph convolutional block. The input points are

utilized for querying the k nearest neighbors. The output feature of the

block has the same dimension as the input feature.

Here [x, y] means concatenating x, y along the feature di-

mension and l is the number of fully connected layer (4 by

default).

3.2. Graph Discriminator D

To help generate a more realistic adversarial point cloud,

we further leverage a graph discriminator network D for

adversarial learning. For the detailed network structure, we

directly use the existing graph patch GAN [28, 34] to dis-

tinguish clean point clouds from generated adversarial point

clouds. Then for every locally generated patch, D will en-

courage it to lie on the distribution of the clean point clouds.

For the detailed network structure, D consists of a Point-

Net++ like feature extraction head and a series of pooling

blocks and residual graph convolution blocks. For the fea-

ture extraction head, it consists of several pointwise con-

volutional layers and aggregate the features of k nearest

neighbors for each point by max pooling. For the pool

block, it will first use the farthest point sampling algorithm

to find some seed points then max-pool the corresponding

features of their neighboring points to get the downsampled

feature. For the residual graph convolution block, it is com-

posed of several graph convolutions defined on the k near-

est neighborhood-based graph G = (v,N(x)) and residual

connections as shown in Fig. 2. Mathematically, the formu-

lation of graph convolution is defined as:

fout(x) = w0fin(x) + w1

∑

q∈N(x)

fin(q), ∀x ∈ v, (4)

where N(x) is defined by the k nearest neighbors of x in

the Euclidean space. fin, fout are the input and output fea-

tures of the vertex x respectively. w0, w1 are the learnable
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weights that determine how much information needs to be

borrowed from the target vertex and its neighborhood ver-

texes. k is set to 8 by default.

3.3. Objective Loss Function

The objective loss function of the generator networks G
consists of three parts: the classification loss, the recon-

struction loss, and the discriminative loss. Formally:

LG = Lcls + αLrec + βLdis, (5)

where α, β are weight factors. Lcls is the classification loss

that urges the attacked model H to make prediction to the

target label t, and we use the standard cross-entropy loss:

Lcls = −[t logH(P̂) + (1− t) log (1−H(P̂))], (6)

where P̂ = Gθ(P, t) is the generated adversarial point

cloud, H(P̂) is the predicted probability of the target model

on the adversarial sample. Lrec is the reconstruction loss

that encourages the generated adversarial point cloud to re-

semble the original sample. We adopt an ℓ2 distance, which

is better than the Chamfer distance, as our measurement.

Ldis is a graph adversarial loss that has the same goal with

Lrec. Inspired by LS-GAN [22],

Ldis(P̂) = ‖1−Dθ(P̂)‖22. (7)

The objective loss function of the discriminator networks

D aims to distinguish real and fake point clouds by mini-

mizing LD loss:

LD(P, P̂) =
1

2
‖Dθ(P̂)‖22 +

1

2
‖1−Dθ(P)‖22. (8)

3.4. Implementation Details

Following the practice in [3], we adopt PointNet [24] and

PointNet++ [25] as the targeted attack models H, and use

the default settings to train. Given the pretrained models, we

train the proposed LG-GAN to attack the two models. The

size of input point cloud is 2, 048× 3, and weights α and β
are set with 0.001 and 1 respectively. The implementation

is based on TensorFlow. For the optimization, we train the

network for 200 epochs using the Adam [15] optimizer with

a minibatch size of 4, and the learning rate of G and D are

0.001 and 0.00001 respectively. The whole training process

takes about 8h on the NVIDIA RTX 2080 Ti GPU.

4. Experiments

In this section, we firstly compare our LG-GAN with

previous state-of-the-art methods on a CAD object bench-

mark (Sec. 4.1). We then provide analysis experiments

to understand the effectiveness and efficiency of LG-GAN

(Sec. 4.2). We also validate translation-based attack (Sec.

4.3). Finally we show qualitative results of our LG-GAN

(Sec. 4.4). More analysis and visualizations are provided in

the supplementary materials.

4.1. Comparing with State­of­the­art Methods

Dataset. ModelNet40 [35] is a comprehensive clean

collection of 3D CAD models for objects, which contains

12,311 objects from 40 categories, where 9,843 are used

for training and the other 2,468 for testing. As done by Qi

et al. [24], before generating adversarial point clouds, we

first uniformly sample 2,048 points from the surface of each

object and rescale them into a unit cube.

ShapeNetCore [4] is a subset of the full ShapeNet dataset

with single clean 3D models and manually verified category

and alignment annotations. It covers 55 common object cat-

egories with 52,472 unique 3D models, where 41,986 are

used for training and the other 10,486 for testing. All the

data are uniformly sampled into 4096 points.

Attack evaluations. The attackers generate adversarial

examples using the targeted models and then evaluate the

attack success rate and detection accuracy of these gener-

ated adversarial examples on the target and defense models.

Methods in comparison. We compare our method with

a wide range of prior art methods. C&W [36] is an opti-

mization based algorithm with various loss criteria includ-

ing ℓ2 norm, Hausdorff and Chamfer distances, cluster and

object constraints. FGSM and IFGM [20, 38] are gradient-

based algorithms constrained by the ℓ∞ and ℓ2 norms,

where FGSM is a naïve baseline that subtracts perturbations

along with the direction of the sign of the loss gradients

with respect to the input point cloud, and IFGM iteratively

subtracts the ℓ2-normalized gradients. Since FGSM is not

strong enough to handle targeted attack (less than 30% at-

tack success rate) and point-detach methods [24, 38] cannot

targetedly attack pretrained networks, we do not compare

these methods in the following experiments.

Results are summarized in Table 1 and Table 2. FGSM

has low attack success rates (12.2%). LG-GAN outper-

forms IFGM methods by at least 23.1% of attack success

rates and 5× of generation speed. LG-GAN has similar at-

tack success rate with optimization-based C&W methods,

but outperforms speed by 100×. In terms of visual quality,

LG-GAN performs a little worse than C&W methods since

C&W attempt to modify points as little as possible to imple-

ment attacks by querying the network multiple times, and

thus it is difficult to attack in real time. LG-GAN has bet-

ter attack ability on robust defense models (gray-box mod-

els), with 88.8% and 84.8% attack success rates on simple

random sampling (SRS) and DUP-Net [43] defense mod-

els, respectively. Notably, we achieve great improvements

with regard to attack black-box models. As shown in Ta-

ble 2, LG-GAN has 11.6% and 14.5% attack success rates

on PointNet++ [25] and DGCNN [33] respectively while

IFGM [20, 38] only has 3.0%, 2.6% and C&W [36] based

methods with 0 and 0.
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Figure 6: Qualitative results on two point clouds from ModelNet40,

“plane” and “cone”. See Sec. 4.4 for details. Enlarge to see details.

accesses the target model in the inference stage only once.

Compared to previous best methods (Table 1), our model

is more than 1000× times faster than C&W and 7× faster

than IFGM in speed. Therefore, LG-GAN is more friendly

to be utilized in real-time systems.

4.3. Translation Attack

We have designed an alternative attack based on geomet-

ric translation. It is observed that the centroids of generated

adversarial point clouds are not on the origin of the Carte-

sian coordinate system compared with the original point

clouds. By normalizing to center, attack success rate of

LG-GAN has dropped slightly (98.2% → 82.6%), still bet-

ter than IFGM (73.0% → 72.8%) and C&W with ℓ2 loss

(100% → 0%). We proceed with a second analysis by

translating a whole point cloud to random direction and find

that the networks are fragile to monolithic translation. More

details are given in the supplementary material.

4.4. Qualitative Results

Fig. 6 shows two representative examples of adversar-

ial point clouds (“plane” and “cone”) using C&W [36],

IFGM [20, 38] and LG-GAN (α is 40) schemes from Mod-

elNet40 dataset. As can be seen, C&W with ℓ2, Chamfer

and Hausdorff losses have the least perturbations among the

three schemes, but create outliers far away from the object

surface relatively. For C&W with cluster and object losses,

they only add points and the original point clouds are not

modified. For IFGM, plenty of points are moved to out-

side or inside of the object, which makes the object more

obscure to observe. For LG, without GAN loss, the shapes

of point clouds are preferable and easy to recognize. For

LG-GAN, due to the constraint of GAN loss, the density of

points on the surface has been changed but the points still

adjoin the manifold, which is more difficult to recognize.

However, as stated above, the advantage of LG-GAN lies

in that it can attack outlier-removal based defences with a

high success ratio. In a word, there is still a long way to

design a nice and distortionless adversarial point cloud that

can totally deceive human eyes.

5. Conclusion

In this work we have introduced LG-GAN: a novel label

guided adversarial network for arbitrary-target point cloud

attack. By feeding the original point clouds and target attack

label into LG-GAN, it can learn how to deform the point

cloud with minimal perturbations to mislead the recognition

network into the specific label only with a single forward

pass. In details, LG-GAN first leverages one multi-branch

adversarial network to extract hierarchical features of the

input point clouds, then utilizes a label encoder to incorpo-

rate the specified label information into multiple intermedi-

ate features. Finally, the transformed features will be fed

into the coordinate reconstruction decoder to generate the

target adversarial sample. Experiments show that the pro-

posed LG-GAN can support more flexible targeted attack

on the fly while guaranteeing good attack performance and

higher efficiency simultaneously.
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