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Recently, a new fruit �y optimization algorithm (FOA) is proposed to solve optimization problems. In this paper, we empirically
study the performance of FOA. Six di
erent nonlinear functions are selected as testing functions.�e experimental results illustrate
that FOA cannot solve complex optimization problems e
ectively. In order to enhance the performance of FOA, an improved FOA
(named LGMS-FOA) is proposed. Simulation results and comparisons of LGMS-FOA with FOA and other metaheuristics show
that LGMS-FOA can greatly enhance the searching e�ciency and greatly improve the searching quality.

1. Introduction

Optimization problems are used extensively in science, engi-
neering, and �nance. How to solve these problems has always
been a concern of researchers. In the past decade, stochas-
tic optimization algorithms have been used to solve these
problems due to their �exibility for �nding solutions. �ese
algorithms include genetic algorithm (GA) [1–3], simulated
annealing (SA) [4, 5], ant colony optimization algorithm
[5, 6], and particle swarm optimization algorithm (PSO) [7–
9]. However, the common disadvantages of these stochastic
algorithms are complicated computational processes and
di�culty of understanding for beginners.

Recently, a new stochastic optimization technique, fruit
�y optimization algorithm (FOA), is proposed by Pan [10].
Its development is based on the food �nding behavior of the
fruit �y. Compared with other stochastic algorithms, FOA
has the advantages of being easy to understand and a simple
computational process. As a novel optimization algorithm,
FOA has gained much attention [10, 11] in recent years.

In order to study the performance of FOA, six famous
nonlinear functions are selected as testing functions. Simu-
lation results illustrate that FOA cannot solve the complex
optimization problems e
ectively. Analysis of FOA shows
that FOA includes a nonlinear generation mechanism of
candidate solution. �is mechanism is abbreviated as NGMS

and has some disadvantages which limit the performance
of FOA. In order to enhance the performance of FOA,
NGMS is �rst replaced with a linear generation mechanism
of candidate solution (abbreviated as LGMS), and then a
LGMS-based improved FOA (abbreviated as LGMS-FOA)
is proposed. Simulation results and comparisons of LGMS-
FOA with FOA and other metaheuristics show that LGMS-
FOA is more e
ective and reliable.

�e rest of this paper is organized as follows. Section 2
introduces FOA. Section 3 introduces LGMS-FOA. Section 4
provides comparisons of FOA with LGMS-FOA and other
metaheuristics. Section 5 concludes this paper.

2. FOA

2.1. Overview of FOA. FOA is a new method for �nding
global optimization based on the food �nding behavior of the
fruit �y.�e fruit �y is superior to other species in vision and
osphresis (as illustrated in Figure 1).�e food �nding process
of fruit �y has two steps: �rstly, it smells the food source by
using osphresis organ and �ies towards that direction; then,
a�er it gets close to the food location, it can also use its
sensitive vision to �nd food and fruit �ies’ �ocking location
and �ies towards that direction. Figure 2 shows the food
�nding iterative process of fruit �y swarm.
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Figure 1: Fruit �y.
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Figure 2: Food �nding iterative process of fruit �y swarm.

Based on the food �nding characteristics of fruit �y
swarm, the whole procedure of FOA is described as follows.

Step 1 (parameters initialization). �e main parameters of
FOA are the maximum iteration number (maxgen), the
population size (sizepop), the random initialization fruit �y
swarm location range (LR), and the random �y direction and
distance zone of fruit �y (FR).

Step 2. Nonlinear generation mechanism of candidate solu-
tion:

Step 2.1. Initial fruit �y swarm location,

�−axis = rand (LR) ,
�−axis = rand (LR) . (1)

Step 2.2. Give the random direction and distance for food
�nding of an individual fruit �y using osphresis:

�� = �−axis + rand (FR) ,
�� = �−axis + rand (FR) . (2)

Step 2.3. Calculate the distance of food location to the origin:

Dist� = √�2� + �2� . (3)

Step 2.4. Calculate the smell concentration judgment value
(��):

�� = 1
Dist�

. (4)

Remark 1. In fact, �� is a candidate solution in the domain.

Remark 2. According to (1)–(4)

�� = 1
Dist�

= 1
√(�−axis + rand (FR))2 + (�−axis + rand (FR))2 .

(5)

Equation (5) is called NGMS.

Step 3. Calculate the smell concentration (Smell�) of the indi-
vidual fruit �y location by inputing the smell concentration
judgment value (��) into the smell concentration judgment
function (also called objective function):

Smell� = objective function (��) . (6)

Step 4. Find out the fruit �y with maximal smell concentra-
tion among the fruit �y swarm:

[Smell best best index] = max (Smell) . (7)

Step 5. Keep the maximal concentration value and �, �
coordinate. �en, the fruit �y swarm �ies towards that
location by using vision:

Smell best = best smell,
�−axis = � (best index) ,
�−axis = � (best index) .

(8)

Step 6. Enter iterative optimization to repeat the implemen-
tation of Steps 2–5. When the smell concentration is not
superior to the previous iterative smell concentration any
more or the iterative number reaches the maximal iteration
number, the circulation stops.

2.2. Computational Experiments of FOA. In order to study
the performance of FOA, six di
erent nonlinear functions
are selected as testing functions [12]. Table 1 shows the name,
dimension, optimal solution, and extreme point of them. For
details refer to Appendix A.
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Table 1: Testing function.

� Function name Dimension Optimal solution Extreme point

�GP Goldstein and Price 2 3 nonzero point�SH Shubert 2 −186.7309 nonzero point�BR Branin RCOC 2 0.397887 nonzero point�RA Rastrigin 2 −2 zero point�SP30 Sphere 30 0 zero point�SP50 Sphere 50 0 zero point

Table 2: Fixed-iteration results of FOA with di
erent LR and FR.

Parameters of FOA PS (%)
Average PS (%)

FR LR �GP �SH �BR �RA �SP30 �SP50[−1, 1] [−1, 1] 0 0 0 0 0 0 0[−1, 1] [−5, 5] 0 0 0 0 0 0 0[−1, 1] [−10, 10] 0 0 0 0 0 0 0[−1, 1] [−20, 20] 0 0 0 0 0 0 0[−5, 5] [−1, 1] 0 0 0 0 0 0 0[−5, 5] [−5, 5] 0 0 0 0 0 0 0[−5, 5] [−10, 10] 0 0 0 0 0 0 0[−5, 5] [−20, 20] 0 0 0 0 100 0 16.7[−10, 10] [−1, 1] 0 0 0 14 100 0 19[−10, 10] [−5, 5] 0 0 0 24 100 0 20.7[−10, 10] [−10, 10] 0 0 0 26 100 0 21[−10, 10] [−20, 20] 0 0 0 60 100 0 26.7[−20, 20] [−1, 1] 0 0 0 90 100 0 31.7[−20, 20] [−5, 5] 0 0 0 94 100 0 32.3[−20, 20] [−10, 10] 0 0 0 96 100 0 32.7[−20, 20] [−20, 20] 0 0 0 98 100 100 49.7

Since FOA is a stochastic optimization algorithm, the
solution found each time may not be the same; therefore,
each function is repeated 100 times. If the �nal searching

quality is within 10−4 of the optimal value, the run is called
a success run and its iteration number will be stored. Two
indexes named “percentage of success (PS)” and “average
valid iteration number (AVIN)” are de�ned as follows [13]:

PS = 	100 × 100%,
AVIN = ∑��=1 ��	 × 100%,

(9)

where	 denotes the number of success runs among 100 runs,�� denotes the number of iteration of the �th success run.
�e parameters of FOA are maxgen = 300, sizepop =

50, LR ∈ [(−1, 1), (−5, 5), (−10, 10), (−20, 20)], and FR ∈[(−1, 1), (−5, 5)(−10, 10), (−20, 20)].
Table 2 shows PS and AVIN of FOA when solving the

six testing functions. From Table 2, the following can be seen
that.

(1) PS of �GP, �SH, and �BR is always equal to zero no
matter what values LR and FR are. It is known that
the extreme points of the three functions are nonzero,

so FOA cannot solve the problems when the extreme
point is nonzero.

(2) When the scopes of FR and LR become large, PS of�RA, �SP30, and �SP50 increase. It is known that the
extreme points of the three functions are zero points,
so FOAcan solve the optimization problemswhen the
extreme point is zero, if FR and LR are large enough.

(3) �eAverage PS is very small nomatter what values LR
and FR are, so it is concluded that FOA cannot solve
complex optimization problems e
ectively.

2.3. Analysis of FOA. �rough the analysis of (5), it can be
found that NGMS has some disadvantages which limit the
performance of FOA.�e disadvantages are listed below.

(1) FOA cannot solve the optimization problems when
there exist negative numbers in the domain, because�� > 0 according to (5).

(2) When the value of �−axis and �−axis is �xed, �� in
(5) does not follow uniform distribution. (Proof is
described in Appendix B.)
Since �� does not follow uniform distribution, the
candidate solution cannot be uniformly generated
in the domain; �at is to say, NGMS cannot allow
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the search to be performed uniformly in the domain,
therefore fruit �y swarm loses its ability to search for
a global optimum solution. �at is why FOA cannot
solve complex optimization problems e
ectively.

(3) In (5), when the values of �−axis and �−axis are large
and the scope of FR is small, the change of rand(FR)
has little impact on the value of ��; therefore it is easy
for �� to fall into local optimal point.

(4) In (1)-(2), with the increase of the scopes of LR and
FR, the probability that the absolute value of �−axis
and �−axis becomes large increases, so �� in (5) is
easy to fall near zero point, and this can explain why
FOA can solve the optimization problems when the
extreme point is zero.

3. LGMS-FOA

3.1. Introduction of LGMS-FOA. In order to overcome the
above disadvantages, NGMS is replaced with a new linear
generation mechanism of candidate solution (abbreviated as
LGMS), and a LGMS-based improved FOA (abbreviated as
LGMS-FOA) is proposed. �e steps of LGMS-FOA are listed
below.

Step 1 (parameters initialization). �e main parameters of
LGMS-FOA are the maximum iteration number (maxgen�),
the population size (sizepop�), the searching coe�cient (�),
the initial weight (�0), and the weight coe�cient (�).
Step 2. Linear generation mechanism of candidate solution.

Step 2.1. Initial fruit �y swarm location:

�−axis� = � ∗ rand (domain of de�nition) . (10)

Step 2.2. Give the random direction and distance for food
�nding of an individual fruit �y:

��� = �−axis� + � ∗ rand (domain of de�nition) ,
� = �0 ∗ �gen. (11)

Step 2.3. Let the smell concentration judgment value (��� )
equal ��� :

��� = ��� = �−axis� + � ∗ rand (domain of de�nition) . (12)

Remark 3. Equation (12) is called LGMS.

Step 3. Calculate the smell concentration (Smell�� ) of the
individual fruit �y location by input the smell concentration
judgment value (��� ) into the smell concentration judgment
function (also called objective function):

Smell�� = objective function (���) . (13)

Step 4. Find out the fruit �y with maximal smell concentra-
tion among the fruit �y swarm:

[Smell best� best index�] = max (Smell�) . (14)

Step 5. Keep the maximal concentration value and �� coordi-
nate. �en, the fruit �y swarm �ies towards that location by
using vision:

Smell best� = best smell�,
�−axis� = �(best index)�. (15)

Step 6. Enter iterative optimization to repeat the implemen-
tation of Steps 2–5. When the smell concentration is not
superior to the previous iterative smell concentration any
more or the iteration number reaches the maximal iteration
number, the circulation stops.

�e complete �owchart of LGMS-FOA is shown in
Figure 3, which is listed in Appendix C.

3.2. Advantage of LGMS-FOA. Compared with NGMS,
LGMS has some advantages which are listed below.

(1) �e range of ��� in (12) can cover the whole scope of
the domain.

(2) When the value of �−axis� is �xed, ��� in (12) follows
uniform distribution. So LGMS can allow the search
to be performed uniformly in the domain; therefore
fruit �y swarm enhances its ability to search for a
global optimum solution.

(3) In LGMS, a parameter called inertia weight is brought
in to balance the global and local search. A large
inertia weight facilitates a global search while a small
inertia weight facilitates a local search. By decreasing
the inertia weight from a large value to a small value,
LGMS-FOA tends to have more global search ability
at the beginning of the run while having more local
search ability near the end of the run [8].

4. Numerical Simulation

�e performances of LGMS-FOA and FOA are compared
�rst, and then the performances of LGMS-FOA and other
metaheuristics are compared.

4.1. Comparison of LGMS-FOA with FOA

4.1.1. Experimental Setup. In order to compare the perfor-
mances of FOA and LGMS-FOA, the same six functions in
Table 1 are used, and every function is repeated 100 times.

�e parameters of LGMS-FOA are maxgen� = 300,
sizepop� = 50, � = 0.005, �0 = 1, and � = 0.95.

�e parameters of FOA are maxgen = 300, sizepop = 50,
LR = [−20, 20], and FR = [−20, 20], because FOA with these
parameters performs best in Table 2.

Remark 4. �e function evaluation numbers of FOA and
LGMS-FOA are the same in every iteration, because
sizepop� = sizepop. �is can ensure the fairness of compari-
son.



Mathematical Problems in Engineering 5

Start

Parameters initialization:

Set gen = 0, w = w0 ∗ �gen

give the random disturbance
for an individual fruit fly

(x axis)

Calculate the smell
concentration judgment value

Input Si into the objective
function.

Calculate the smell
concentration smell i

Fruit fly swarm flies towards that

location (x axis) with the maximal
smell concentration value by

using vision:

gen = gen + 1

Find and keep the maximal

smell concentration value and
update x axis

Gen < maxgen

No

End

Yes

(Si)

maxgen, sizepop, w0, �, n

Figure 3: �e �owchart of LGMS-FOA.

Table 3: Mean and standard deviation of LGMS-FOA and FOA.

� Dimension
LGMS-FOA FOA

Mean Standard deviation Mean Standard deviation

�GP 2 3.0000 1.6851� − 09 561.1129 134.2528�SH 2 −186.7309 3.2454� − 11 −37.8131 17.1154�BR 2 0.3979 2.4248� − 14 7.4194 4.8300�RA 2 −1.9879 0.0067 −1.9774 0.0182�SP30 30 9.1722� − 09 1.7208� − 09 5.8495� − 06 1.5089� − 06�SP50 50 2.7285� − 04 1.810� − 3 4.0613� − 05 1.211� − 06

4.1.2. Experimental Results. Table 3 shows mean and stan-
dard deviation of LGMS-FOA and FOA for 100 independent
runs. Figures 4, 5, 6, 7, 8, and 9 show the performance of FOA
and LGMS-FOA for solving the six testing functions which
are listed in Appendix C.

From Table 3, it can be seen that mean of LGMS-FOA is
much closer to the theoretical optima, and LGMS-FOA has
better standard deviation than FOA when solving �GP, �SH,�BR, �RA, and �SP30. So it is concluded that LGMS-FOA is
more e
ective and robust than FOA.

FromFigures 4–9, it can be seen that the varying curves of
objective values using LGMS-FOA descend much faster than
those using FOA and the �nal searching quality of LGMS-
FOA is better than FOA. So it is also concluded that LGMS-
FOA is better than FOA.

4.1.3. Robustness Analysis. Table 4 shows PS and AVIN of
FOA and LGMS-FOA when solving the six functions 100
times. From Table 4, it can be seen that LGMS-FOA can �nd
global optima with very high PS for every function. Besides,
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Table 4: Robustness analysis.

� Dimension
LGMS-FOA FOA

PS (%) AVIN PS (%) AVIN

�GP 2 100 97 0�SH 2 100 145 0�BR 2 100 77 0�RA 2 94 78 98 201�SP30 30 100 209 100 189�SP50 50 100 231 100 220

Average 99 140 49 203

for those valid runs, LGMS-FOA costs smaller AVIN than
FOA. So, it is concluded that LGMS-FOA is more e
ective
and reliable than FOA.
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Table 5: Mean and standard deviation of GA and PSO.

� Dimension
PSO GA

Mean Standard deviation Mean Standard deviation�GP 2 3.0000 2.0311� − 15 3.0000 2.2430� − 15�SH 2 −186.7309 8.8118� − 13 −184.2047 12.5013�BR 2 1.8374 2.0390 0.3979 1.7252� − 12�RA 2 −1.8169 0.1514 −1.9201 0.0797�SP30 30 0.2297 0.0986 2.6250 2.7102�SP50 50 1.3057 0.3687 3.5400 3.8184
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Figure 9: Comparison of LGMS-FOA, FOA, PSO, and GA for �SP50.

4.2. Comparison of LGMS-FOAwithOtherMetaheuristics. In
order to further show the e
ectiveness of LGMS-FOA, we
carry out some comparisons with several other metaheuris-
tics, such as the standard PSO [8] and the modi�ed GA [2].

4.2.1. Experimental Setting. In PSO [8], the iteration number
is 300, the population size is 50, �1 = 2, �2 = 1.5, �max = 1.3,�min = 0.3, and Vmax is limited to be 20% of the domain.

In GA [2], the iteration number is 300, the population is
50, Generation Gap (GGAP) is 0.8, stochastic universal sam-
pling is used, the single dot cross operation with crossover
probability is 0.7, and the discrete mutation with mutation
probability is 0.1.

Testing functions are shown inTable 1, and every function
is repeated 100 times.

Remark 5. �epopulation sizes of GA, PSO, and LGMS-FOA
are the same, so the function evaluation numbers of the three
algorithms are also the same, and this can ensure the fairness
of comparison.

4.2.2. Experimental Results and Discussion. Table 5 shows
mean and standard deviation of GA and PSO of 100 inde-
pendent runs. Table 6 shows PS of GA,PSO and LGMS-FOA
of 100 independent runs. Figures 4–9 also show the perfor-
mance of PSO and GA for solving the six testing functions.

Table 6: Robustness analysis.

� Dimension
PS (%)

LGMS-FOA PSO GA�GP 2 100 100 100�SH 2 100 100 96�BR 2 100 1 100�RA 2 94 0 98�SP30 30 100 0 0�SP50 50 100 0 0

Average 99 33.5 65.6

From the comparison between Tables 4 and 5, it can be
found that mean and standard deviation of LGSM-FOA is
better thanGAwhen solving�SH,�BR,�RA,�SP30, and�SP50. It
can be also found thatmean and standard deviation of LGSM-
FOA is better than PSO when solving �BR, �RA, �SP30, and�SP50. So we can conclude that LGSM-FOA is more e�cient
than PSO and GA when the evaluation numbers of functions
are the same.

From Figures 5, 6, 8, and 9, it can be seen that the �nal
searching quality of LGMS-FOA is better than PSO and GA.
From Figures 5 and 6, it can be seen that LGMS-FOA can
greatly improve and speed up the convergence. So overall, the
performance of LGMS-FOA is better than PSO and GA.

From Table 6, it can be found that LGMS-FOA can �nd
global optima with higher PS than GA and PSO. So it is
concluded that LGSM-FOA is more reliable.

5. Conclusion

�is paper �nds some disadvantages of FOA and proposes
an improved FOA which is named LGMS-FOA. Simulations
and comparisons of LGMS-FOA with FOA and other meta-
heuristics illustrate that LGMS-FOA is more e
ective and
reliable.�e future work is to apply LGMS-FOA for some real
engineering optimization problems.

Appendices

A. Six Famous Nonlinear Functions Used in
This Paper

(1) �GP: Goldstein-Price, (� = 2):
� = [1 + (�1 + �2 + 1)2 (19 − 14�1 + 3�21

−14�2 + 6�1�2 + 3�22)]
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× [30 + (2�1 − 3�2)2 (18 − 32�1 + 12�21
+48�2 − 36�1�2 + 27�22)] .

(A.1)

Global optimal solution: 3
Searching domain: −2 ≤ �� ≤ 2, � = 1, 2.

(2) �BR: Branin, (� = 2):
� = (�2 − 5.14�2 �21 + 5�1 �1 − 6)2 + 10 (1 − 18� cos�1 + 10) .

(A.2)

Global optimal solution: 0.397887
Searching domain: −5 ≤ �1 ≤ 10, 0 ≤ �2 ≤ 15

(3) �RA: Rastrigin, (� = 2):
� = �21 + �22 − cos 18�1 − cos 18�2 (A.3)

Global optimal solution: −2
Searching domain: −1 ≤ �� ≤ 1, � = 1, 2.
(4) �SH: Shuber, (� = 2):

� = [ 5∑
�=1

� cos ((� + 1) �1 + �)]

× [ 5∑
�=1

� cos ((� + 1) �2 + �)] .
(A.4)

Global optimal solution: −186.7309
Searching domain: −10 ≤ �� ≤ 10, � = 1, 2.
(5) �SP30: Sphere, (� = 30):

� = 30∑
�=1

�2� . (A.5)

Global optimal solution: 0
Searching domain: −10 ≤ �� ≤ 10, � = 1, 2 ⋅ ⋅ ⋅ 30
(6) �SP50: Sphere, (� = 50):

� = 50∑
�=1

�2� . (A.6)

Global optimal solution: 0
Searching domain: −10 ≤ �� ≤ 10, � = 1, 2 ⋅ ⋅ ⋅ 50.

B. Proof

Proposition B.1. If !" = [−1, 1], #" = [−5, 5],
�−$��% = $ ∈ &$�'(!"), �−$��% = * ∈ &$�'(!"),
where $ and * are constants;

	 ∈ &$�'(#"), � ∈ &$�'(#"), where 	 and � are
variables;

�� = 1/((� + 	)2 + (� + �)2), the domain of �� is (0,10).
	en, �� does not follow uniform distribution.

Proof. For the sake of simplicity, we set $ = 0 and * = 0 such

that �� = 1/(	2 + �2).
(Proof by reductio ad absurdum.) Conversely, we assume

that �� is a random variable with uniform distribution on the
interval (0,10); then -(�� ≤ 1) = 1/10.

Since that 	 and � are independent and both uniformly
distributed on [−5, 5], so the joint distribution of 	 and � is�(	, �) = �(	)�(�) = 1/100. Hence, we have

- (�� ≤ 1) = - ( 1	2 + �2 ≤ 1) = - (	2 + �2 ≥ 1)
= ∫1
−1

∫√1−�2
−√1−�2

� (	, �) '� '	
+ ∫−1
−5

∫5
−5

� (	, �) '� '	
+ ∫5
1

∫5
−5

� (	, �) '� '	
= �100 + 0.8 ̸= 0.1.

(B.1)

�is contradicts with -(�� ≤ 1) = 1/10. �erefore the
previous assumption is not satis�ed, and �� does not follow
uniform distribution.

C. Comparison of LGMS-FOA, FOA,
PSO, and GA

See Figures 3–9.
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