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Resumen

En la primera parte de la tesis investigamos un modelo supersimetrico con un mecanismo seesaw

para explicar las masas de los neutrinos. El trabajo realizado resultó en dos publicaciones [1] and [2].

Implementamos el modelo en SPheno que nos permitió calcular observables de LHC (Large Hardron

Collider) como por ejemplo los “Edge observables”. Con la ayuda de estos observables pudimos

reconstruir el espectro de masa de una teoŕıa como SUSY y compararlo con los resultados de los

experimentos. Como no hemos observado SUSY en ningún experimento calculamos para diferentes

parámetros de SUSY el espectro usando errores esperados para nuestra análisis. Para poder decidir

si un modelo resulta verdadero necesitamos un valor independiente que nos permita cuantificar la

desviación de los resultados teóricos de los del experimento. El mismo valor nos da entonces la

posibilidad de decir si dos modelos son iguales a nivel de los observables disponibles o se distinguen

de manera suficiente. Nosotros usamos la prueba de χ2 que según el nivel de confianza da lugar

a verificar o discriminar modelos. El modelo depende de cinco parámetros sin tener en cuenta los

acoplamientos de yukawa del sector de neutrino y un signo que aparece en el potencial de Higgs.

Los cinco parámetros en cuestión son términos que rompen supersimetŕıa de forma soft, los valores

esperados del vaćıo de los dos campos de Higgs y la escala de seesaw. Variando estos parámetros

el espectro de masa cambia lo que por lo tanto produce valores modificados en los observables. Las

masas de los neutrinos son producidas por el mecanismo de seesaw. Para aplicar este mecanismo

hay que introducir part́ıculas adicionales pesadas que se transforman o bien como singletes o como

tripletes bajo el grupo de simetŕıa del modelo estándar. Hay tres mecanismos de seesaw los llamados

seesaw I, II y III. Con excepción de la escala de seesaw todos los parámetros existen también en un

modelo ordinario de SU(5) con SUSY. Aśı que lo que hace el modelo distinguible de un modelo

con sólo SU(5) y SUSY es la escala de seesaw. Si la escala de seesaw es igual a la escala de la

gran unificación no se puede distinguir el modelo conteniendo el mecanismo de seesaw del modelo

sin seesaw. Esto puede entenderse a partir de las RGEs, a las cuales no contribuyen las part́ıculas

nuevas que sólo existen a escalas más allá de la escala de gran unificación. Por supuesto esto sólo es



cierto si se pueden despreciar los acoplamientos de yukawa del sector de neutrino. Como el valor de

la escala de seesaw es tan importante para observar modificaciones significativas en los observables

es muy importante conocer también el error de este parámetro. Descubrimos que los parámetros

están muy correlacionados, por lo cual tuvimos que ajustar todos los parámetros simultáneamente.

Una vez implementado el código hicimos análisis de seesaw I, II y III usando varias combinaciones de

observables para ver cuáles son más y cuáles son menos importantes. Además investigamos el impacto

de experimentos todav́ıa más avanzados que el LHC como por ejemplo el ILC (International Linear

Collider). Con un acelerador como el ILC los errores de los parámetros disminuyen significativamente

por lo cual se puede distinguir entre un modelo de SU(5) con SUSY y seesaw del que no contiene

seesaw en casi todo el espacio de parámetros. A pesar de una exactitud mucho más alta del ILC

respecto de la del LHC, descubrimos que únicamente con los observables del LHC ya es posible

encontrar indicios de que un modelo de SU(5) con SUSY y seesaw II o III explique los experimentos

mejor que el que carece de seesaw.

En la segunda parte de la tesis estudiamos un modelo SUSY inspirado por la gran unificación de

SO(10) en el que se rompe SO(10) a la escala de gran unificación a SU(2)L×U(1)B −L×U(1)R.

Las masas y mezclas de neutrinos se pueden explicar en este modelo con el mecanismo de seesaw.

En el modelo que hemos construido usamos el mecanismo de inverse seesaw lo que nos permite

romper las simetŕıas de gran unificación a una escala muy baja. El trabajo realizado resultó en dos

publicaciones [3] and [4]. Motivado por el descubrimiento del bosón Higgs en el LHC construimos un

modelo de SU(2)L×U(1)B−L×U(1)R. Como el modelo es una extensión de las simetŕıas del modelo

estandar hay que extender el sector de higgs. Rompiendo las simetŕıas adicionales a una escala muy

baja además nos obliga a introducir nuevos campos. Las part́ıculas nuevas implican una extensión

de las matrices de masa lo que resulta en una modificación de la fiśıca electro-débil. A diferencia con

el modelo supersimetrico minimo (MSSM) en este modelo la masa del Higgs puede estar por encima

de la masa del bosón Z a nivel arbol y se puede explicar la masa medida experimentalmente del order

126 GeV sin ningúna restricción sobre las masas supersimetricas. Calculamos las matrices de masa

e implementamos el modelo en los programas SPheno y SARAH. Comparamos los resultados con los

datos experimentales. Resulta que podemos romper las simetŕıas a una escala muy baja sin entrar

en contradicción con los datos experimentales. Además descubrimos que en este modelo tenemos

fiśıca nueva que se puede comprobar en el LHC como cascadas de decaimiento de SUSY adicionales

o decaimientos no-estándar del higgs.



Abstract

Motivated by current neutrino data we calculate in the first part of this thesis supersymmetric

mass spectra within three variants of the seesaw mechanism, commonly known as type-I, type-II and

type-III seesaw, using full 2-loop RGEs and minimal Supergravity boundary conditions. The type-II

seesaw is realized using one pair of 15 and 1̄5 superfields, while the type-III is realized using three

copies of 24M superfields. The 15, 1̄5 and 24M multipet are representations of a SU(5) gauge

group. Using published, estimated errors on SUSY mass observables attainable at the LHC and in

a combined LHC+ILC analysis, we calculate expected errors for the parameters of the models, most

notably the seesaw scale. Since our conclusions crucially depend on the reliability of the theoretically

forecasted error bars, we discuss in some detail the accuracies which need to be achieved for the

most important LHC and ILC observables before an analysis, such as the one presented here, can

find any hints for seesaw mechanism in SUSY spectra. The second part of this thesis is motivated by

the discovery of the new boson at around 125 GeV at the LHC. To circumvent the upper limit on the

Higgs mass in the MSSM the minimal supersymmetric U(1)B−L ×U(1)R extension of the standard

model is discussed. Gauge couplings unify as in the MSSM, even if the scale of U(1)B−L × U(1)R

breaking is as low as order TeV and the model can be embedded into an SO(10) grand unified

theory. The phenomenology of the model differs in some important aspects from the MSSM, leading

potentially to rich phenomenology at the LHC. It predicts more light Higgs states and the mostly

left CP-even Higgs has a mass reaching easily 125 GeV, with no constraints on the SUSY spectrum.

Right sneutrinos can be the lightest supersymmetric particle, changing all dark matter constraints

on SUSY parameter space. The model has seven neutralinos and squark/gluino decay chains involve

more complicated cascades than in the MSSM. We also discuss briefly low-energy and accelerator

constraints on the model, where the most important limits come from recent Z’ searches at the LHC

and upper limits on lepton flavour violation.
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1
Introduction

In 2012 ATLAS and CMS announced the discovery of a new boson with a mass around 126 GeV

[5; 6]. If the new particle is confirmed to be the SM Higgs boson, the SM is not only in remarkable

good agreement with all precision data [7] but it also gives an answer to the last missing piece to

construct a theoretically consistent model, the origin of mass. Of course, even if the new boson

turns out to be the SM Higgs there remain some unanswered questions such as neutrino masses and

dark matter. Also on the theoretical side the SM may not be complete. An explanation of the huge

mass gaps in the spectrum of the SM particles and the so called hierarchy problem are still unsolved

theoretical issues, to just name the ones most discussed in literature.

All these open questions point toward physics that can not be explained by the SM and beyond

standard model (BSM) physics has to be considered to complete our understanding of what happens

on microscopic scales. Unfortunately, there is still no hint for any new particles at the LHC that may

shed some light on those unsolved issues. After the first CMS and ATLAS announcements [5; 6] of

the discovery of a new boson with m = 126 GeV the decay rate into photons appeared to be too

high to fit well the SM Higgs. This raised the hope that a hint for new physics beyond the standard

model may have been found and therefore caused plenty of excitation [8; 9; 10; 11; 12]. However,

in the latest results published by CMS this signal went down drastically [13]. It is now even below

the expected value for the SM Higgs. Thus, the enhancement in the first data was perhaps just a

statistical fluctuation. ATLAS still gives a value larger than the SM prediction [14], so only future

data will show if the deviation is physical.

Even though the results of LHC seem to be quite sobering for the prospects of detecting physics

beyond the standard model we already know from neutrino oscillations that neutrinos are massive

particles. This is in contradiction with the SM prediction for massless neutrinos. The most common

way to explain the smallness of neutrino masses is the so called seesaw mechanism [15; 16; 17; 18;

19; 20]. In the most minimal realization 1 a new scale MR, the Majorana mass of the right-handed

1This realization is also called seesaw type I. All possible seesaw models can be classified into seesaw type I, II and
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neutrinos, is introduced at high energies. Since the neutrino masses are inverse proportional to

MR, neutrinos are naturally light when MR is large. To explain neutrino data MR is required to

be close to the scale where gauge couplings may unify 2. Thus, neutrinos can be understood as

an indirect hint for much higher scales than the scale of electroweak symmetry breaking. However,

assuming the existence of high scales brings up questions such as gauge coupling unification and

large “fine-tuning”.

The fine-tuning in the SM comes from the quadratically divergent Higgs potential at one loop.

One loop corrections to the Higgs mass scale quadratically with the mass scale of new physics. To

match the Higgs mass at the electroweak scale to the Higgs mass defined at a high scale like the

grand unification scale, a tremendous fine-tuning of order ∼ 1032 is required. This is also known

as the hierarchy problem. In the context of grand unified theories (GUTs) we want the three gauge

couplings to unify, which does not happen in the SM. For gauge coupling unification additional

particles must be introduced, to change the running of the couplings in a proper way. To embed

those new particles in multiplets of an enlarged symmetry group we have two well known possibilities.

First, the SM gauge group is extended to a larger gauge group like SO(10) and second, the Lorentz

group is upgraded to supersymmetry (SUSY) 3.

We know that the SM is not valid up to all energies since gravity can not be treated classically

anymore at the Planck scale (mPlanck)
4. In a theory which combines at high scales gravity and

SM physics at the quantum level, the SM can be understood as an effective theory. However, we

currently don’t have a quantum theory incorporating gravity and SM physics. Therefore, it is worth

to keep in mind that challenging issues like the hierarchy problem only emerge if we introduce high

scales, motivated by the smallness of neutrino masses and the idea of gauge coupling unification.

There are of course different approaches to explain, e.g. the observed neutrino data like inverse

seesaw [21], linear seesaw [22; 23] and radiative models [24; 25] which do not necessarily need high

scales.

From astrophysical observations like clusters of galaxies, gravitational lensing and the cosmic

microwave background (CMB) we know that roughly 20% of the total energy density Ω of the

universe consists of dark matter (DM) [26], which only feebly interacts with the SM particles.

The most popular way to add DM to the SM is to introduce weakly interacting massive particles

(WIMPs) [27] but there are of course other possibilities like Axions, WIMPzillas, Q-Balls or gravitinos

[27; 28; 29].

III. An introduction to seesaw type I, II and III is given in chapter 2.
2 To get a seesaw scale close to the grand unification scale yukawa couplings of order O(10−1) are assumed.

Allowing the yukawa couplings to be of order O(10−7) lowers the masses of the right-handed neutrinos down to the
TeV scale.

3Note, that introducing a SUSY algebra or enlarging the gauge group do not automatically lead to gauge coupling
unification. The running of the gauge couplings depend crucially on the chosen particle content and the scales at which
new heavy particles can be produced on-shell.

4mPlanck
∼= 1019 GeV.
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The minimal supersymmetric standard model (MSSM) may give an answer to many of those

unsolved issues discussed before. The MSSM provides candidates for WIMP dark matter since the

lightest supersymmetric particle (LSP) is stable if the MSSM lagrangian is invariant under R-Parity.

A promising candidate for DM in the MSSM is the neutralino, which is a mixture of the neutral

components of the Higgs and gauge boson superpartners. In the MSSM we obtain gauge coupling

unification if the MSSM spectrum is not too heavy 5. Considering all sparticle masses to be around 1

TeV SUSY terms cancel the quadratic divergences in the Higgs potential and fine-tuning is minimal.

In the SM we can distinguish between two different classes of symmetries, the Lorentz symmetry

and the gauge symmetry. Therefore, to think about extensions of the SM leads naturally to think

about extensions of these symmetries. The SUSY algebra is the only graded Lie algebra of symmetries

of the S-matrix consistent with relativistic quantum field theory [30; 31; 32]. SUSY generalizes the

notion of a Lie algebra such that the Lie algebra now includes elements whose defining relations

involve anticommutators as well as commutators, which, as a consequence, connects bosonic and

fermionic degrees of freedom. SUSY does not only assign a superpartner to every SM particle it also

restricts the parameter space of the SM. The quartic coupling of the Higgs potential is not a free

parameter anymore but a combination of the gauge couplings. This constrains the mass of the Higgs

at tree level to be below the Z mass. The most challenging part of SUSY is that we don’t have a

dynamical well understood mechanism to break it. Since we know that the sparticle spectrum must

be heavy, explicit SUSY breaking terms are introduced which split the masses of the SM particles

and their superpartners. This requires the introduction of plenty new parameters since the breaking

terms are not constrained by any additional symmetry. In the MSSM gauge couplings unify so it is

obvious to think of GUTs in the context of SUSY. In models incorporating new physics at high scales

the soft breaking terms can be motivated e.g. by supergravity or gauge mediation. This reduces

the number of parameters drastically. We can understand this as a prediction from theory or just

as a convenient parametrization of a parameter space, that without any simplifications is difficult to

handle and looses almost any kind of predictivity.

In this work we are interested in LHC phenomenology of constrained SUSY models with extended

gauge groups, which incorporate a mechanism to explain neutrino data. In chapter 3 we assume a

SUSY model with CMSSM boundary conditions and a SU(5) GUT group with a seesaw I, II or III

mechanism. Due to additional degrees of freedom, which come from the seesaw sector, the running

of the gauge couplings changes. This leads to deformations of the SUSY spectrum, what may give

indirect information about the high scale parameters like the seesaw scale. To identify correlations

among the high scale parameters and calculate uncertainties Monte Carlo parameter scans are used.

The numerics are based on a χ-squared analysis. We show that the accuracy of such an analysis

depends crucially on the assumed experimental observables and errors. Chapter 3 is based on [1] and

5For gauge coupling unification all supersymmetric particles should have masses below 100 TeV. In the rest of this
work we consider the MSSM spectrum to be below 100 TeV.
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[2]. In the first results of CMS and ATLAS a small excess at 140 GeV for a new boson was recorded

[13; 14]. A Higgs with a mass of 140 GeV implies that the MSSM is in real trouble since the upper

limit of the Higgs mass in the MSSM is around 130 GeV [33; 34]. Extending the gauge group can

alleviate this constraint due to additional D-terms. We discuss the impact of an additional U(1)R

symmetry on the Higgs mass and LHC phenomenology. To estimate the new limit for the Higgs mass

in such models a detailed analysis of the parameter space is presented. To discuss sensitivities of LHC

observables to new physics like additional gauge bosons, a set of benchmark points is introduced.

Mass spectra and decay rates have been calculated with the programme packages Sarah [35] and

SPheno [36]. All results presented in chapter 4 are based on [3] and [4].



2
Basics to get started

In this chapter an introduction to the basics of the physics discussed in chapter 3 and 4 is given.

I will focus less on all technical details and instead try to review the status of the SM, Higgs physics,

neutrinos and SUSY before LHC and today. In the rest of the work the SM is referred to be the

SM with one Higgs doublet responsible for the spontaneous breaking of the electroweak symmetry,

which is sometimes also called the minimal standard model (MSM).

The LHC was running for 2 years and ATLAS and CMS collected each more than 20fb−1 of data.

ATLAS and CMS are the two largest experiments but there are also a couple of smaller ones like

LHCb and ALICE 1. While ATLAS and CMS were designed mainly to search for new massive particles

taking advantage of the unprecedented energy available at the LHC, LHCb and ALICE have more

specific roles such as measuring B-hadron physics to probe asymmetries, CP violation and heavy

ions.

On March 30th 2010 the first proton-proton collision at an energy of 3.5 TeV was recorded. This

defined the first time such high energies were reached in a particle accelerator [38]. In 2010 and

2011 the LHC was running at an beam energy of 7 TeV. This was increased to 8 TeV in 2012. In

early 2013 the LHC was shut down for upgrades and repairs and will go into operation again in 2015

with a planned beam energy of 13 TeV.

The analysis of the LHC data taken until end of 2012 is still ongoing but it is very unlikely to find

hints for new particles we have not seen until now. Therefore, a brief review of what we can already

learn from LHC is given in this chapter and constraints on the parameter space of models we are

interested in are presented. The first part addresses SM physics with respect to previous experiments

like LEP and recent LHC data. In the second part basics of neutrino physics and GUTs are discussed

and the last part gives an introduction to SUSY and current experimental limits.

1In [37] a complete list of all experiments at the LHC is given
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2.1. Standard Model and the Higgs

The SM unifies the electromagnetic and weak force to an electroweak theory. The gauge structure

is complemented by the strong interaction. Therefore the SM is based on a SU(3)c×SU(2)L×U(1)Y

gauge group. After electroweak symmetry breaking (EWSB) the electromagnetic charge Q = T3 +

Y/2 is a linear combination of SU(2)L and U(1)Y quantum numbers. The fermionic matter fields

consist of quarks which are color triplets and have electric charge +2/3 for up-type quarks and −1/3

for down-type quarks and −1 for leptons. Leptons are singlets under the SU(3)c. Charged leptons

(e, µ and τ) have electric charge −1 and neutrinos zero charge. In the SM neutrinos are treated as

massless particles and quarks and leptons are grouped into three generations.

In 1970 the first evidence for quarks was found and the SM was established over the following

years. The SM was confirmed by many experiments, starting with the detection of the charm quark

in 1974 at SLAC (Stanford Linear Accelerator Center) [39; 40]. With the observation of the tau

lepton in 1976 [41; 42] and the bottom quark in 1977 [43] the first third generation particles were

discovered and confirmed that quarks and leptons are arranged in three families. The detection of

the Z and W Boson at CERN [44; 45] was the next big step towards a complete understanding

of the electroweak theory. Experiments at SLAC and CERN strengthened the assumption of three

generations of fermions, affirmed by the Z Boson lifetime strongly favoring three families in the quark

and lepton sector [46]. After searching at many experiments, CDF and D0 at Tevatron 2 announced

in 1995 the discovery of the top quark, the last fundamental quark predicted by the SM [47; 48].

This was completed in 2000 by the detection of the tau neutrino at the DONUT (Direct Observation

of the NU Tau) experiment in Fermilab [49].

In the SM, including explicit Dirac mass terms break the gauge invariance and lead to a non

renormalizable theory. To give mass to fermions and the heavy gauge bosons the mechanism of

spontaneous symmetry breaking is used [50; 51]. This requires a new boson charged under SU(2)L×
U(1)Y with a potential that at low energies develops a minimum different from zero. We separate

the SM lagrangian into the gauge part, which is manifestly gauge invariant, and the part including

the new boson, the Higgs, that gets a vacuum expectation value (vev) at low energies breaking

spontaneously the gauge symmetry:

L = Lgauge + LHiggs. (2.1)

The gauge part reads

2proton antiproton accelerator at Fermilab
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Lgauge = −1

4

8∑

a=1

F a
µνF

a,µν − 1

4

3∑

A=1

WA
µνW

A,µν − 1

4
BµνB

µν

+ iΨ̄Lγ
µDµΨL + iΨ̄Rγ

µDµΨR (2.2)

with

Bµν = ∂µBν − ∂νBµ

WA
µν = ∂µW

A
ν − ∂Aν Wµ − gǫABCWB,µWC,ν

F a
µν = ∂µG

a
ν − ∂aνGµ − gsǫ

abcGb,µGc,ν . (2.3)

and a, b, c = 1, ..., 8 the index of the adjoint representation of SU(3)c and A,B,C = 1, ..., 3 the

index of the adjoint representation of SU(2)L, respectively. The covariant derivatives are defined as

DµΨL,R =

(
∂µ + igs

8∑

a=1

T aGa
µ + ig

3∑

A=1

TA
LW

A
µ + ig′

Y

2
Bµ

)
ΨL,R. (2.4)

ΨL is the left-handed and ΨR the right-handed Weyl fermion transforming under SU(2)L and

SU(3)c by the generators TA and T a, respectively.

Rearranging the electroweak terms in neutral and charged currents, one sees directly [52], that

flavour changing sources can only come from charged weak interactions at tree level. Flavour chang-

ing neutral currents (FCNCs) are not present at tree level and loop contributions are highly suppressed

by the GIM (Glashow, Iliopoulos and Maiani) mechanism [53]. The experimental limits on FCNCs

also led to the prediction of the charm quark mass and may play an important role to test physics

beyond the SM since FCNCs can be present, e.g. in models with more than one Higgs, already at

tree level.

2.1.1. Spontaneous symmetry breaking

To give masses to the SM particles the Higgs must couple to fermions. Defining a gauge invariant

interaction term, that turns into a mass term for right and left handed fermions after electroweak

symmetry breaking, requires a SM Higgs that transforms non trivially under SU(2)L and carries

hypercharge. To be in agreement with experiment the Higgs must be a SU(2)L doublet [54] and

therefore the Higgs lagrangian can be written as
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LHiggs = (DµΦ)
† (DµΦ)− V (Φ†Φ)− (YdΨ̄

d
L · ΦΨd

R + YuΨ̄
u
L · Φ̃Ψu

R + YeΨ̄
e
L · ΦΨe

R + h.c.) (2.5)

with

DµΦ =

(
∂µ + ig

3∑

A=1

TAWA
µ + ig′

Y

2
Bµ

)
Φ (2.6)

and Φ̃ = iσ2Φ∗. The Higgs potential

V (Φ†Φ) = −µ2Φ†Φ+
1

2
λ
(
Φ†Φ

)2
(2.7)

consists of a quadratic and quartic coupling with the coupling constants µ and λ. The minus sign

in front of the quadratic term is essential for spontaneous symmetry breaking since it accounts for

the mexican hat shape of the Higgs potential 3.

The Higgs doublet is a complex doublet, which after EWSB gets a VEV v and reads in the

unitarity gauge

(
Φ+

Φ0

)
→
(

0

v +H/
√
2

)
. (2.8)

Only one physical degree of freedom remains and forms the SM Higgs H. The other three con-

stituents of the doublet are the so called would-be Goldstone bosons which become the longitudinal

components of the heavy gauge bosons. Minimizing the potential defines

v =

√
µ2

λ
. (2.9)

This fixes λ, once the mass of the Higgs is known. After EWSB only one combination of gauge fields

remains massless 4. The photon stays massless whereas the tree level masses of the W and Z Boson

can be defined as

3In the literature the minus sign in front of the quadratic coupling is usually absorbed in µ2 and µ2 < 0.
4In the mass eigenbasis we get for the photon Aµ and Z boson Zµ

Aµ = cos θWBµ + sin θWW 3
µ Zµ = − sin θWBµ + cos θWW 3

µ

and for the charged W boson
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m2
W =

1

2
g2v2 , m2

Z =
g2v2

2 cos2 θW
. (2.10)

An important aspect of Higgs physics are the couplings of the Higgs to the SM particles. As a

consequence of spontaneous symmetry breaking the trilinear couplings to the heavy gauge bosons

and fermions are proportional to their masses. The interactions for the Z and W can be written as

[52]

L[H,W,Z] = gmWW
+
µ W

−,µH +
g2

4
W+

µ W
−,µH2

+
gmZ

2 cos2 θW
ZµZ

µH +
g2

8 cos2 θW
ZµZ

µH2 (2.11)

and for the fermions we get after EWSB masses proportional to the Yukawa couplings and the vev

md,u,e
ij = Y d,u,e

ij v. (2.12)

The quartic couplings in eq. 2.11 only depend on the parameter g, g′ and θW and the couplings to

fermions are proportional to their masses. Therefore all interaction terms are very well predicted by

the SM and the measurement of the couplings provides a powerful tool to verify if the new boson

detected at LHC is indeed the SM Higgs. The predicted Higgs decay channels into SM particles as a

function of the Higgs mass are shown in fig. 2.1. The larger the fermion mass the larger the coupling

and therefore the larger the branching ratio. For Higgs masses below ∼ 160 GeV heavy gauge bosons

can not be produced on shell and the branching ratios are suppressed. However, already for Higgs

masses around 150 GeV the branching ratios into two W or Z bosons become dominant. Since

photons do not couple at tree level to the Higgs, branching ratios into photons are loop suppressed.

The Higgs mass reads at tree level

m2
H = 2µ2 = 2λv2 (2.13)

and is the only parameter missing in the SM to be fixed by experiment.

W±

µ =
1√
2

(

W 1
µ ±W 2

µ

)

.

The electromagnetic charge e = g sin θW = g′cosθW is proportional to the coupling constants g and g′ and the rotation
angle θW .
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Figure 2.1: Higgs decay channels with total uncertainties as a function of the Higgs mass [55].

2.1.2. Predictions for the Higgs before LHC

Even before the Higgs was directly detected at the LHC, experimental data from previous ex-

periments and theory lead to predictions for the SM Higgs properties. The limits discussed below

are all derived for the SM with one electroweak Higgs doublet. Variations of this setup lead to

different physics and usually to much less stringent bounds, unless the extension is constrained by

an additional symmetry.

The most important experimental bound is the lower limit on the Higgs mass

mH & 114 GeV (at 95 % confidence level) (2.14)

from LEP since no Higgs like particle was observed [7]. Also electroweak precision tests at LEP can

give strong constraints on the mass range allowed for mH once the top mass is well own. Vacuum

polarization corrections of the gauge boson propagators are very precisely measured. The fit of

these observables to theoretical predictions coming from loop corrections prefers a light Higgs. The

experimental limits lead to an upper limit on the Higgs mass [56]

mH . 185 GeV (2.15)
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up to which the SM is still in agreement with experiment at 95 % confidence level 5.

The ρ0 parameter

ρ0 =
m2

W

m2
Z cos2 θW

(2.16)

is exactly one at tree level considering only SM model physics. This relation can be spoiled by new

physics, in particular when a non SM model Higgs acquires a vev at the electroweak scale. Including

quantum corrections it has been proven that the effective Higgs must be a weak isospin doublet [46].

Also from theory side the mass of the Higgs can be constrained. In the absence of the Higgs

scattering, amplitudes involving longitudinal gauge bosons lead to violations of unitarity at a few

TeV. In the limit s ≫ m2
Z one obtains for the WW scattering amplitude with two Z bosons in the

final state [52]

A(W+W− → ZZ) ∼ i
s

v2
(2.17)

which has an unacceptable large energy behaviour. This can be cured by the Higgs contribution to

the scattering amplitude

A(W+W− → ZZ) ∼ −i s2

v2(s−m2
H)
. (2.18)

Combining eq. 2.17 and 2.18 leads to

A(W+W− → ZZ) ∼ −i sm2
H

v2(s −m2
H)

(2.19)

which in the limit mH ≪ s saturates at a constant value 6. Therefore, to be consistent with

unitarity bounds the Higgs mass should be m2
H < 4π

√
2/GF or mH < 1.5 TeV [52]. This can also

be interpreted as an upper limit for new physics that has to appear if no Higgs is found.

The non asymptotically free behaviour of the quartic coupling λ leads to a Landau pole. Requiring

the Landau pole not to appear below an energy scale Λ gives upper limits on the Higgs mass [58]

5For the limit a top mass of mt = 173.3 ± 1.1 GeV was used [56].
6 Note, that only the scattering amplitude saturates at a constant value. In the limit s ≫ mW the cross section for

WW → ZZ drops with 1/s2 [57].
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mH . 180 GeV for Λ ∼MGUT −MPl

mH . 500 − 800 GeV for Λ ∼ 1TeV (2.20)

Last but not least also lower limits on the Higgs mass can be derived [59; 60]. For small mH

the quartic coupling λ can become negative which means that the derivative of the Higgs potential

V ′[Φ] is not positive anymore and therefore unbounded from below. Thus, vacuum stability requires

λ to remain positive up to high scales like MGUT or MPl. With a top mass of mt ∼ 173 GeV the

lower limit is [61]

mH & (130 ± 0.3) GeV. (2.21)

For Higgs masses slightly below this value the SM could still be viable up to high scales since the

vacuum might be unstable but with a lifetime longer than the age of the universe [62]. Also in the

case of more Higgses this constraint is softened since the bound applies only to an effective mass of

all Higgses. Therefore, the lightest Higgs can be below this limit as it is the case in the MSSM. In

conclusion we can constrain the Higgs mass to

130 GeV . mH . 171 GeV. (2.22)

Note, however, that the strong limits coming from the Landau pole and vacuum stability require

the SM to be valid up to MGUT and MPl, respectively, and no new physics to show up at some

intermediate scale.

2.1.3. SM and the LHC

The plots in tab. 2.1 and 2.2 show the 95 % exclusion limit on the production rate (σ × L, i.e.

production cross section times luminosity) of the Higgs boson as a function of its mass 7. This is

normalized to the production rate σSM × L of the standard model Higgs. In tab. 2.1 Higgs masses

from 100 GeV to 600 GeV are plotted. This is the current mass range in which the SM Higgs can

be tested at LHC. To discuss details in the energy region, where the new boson with mass around

∼ 125 GeV is observed, only Higgs masses up to 200 GeV are shown in tab. 2.2.

The dashed line is the theoretical prediction for the SM background with the one and two sigma

uncertainties indicated by the green and yellow error bands, respectively. The black line shows the

7All plots discussed in this subsection are taken from [14] and [13].
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Table 2.1: The 95 % exclusion limit on the production rate of the Higgs boson as a function of its
mass is shown. This is normalized to the production rate of the standard model Higgs. All plots are
taken form [13] and [14].
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Table 2.2: The 95 % exclusion limit on the production rate of the Higgs boson as a function of its
mass is shown. This is normalized to the production rate of the standard model Higgs. All plots are
taken form [13] and [14].
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Figure 2.2: Example data set for a Higgs decay channel as a function of the Higgs mass [63].

experimental data. In the regions where the black line drops below the horizontal line at 1 the

SM Higgs is excluded at 95 % confidence level. If the black curve is above one and no significant

discrepancy from the SM background is observed the SM Higgs can be neither excluded nor confirmed,

since the experimental error is still too large to probe this region.

To explain the standard plots used by CMS and ATLAS lets assume a simplified picture with an

example data set, as shown in fig. 2.2, and only one decay channel with final state f . We denote

the number of measured events as nf,exp. For simplicity, neglect for the moment systematical errors

and consider only the statistical error ∆nf,exp. For a given luminosity we can calculate the number

of events nf,Higgs for the Higgs decaying to f , assuming the Higgs mass mh to be the invariant mass

of the measured final state mf . σ/σSM can be understood as the ratio of ∆nf,exp and nf,Higgs

σ/σSM = r =
∆nf,exp
nf,Higgs

(2.23)

and therefore, we can distinguish between two cases. Taking into account the experimental

error, events that might come from a Higgs decay are not significant, if nf,Higgs < ∆nf,exp and

r > 1, respectively. The SM Higgs can not be exluded, but we can exclude Higgses with larger cross

sections compared to the SM Higgs. Lets assume, e. g. r = 2. This implies that Higgses, which

have two times the SM cross section into the final state f , can be excluded. If nf,Higgs > ∆nf,exp
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the sensitivity of the measurement 8 is sufficient to test the SM Higgs. Neglecting the theoretical

error and considering ∆nf,exp to be the two sigma experimental uncertainty we can exclude the SM

Higgs at 95 % confidence level, if r ≤ 1.

In the case that for a given final state more events are detected than expected from calculations

of the SM background the black line is above the dotted line. In case less events are observed, the

experimental curve drops below the dotted one. If such an excess or deficit, respectively, crosses

the yellow error band experimental data is not in agreement with the SM background at two sigma

confidence level. An excess which exactly hits the horizontal line at 1 can only be the SM Higgs

or a particle which has the same production rate in this channel. If the excess is below or above

1 it may still be a Higgs but with smaller and larger cross section, respectively, compared to the

SM one. However a Higgs analysis with real data is more complicated. Uncertainties coming from

background events and mixing between different channels have to be included. Also the assumption,

that the Higgs is produced on-shell in a s-channel and all decay final states can be measured, is a

strong simplification. In case of missing energy, e.g., we do not get a peak in the invariant mass

spectrum at the energy the Higgs is produced on-shell. The structure of the final state spectrum

becomes more complicated and a simple reconstruction of the Higgs mass, as discussed above, is

not possible anymore.

In 2011 ATLAS and CMS presented the first combined analysis for h→ γγ and h→ ZZ channels

(see first row in 2.1 and 2.2). Even though statistics were still too low to probe Higgs masses down

to the LEP limit already a wide range of parameter space was constrained. The new limits exluded

Higgs masses between 150 and 500 GeV. At around 140 GeV a small excess in the experimental data

can be seen. Nevertheless more statistics were required to draw any conclusion. At the end of 2011

CMS and ATLAS presented an update of the Higgs search, including the complete 2011 data in the

analysis (see second row in 2.1 and 2.2). The excess at 140 GeV went away in both experiments but

a new one at around 125 GeV was observed. This was the first evidence for the existence of a spin 0

or spin 2 boson at the electroweak scale. In summer 2012 the first results, including 2012 data, were

published (see third row in tab. 2.1 and 2.2). 9 Both experiments confirmed the excess at ∼125

GeV and presented a combined analysis of all observed decay channels (see first row in tab. 2.3).

The plots show the best fit values for the coupling strength of the SM Higgs to ττ , bb, WW , ZZ

and γγ final states. ATLAS and CMS observed an enhanced decay rate into photons two sigma off

the SM prediction. Therefore, the black line in the last plot in 2.1 and 2.2 crosses 1 at 125 GeV,

representing the decay rate into photons. The peak is almost twice as high than the predicted one

for the SM Higgs. Taken the height of the excess seriously this could be interpreted as a hint for

8since in this simplified case we neglect systematical errors, the experimental uncertainty depends only on the
statistical error

√
n. Therefore, the better the statistics the better the sensitivity which means that measuring long

enough, the black line goes to zero if no Higgs is found.
9CMS did not present their results plotting σ/σSM against the Higgs mass. Therefore, on the CMS side one plot is

missing in tab. 2.1 and 2.2.
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physics beyond the SM. The decay rates into ττ , bb, WW and ZZ were in good agreement with

SM predictions.

In march 2013 Higgs studies using up to 25 fb−1 were published. In the last row in tab. 2.3 we

can see that the measured decay into photons at CMS went down and is now even below the SM

prediction. ATLAS still detects a larger value but since both experiments show contrary results it

might be rather a statistical fluctuation than new physics. In CMS the decay into WW is slightly to

small and ATLAS lacks events in the bb channel compared to the SM expectation. Also the best fit

values for ZZ and γγ final states point to two slightly different Higgs masses (see tab. 2.4). CMS

gets a smaller mass for γγ than for ZZ but ATLAS measurements claim the opposite. The analysis

is done for only one Higgs combining both channels to get the best fit value for the mass.

As we can see in tab. 2.1 and 2.2 the lower limit on the Higgs mass becomes significantly stronger

with more statistics, but the upper limit almost remains constant. This stems from the fact, that the

production rate of the Higgs drops exponentially with larger mH and therefore much more statistics

is needed to push the upper bound to significantly higher values.

Also first results for the spin properties of the Higgs-like boson were published [14; 13]. Ex-

perimental data favors a spin 0 boson but more data must be taken to be conclusive. Assuming

the new particle to be the SM Higgs a heavy fourth generation of fermions, which still had a small

allowed window for masses slightly above mt, are now strongly disfavored by the measured decay

rates [64; 65].

If the Higgs-like boson turns out to be the SM Higgs the mass of 126 GeV fixes the quartic

coupling λ to λ = 0.26. With this value we are still in the pertubative domain but vacuum stability

might not be guaranteed up to MGUT and MPl, respectively [61; 66].

In conclusion we can say that all measurements point towards the discovery of the SM Higgs,

with small mass as preferred by the LEP electroweak precision fits [67]. Statistics must be improved

to get a more detailed analysis of the couplings of the SM particles to this new boson. Thus future

data must show if we really found the SM Higgs.

2.2. Neutrino physics and GUTs

2.2.1. Neutrinos and experiment

In the SM neutrinos are massless since (a) no right handed neutrinos are present, which are needed

to write down a renormalizable Dirac mass term and (b) there is no Higgs triplet. From oscillation

experiments we know that at least two neutrino states have non-zero mass. The measured solar

(∆m2
12) and atmospheric (∆m2

13) mass differences [68]
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Table 2.3: The coupling strengths of the Higgs to γγ , ZZ, WW , ττ and bb are shown as a function
of σ/σSM. The value for µ is the best fit value for σ/σSM combining all decay channels. All plots
are taken form [13] and [14].
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Table 2.4: The best fit values for γγ and ZZ final states are shown. σ/σSM is plotted as a function
of the invariant mass mX . The black line is the combined fit for both channels. All plots are taken
form [13] and [14].

∆m2
12 = ∆m2

sol ∼ (7.5 ± 0.3)× 10−5 eV2

∆m2
13 = ∆m2

atm ∼ (2.5 ± 0.1) × 10−3 eV2 (2.24)

are small but do not fix the absolute values of neutrino masses. Also the mass ordering among the

three neutrino states is still an open question. In normal hierarchy the first mass state, which is

dominated by the electron neutrino, is the lightest. In the inverted hierarchy the mass ordering is

flipped and mass state 3 is the lightest neutrino mass eigenstate. Both are still valid solutions and

more experimental data is needed to confirm or exclude one of them. Even though in oscillations

only mass differences can be measured we can put an upper limit on neutrino masses. The absolute

mass scale is very small and constrained by

single beta decay (n→ p+ ν̄e + e)

neutrinoless double beta decay (2n→ 2p + 2e−) in nuclei

cosmology
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Observables most optimistic conservative Ref.

me < 2.1 eV < 2.3 eV [70]

mee < 0.14 eV < 0.4 eV [71; 72]

Mν < 0.32 eV < 0.98 eV [26]

Table 2.5: Upper limits for neutrino masses from single beta decay, neutrinoless double beta decay
and cosmology.

with n and p the neutron and proton, respectively. With current accuracies we can only put limits

on combinations of neutrino masses 10. The observable in single beta decay is defined as

m2
e =

∑

i

|U2
ei|m2

νi (2.25)

whereas the mass parameter derived from neutrinoless double beta decay is

m2
ee = |

∑

i

U2
eimνi |2. (2.26)

Note, that contributions to neutrinoless double beta decay can only come from Majorana neutrinos

and the measured mass parameter m2
ee depends on the Majorana phases. 11. From cosmology we

can derive limits on the sum over all neutrino mass eigenstates

Mν =
∑

i

mνi , (2.27)

which is independent of the mixing matrix U. Since experiments give different values for the upper

limits on the observables and Mν depends crucially on the chosen cosmological model and analysis,

only the most conservative and most optimistic upper limits are presented. The values are summarized

in tab. 2.5.

Neutrino oscillations are due to a mismatch of the flavour eigenstates and the mass eigenstates

of neutrinos. If neutrinos are Majorana particles the mass matrix mν is symmetric and can be

10In single beta decay experiments it is in principal possible to measure masses of single neutrino mass eigenstates
[69].

11The neutrino mixing matrix U and the Majorana phases are defined in eq. 2.28 and 2.29.
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diagonalized by

m̂ν = UmνU
T . (2.28)

The rotation matrix U is parametrized as

U =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13




×




eiα1/2 0 0

0 eiα2/2 0

0 0 1




(2.29)

with cij = cos θij and sij = sin θij. The angles θ12, θ13 and θ23 are the solar neutrino angle, the

reactor angle and the atmospheric neutrino mixing angle, respectively. δ is the Dirac phase and αi

are Majorana phases. Since U can be determined experimentally only up to an irrelevant overall

phase, one can find different parameterizations of the Majorana phases in the literature.

In contrast to quarks in the neutrino sector two mixing angles are large. For a long time neutrino

mixing angles were in good agreement with tribimaximal mixing 12, but recent experiments confirm

a small but significant deviation from zero for θ13 (see tab. 2.6). Thus a lot of neutrino mass

models predicting θ13 = 0 require modifications. θ12 and θ23 are very well measured and the current

experimental values are still in agreement with tribimaximal mixing expectations [73]. The recent

values for mass squareds and angles of U are summarized in tab. 2.7.

2.2.2. Seesaw

To give masses to neutrinos the SM has to be extended. The simplest way is to add at least

two right-handed neutrinos and write down a Yukawa term that couples the left and right handed

neutrinos to the SM Higgs

LY,neutrinos = Yν ν̄LHνR (2.30)

Thus, assuming only mass terms coming from Higgs yukawa interactions after EWSB, the same

mechanism that gives masses to the SM fermions is applied in the neutrino sector. Since neutrinos

are much lighter than the rest of the SM particles, very small yukawa couplings are required. However,

12θ12 = sin−1(1/
√
3) ≃ 35.3◦, θ23 = 45◦, θ13 = 0 and δ is undetermined
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Experiment sin2 θ13 Ref.

T2K 0.028+0.019
−0.024 [74]

MINOS 0.010+0.012
−0.008 [75]

DC 0.022+0.019
−0.018 [76]

DYB 0.024 ± 0.005 [77]

RENO 0.029 ± 0.006 [78]

Table 2.6: Best fit values and experimental uncertainties for θ13 at T2K, MINOS, DC, DYB and
RENO

parameter best fit value 2σ range

∆m2
sol(10

−5 eV2) 7.62 7.27-8.01

∆m2
atm(10

−3 eV2) 2.55 2.38-2.68

sin2 θ12 0.320 0.29-0.35

sin2 θ23 0.613 0.38-0.66

sin2 θ13 0.0246 0.019-0.030

Table 2.7: Best fit values and experimental uncertainties for θ12, θ23, θ13, ∆m
2
sol and ∆m2

atm for
normal neutrino mass hierarchy [73].
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a possible explanation for the smallness of neutrino masses can be given in terms of a Majorana term

introduced for the right handed neutrinos.

In the SM the lepton and baryon number (L and B, respectively) are conserved at all orders

in perturbation theory 13. Introducing a Majorana mass for right-handed neutrinos breaks lepton

number. The Majorana mass term reads

MRν̄
c
RνR = ν̄cR,iMR,ijνR,j . (2.31)

Thus the neutrino mass matrix contains after EWSB a Dirac term mD = Yνv from the yukawa

coupling of eq. 2.30 and the Majorana mass MR

mν =




0 mD

mT
D MR



. (2.32)

For the light neutrino mass eigenstates we get

m̂ν
∼= −mT

DM
−1
R mD. (2.33)

Light neutrino masses are therefore inversely proportional to the Majorana mass. Assuming the Ma-

jorana mass to be large, neutrino masses are naturally small. This is the so called seesaw mechanism

[15; 16; 17; 18; 19; 20].

Note, that without right-handed neutrinos we can still write down a Majorana mass term for νL.

Since νL forms part of a SU(2)L doublet and has isospin 1/2 we need a term with two Higgses

to obtain a gauge invariant interaction. Encoding all high scale physics in one parameter M5 the

resulting effective mass term for neutrinos can be written as

O5 =
λij
M5

lTi ljHH. (2.34)

O5 is a non renormalizable five dimensional operator and was first introduced by Weinberg [82] 14.

13Chiral anomaly and the vacuum topology in non-abelian gauge theories leads to non-conservation of baryon and
lepton number at the non-pertubative level. However, the B − L symmetry is left invariant, which can be understood
as a hint for grand unification. In larger symmetry groups B−L invariance can be predicted by the gauge structure of
the theory. From experiments we know that additional gauge symmetries like B − L must be broken at some higher
scale. Recent lower limits on the mass of new gauge bosons are of order a few TeV [79; 79; 80; 81].

14Here we can see that models incorporating the Weinberg operator do not conserve lepton number. The Weinberg
operator defined in eq. 2.34 breaks lepton number by 2 (∆L = 2). In models, incorporating only Dirac neutrinos,
lepton number remains unbroken. No high scale is introduced and a Yukawa coupling Yν of order 10−12 accounts for
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νR

νL

H

νL

H

∆0

νL

H

νL

H

Σ0

νL

H

νL

H

Figure 2.3: Feynman diagrams for seesaw type I, II and III.

The corresponding mass term is mν ∼ λv2/M5 with λ a dimensionless coupling usually taken O(1).

As in eq. (2.33) neutrino masses are inverse proportional to a new parameter with dimension mass

(MR and M5, respectively). Therefore assuming neutrinos to be Majorana particles introduces a

new scale that can explain the smallness of neutrino masses in terms of new physics present at a

high scale.

At the tree level 15 we can classify the possible ultra-violet (UV) completions that lead to the

effective operator defined in eq. 2.34. There are only three possibilities, including the exchange of a

singlet fermion (seesaw I), a triplet scalar (seesaw II) and a triplet fermion 16.

LI = YνHνLνR +MRν̄
c
RνR

LII = Y∆l̄
c∆l + λH∆H +M∆∆∆

LIII = YΣH
†Σ̄l +

1

2
tr[Σ̄MΣΣ

c + h.c.]. (2.35)

with

∆ =




∆+/
√
2 ∆++

∆0 ∆+/
√
2




and Σ =




Σ− Σ0/
√
2

Σ0/
√
2 −Σ+



. (2.36)

The Feynman diagrams for the different seesaws are shown in fig. 2.3. Note, that in the case of the

seesaw II and III only the neutral component of the triplet (∆0 and Σ0, respectively) contributes to

mν . After integrating out the heavy particles νR, ∆
0 and Σ0 the neutrino mass matrices read

the smallness of neutrino masses.
15In a recent work also all 1-loop contributions for the Weinberg operator were classified [83].
16Note, that in this notation seesaw models like the inverse or linear seesaw discussed in chapter 4 belong to the

class of seesaw I.
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mν = −v
2

2
Y T
ν M

−1
R Yν (2.37)

mν =
v2

2

λ

M∆
Y∆ (2.38)

mν = −v
2

2
Y T
Σ M

−1
Σ YΣ. (2.39)

In case of seesaw I and III 21 degrees of freedom fix the neutrino sector coming from the yukawa

coupling, three Majorana and three charged lepton masses [84]. For the seesaw II the parameter space

is more constrained since the yukawa coupling Y∆ is symmetric, which leads to 15 free parameters.

For yukawas of O(1) and mν ∼
√

∆m2
atm ∼ 0.05 eV one gets

MR ≃ 1015 GeV

M∆

λ
≃ 1015 GeV

MΣ ≃ 1015 GeV (2.40)

In all seesaw types the seesaw scale is close to the GUT scale of order mGUT ∼ 1016 GeV. Therefore

Majorana neutrinos can be understood as a hint for high scales where gauge couplings may unify

and all SM gauge multiplets are arranged in multiplets of a single gauge group.

2.2.3. Grand Unified Theories

Apart from being motivated by new high scales such as a seesaw scale GUTs are conceptionally

appealing since they drastically simplify the gauge structure at high energies and relate Yukawa

couplings of the quark and lepton sector [85]. This provides high predictivity for SM masses and

couplings at the electroweak scale since the number of free parameters is drastically reduced. This

also leads to strong constraints on GUT models as we will discuss in the next part.

The idea of GUTs is to extend the gauge symmetry such that the SM gauge group is a subgroup

of this larger symmetry. It is clear that this larger symmetry has to be broken at some scale since we

already know that SM particles do not all have the same interactions.

In all GUTs leptons and quarks couple at tree level through the additional gauge bosons which

carry both electroweak charge and color. This triggers proton decay and puts strong limits on the

masses of these new gauge bosons [86]. Since no proton decay has been observed 17 the GUT scale

has to be at least of order a few ∼ 1015 GeV.

The breaking of GUTs down to the SM group is a challenging issue and gets the more complex

the larger the GUT group. There are plenty of different GUT models in the literature due the large

number of different breaking scenarios and GUT groups. In this section only the basic principles by

17 The lower limit on the proton life time is 1× 1034 years [87].
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means of the simplest realization of unification in SU(5) and SO(10) GUTs are presented.

We will first discuss SU(5), the smallest possible GUT group, which contains the SM as a

subgroup. The fundamental representation of SU(5) is a 5-plet (5) and the adjoint representation is

a 24-plet (24). Quarks and leptons are arranged in a 5 and 10 plet (10) 18. In SU(5) all SM particles

fit exactly into a 5 and 10. Since leptons and quarks are grouped together in SU(5) multiplets chiral

anomaly cancellation 19, that seems to happen accidentally in the SM, is now predicted by symmetry.

SU(5) is directly broken down to the SM group which in the minimal version is done with a

24-plet (24H). Breaking SU(5) with a 24-plet leads to wrong predictions for the mass ratios of the

SM particles (ms/md = mµ/me) and is therefore already exluded by experiment. This can be cured

by adding a 45 plet 45H to break SU(5) [89].

The Higgs doublet is extended to a 5 plet (5H), where the first three entries are a scalar color

triplet and the last two the SM Higgs. Since the additional triplet Higgs triggers proton decay it

must be heavy with a lower limit on the mass around ∼ 1011 GeV [85]. The SM Higgs has mass

of order the electroweak scale. To separate the scales of the doublet and the triplet a fine tuning of

more than 10 orders of magnitude is required. This is called the doublet-triplet splitting problem in

SU(5) [90; 91]. The problem of separating scales is present in all GUTs since we need a light Higgs

for EWSB, but the additional degrees of freedom, coming from the larger Higgs representations, can

lead to dangerous operators for proton decay and therefore must have masses much larger than the

electroweak scale.

In the minimal model with only one 5H for EWSB no unification is possible, since the additional

color triplet only change the running of the strong coupling 20. In the SM the running of the weak

and hypercharge coupling is such that the two couplings unify at around 1014 GeV. Thus with only

additional colored degrees of freedom, gauge coupling unification could happen only at this low scale,

already exluded by experiment. It was shown in [92] that both unification and a long enough proton

lifetime can be obtained in SU(5) by introducing a Higgs 15-plet (15H) 21.

With only one 5 and 10 matter representation in SU(5) neutrinos are massless since no right-

handed neutrinos are present. By adding a singlet the small neutrino masses can be explained in

terms of the seesaw mechanism. We will come back to neutrino GUT models in SU(5) in chapter 3.

In bigger GUT groups extra matter is predicted. The extra matter can be heavy due to a breaking

of the GUT group down to the SM group at a high scale, not reachable for current experiments. In

18All higher representations like 10 and 24, respectively can be obtained by group multiplications of the fundamental
representation (e.g. 5⊗ 5 = 10+ 15 and 5⊗ 5̄ = 24+ 1) [88].

19 In any quantum field theory loop corrections to cubic gauge boson interactions can lead to non-renormalizable
operators, if not all loop contributions cancel against each other.

20Note, that all additional degrees of freedom for the breaking of the GUT group and the new bosons from the
extended gauge sector are integrated out at the GUT scale and therefore do not contribute to the running of the gauge
couplings.

21 After breaking SU(5) down to the SM group the 15-plet decomposes into a color sextet, triplet and singlet,
respectively. Gauge coupling unification depends crucially on the chosen masses of those multiplets [92]. In particular,
with a degenerate spectrum no gauge coupling unification is possible.
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SO(10) one additional particle is predicted, the right handed neutrino.

The fundamental representation of SO(10) is a 16 plet (16) and the adjoint representation a

45-plet (45) 22. Under SU(5) the 16 is decomposed as 16 = 10+ 5̄+ 1. Therefore all SM matter

fields fit into one 16 plus a singlet, which is the right-handed neutrino.

In fig. 2.4 all possible breaking chains for Higgs representations up to 210 are shown [93]. We

can divide the breaking of SO(10) down to the SM group into two sectors, where we distinguish

between breaking scenarios including either SU(5) or the left right symmetric group in one of the

intermediate breaking steps 23. If SO(10) is broken to the left right symmetric group B + L is

violated but B − L is conserved which is now a gauge symmetry in the theory. The breaking of

SO(10) in several steps leads to many possibilities of breaking patterns and physics like the proton

life time depends crucially on which breaking is realized.

The most economical version to break SO(10) to the SM group includes a 45H Higgs to break

the GUT symmetry and either a 16H or 126H for the subsequent breaking of U(1)B−L × U(1)R

down to U(1)Y . An additional 10H including the SM Higgs is responsible for EWSB, which is needed

together with 16H or 126H to obtain realistic patterns for the fermionic masses and mixing [93].

In the case SO(10) is broken first to the left right symmetric group, intermediate scales can be

of order TeV predicting new physics at low scales in principle accessible for experiments [96; 97; 98;

4; 99]. In chapter 4 we concentrate on breaking patterns with SU(2)L × U(1)R × U(1)B−L in the

intermediate scale which allows us to lower the B − L breaking to around 1 TeV.

2.3. Supersymmetry

In this section a short introduction to supersymmetric theories is given. The basic principles of

SUSY algebra and supersymmetric representations are discussed [32] to understand the consequences

for phenomenology for SUSY models [100]. The minimal supersymmetric version of the SM, the

MSSM, is introduced and a brief review of the parameter space and mass spectra of the constrained

MSSM (CMSSM) is given. At the end the of this section recent limits from LHC for the CMSSM

are presented.

2.3.1. Superfield formalism

The SUSY algebra is an extension of the Lorentz algebra including both commutator and anti-

commutator relations. SUSY transformations map tensor (spinor) fields into spinor (tensor) fields.

Since bosonic and fermionic degrees of freedom are now connected via space time transformations

22As in SU(5) we get all higher representations by group multiplications of the fundamental representation [88].
23Note, that this classification does not consider the possibility to break SO(10) directly to the SM group via a 144

irreducible Higgs representation [94]. This case is neglected here since an extended matter sector is required to get
realistic fermion masses [95].
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Figure 2.4: All possible breaking chains for SO(10) down to the SM group 2.4.

the spin is no longer an invariant in the theory. From this it is clear that SUSY multiplets contain

both bosonic and fermionic spinor representations.

An elegant method to find SUSY representations is the superfield formalism [32]. In this formalism

a superspace is introduced which differs crucially from euclidean space since coordinates do not

commutate anymore 24. Superfields are analytic functions of the superspace variables θ and θ̄. Every

superfield can be expanded in terms of θ and θ̄ whereas the coefficients are the so called component

fields, defining the bosonic and fermionic degrees of freedom present in every multiplet. A chiral

superfield Φ contains two scalar fields φ and F with spin 0 and a spin 1/2 field ψ

Φ = φ+ iθσµθ̄∂µφ+
1

4
θθθ̄θ̄ +

√
2θψ − i√

2
θθ∂µψσ

µθ̄ + θθF. (2.41)

The vector superfield is composed of a vector field Aa
µ and the corresponding fermionic field λa with

spin 1/2 and the spin 0 field Da

24 The superspace can be defined by the anticommutating Grassman variables θα and θ̄α̇ with {θα, θβ} =
0 , {θ̄α̇, θ̄β̇} = 0 , θ2α = 0 , θ̄2α̇ = 0. α and α̇ are the indices for the Weyl spinors θ and θ̄.
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V a = −θσµθ̄Aa
µ + iθθθ̄λ̄a − iθ̄θ̄θλa +

1

2
θθθ̄θ̄Da, (2.42)

with a the index for the adjoint representation of the gauge group 25. The gauge invariant superpo-

tential of non-singlet fields is defined as

W (Φk) =

∫
dθ2

(
1

2
µijΦiΦj +

1

3
yijkΦiΦjΦk .

)
(2.43)

whereas the gauge invariant kinetic term for the chiral superfields is

Lkin,gauge =

∫
dθ2dθ̄2Φ†e2gT

aV a
Φ. (2.44)

Assuming Wess-Zumino gauge we get for the exponential 26

e2gT
aV a

= 1 + 2V + 2g2(T aV a)2. (2.45)

For vector fields the kinetic terms reads

Lkin,gauge =

∫
dθ2 (Tr[WαW

α] + h.c.) =

∫
dθ2

(
1

2
W a

αW
αa + h.c.

)
(2.46)

withWα = D̄2e−VDαe
V and D̄2 = D̄α̇D̄

α̇ 27. To get the SUSY lagrangian for the component fields

we have to integrate over the superspace. After the integration we get for the chiral part

Lkin,chiral = (Dµφi)
†(Dµφi) + iψ̄iσ̄

µDµψi + i
√
2g (φ†iT

aλaψi − φiψ̄iT
aλ̄a) (2.48)

with kinetic terms for the scalars φi and the fermions ψi but not for Fi. Since the fields Fi have no

dynamics the equations of motion for Fi are only algebraic equations and defined as

25Note, that in general more terms in the expansion of the vector superfield are present. Since not all degrees of
freedom are physical we can simplify the expression using a convenient gauge fixing. In 2.42 Wess-Zumino gauge is
assumed [32].

26 Note, that the expansion stops at second order due to the properties of the Grassman variables θ and θ̄.
27 Dα and Dα̇ are the covariant derivatives in the superspace and defined as

Dα =
∂

∂θα
+ iσµ

αα̇θ̄
α̇∂µ , D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

αα̇∂µ (2.47)

.
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F †
i = − ∂W (Φk)

∂Φi

∣∣∣∣
Φi=φi

(2.49)

Therefore the fields Fi are only auxiliary fields and not physical degrees of freedom and can be

substituted in the lagrangian by eq. 2.49. The gauge kinetic part reads after the integration over

the superspace as

Lkin,gauge = −1

4
FµνF

µν − iλa 6Dλ̄a + 1

2
DaDa. (2.50)

where the fields Da, as in the case of the fields Fi, do not have dynamics and can be substituted by

Da = −
∑

i

g φ†iT
aφi. (2.51)

Now we can write down the complete SUSY lagrangian

LSUSY = − 1

4
V a
µνV

aµν − iλaσµDµλ̄
a + (Dµφi)

†(Dµφi)

+ iψ̄iσ̄
µDµψi + i

√
2g (φ†iT

aλaψi − φiψ̄iT
aλ̄a)

−
(

1

2

∂2W (Φk)

∂Φi∂Φj

∣∣∣∣
Φi=φi

ψiψj + h.c.

)
− V (φk) (2.52)

where the last two terms come from the superpotential defined in eq. 2.43 after the integration

over the superspace. The first two terms in the 3rd line are yukawa couplings of fermionic and

bosonic, respectively, component fields which come from the chiral superfields defined in the theory.

V (φk) is the full scalar potential containing the F and D terms defined in eq. 2.49 and 2.51 and

can be be written as

V (φk) =
∑

i

F †
i Fi +

∑

a

1

2
(Da)2 =

∑

i

∣∣∣∣
∂W (φk)

∂φi

∣∣∣∣
2

+
g2

2

∑

a

(∑

i

φ†iT
aφi

)2

(2.53)

Since V (φk) is completely defined by the superpotential and gauge interactions the scalar potential

in supersymmetric theories is always positive definite.

We know that SUSY can not be exact since we have not observed any supersymmetric particles.

SUSY can be broken spontaneously via F terms but this leads to phenomenologically unacceptable
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predictions if the SM particles couple at tree level to the Higgs sector breaking SUSY. A way out is

to assume another sector with superfields, that are not charged under the SM group. In this hidden

sector SUSY is broken spontaneously and the breaking is communicated by so called messenger

fields to the visible sector with the SM particle content. The messenger sector can be built up by

gravitational or gauge interactions. The operators which come from the spontaneous SUSY breaking

then appear as explicit SUSY breaking terms in the lagrangian of the visible sector. If SUSY is exact,

quantum corrections of scalars do not have quadratic divergences. Operators that break SUSY

explicitly and do not reintroduce quadratic divergences in the theory are called soft SUSY breaking

terms and can be classified as follows 28

1. Mass terms for the gauginos which are the fermionic part of the vector superfields

2. Mass terms for the scalar particles, m2
φij

φ⋆iφj with φi,j the scalar component of the chiral

superfield

3. Trilinear scalar interactions, Aijkφiφjφk which correspond to cubic terms in the superpotential.

4. Bilinear scalar interactions, Bijφiφj which correspond to bilinear terms in the superpotential.

Note, that in general all soft breaking parameters are free parameters in the theory.

2.3.2. MSSM

In the minimal supersymmetric version of the SM leptons and quarks are promoted to chiral

superfields and therefore get a bosonic superpartner, the so called sfermions. The gauge bosons of

the SM group are extended to vector superfields and acquire a fermionic superpartner, the gauginos.

Since in supersymmetric theories Φ†Φ do not give contributions to the scalar potential but ΦiΦj more

than one Higgs is needed to write down a gauge invariant quadratic term required for EWSB [32].

Note, that also for the Yukawa couplings in the up and down quark sector two Higgs superfields must

be defined since ΦΦ′Φ′′ and Φ†Φ′Φ′′′ can not be both supersymmetric for only one chiral superfield

Φ [32]. In the MSSM two Higgs are introduced, Ĥu and Ĥd which decompose under SU(2)L as

Ĥu =




Ĥ+
u

Ĥ0
u



, Hd =




Ĥ0
d

Ĥ−
d



, (2.54)

The complete set of superfields of the MSSM is summarized in tab. 2.8.

28 Breaking terms coming from a gravitational or gauge messenger sector fulfill this condition and break SUSY “softly”
in the visible sector. Realizations of these breaking scenarios are “minimal supergravity” (mSUGRA) [101; 102] and
gauge mediated SUSY breaking (GMSB) [103].



2.3 Supersymmetry 32

Superfield SU(3)c × SU(2)L × U(1)Y Generations

M
at
te
r

Q̂ (3,2,+1
6 ) 3

d̂c (3,1,+1
3 ) 3

ûc (3,1,−2
3 ) 3

L̂ (1,2,−1
2 ) 3

êc (1,1,+1) 3

H
ig
gs Ĥu (1,2,+1

2 ) 1

Ĥd (1,2,−1
2 ) 1

Table 2.8: The Matter and Higgs sector field content of the MSSM.

Considering only gauge invariant terms and the superfields defined in tab. 2.8 the general Su-

perpotential reads

W =λiju Q̂iû
c
jHu + λijd Q̂id̂

c
jHd + λije L̂iê

c
jHd + µHuHd

+ λ′′ijkû
c
i d̂

c
j d̂

c
k + λ′ijkQ̂id̂

c
jL̂k + λijkL̂iê

c
jL̂k + µ′iL̂iHu. (2.55)

The terms in the second line of eq. 2.55 trigger proton decay if the B-violating coupling λ′′ and one

of the L-violating couplings λ′, λ and µ′ are non-zero. [104]. Thus, products of the couplings λ and

λ′ with λ′′ must be either very small or λ′′ equal to zero. From neutrino physics and lepton flavour

violating processes also limits on λ, λ′ and µ′ can be derived. The couplings are usually constrained

to be of order 10−1 − 10−4 [105; 106; 107; 108; 109] or forbidden by some additional symmetry. A

symmetry which precludes dangerous operators for proton decay but still allow the yukawa couplings

between the Higgs and matter sector as well as the µ term for the two Higgs is R-Parity (Rp).

R-Parity is a discrete symmetry and defined as

Rp = (−1)2s+3B+L (2.56)

with s, the spin of the particle. R-Parity does not only protect the theory from proton decay but has

also important consequences for phenomenology. First, the lightest supersymmetric particle (LSP)
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is stable and might be a candidate for cold dark matter and second, super particles can be only

produced (annihilated) pairwise.

As discussed in the last subsection, SUSY has to be broken softly in the visible (MSSM) sector.

The soft breaking terms of the MSSM LMSSM,soft read

LMSSM,soft = (m2
Q)

ijQ̃∗
i Q̃j + (m2

U )
ij ũc

∗
i ũ

c
j + (m2

D)
ij d̃c

∗
i d̃

c
j

(m2
L)

ijL̃∗
i L̃j + (m2

E)
ij ẽc

∗
i ẽ

c
j +m2

Hu
|Hu|2 +m2

Hd
|Hd|2,

Aij
u Q̃iũcjHu +Aij

d Q̃id̃cjHd +Aij
l L̃iẽcjHd +BµHuHd + h.c.

(2.57)

where all soft masses and couplings are free parameters in the theory. Therefore the explicit breaking

of SUSY introduces plenty of new parameters 29 which are neither fixed by theory nor by experiment
30. The only sector that is more constrained than in the SM is the Higgs sector. To understand

where these constraints come from we will focus in the last part of this subsection on the discussion

of the Higgs potential. After integrating over the superspace and taking into account the soft terms

mHu , mHd
and Bµ the neutral component of the Higgses have the following potential

VMSSM,Higgs =
g′2

8

(
H0

uH
0
u +H0

dH
0
d

)2
+
g2

8

(
H0

uH
0
u +H0

dH
0
d

)2

+ µ2(H0
uH

0
u +H0

dH
0
d ) +m2

Hu
H0

uH
0
u +m2

Hd
H0

dH
0
d − (BµHuHd + h.c.) (2.58)

Note, that the quartic couplings are no longer free parameters but the gauge couplings g and g′.

In supersymmetric theories quartic couplings, also called D-terms, are predicted by the gauge in-

teractions [32]. After EWSB the neutral components of the Higgs doublets Hu and Hd acquire a

vev

〈Hu〉 =




0

vu



, 〈Hd〉 =




vd

0



. (2.59)

Minimizing the potential leads to constraints on the parameter space. For EWSB we need

29 After counting the physical degrees of freedom one gets more than 100 free parameters in the MSSM [110].
30 Since no supersymmetric particles have been observed in experiment only lower limits on the soft parameters can

be given.
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det




µ2 +m2
Hu

−Bµ

−Bµ µ2 +m2
Hd



< 0. (2.60)

In addition

µ2 +m2
Hu

+ µ2 +m2
Hd

> 2Bµ. (2.61)

must be satisfied to discard solutions with vu = vd. If vu = vd the quartic term in the potential

vanishes, in which case the potential may be unbounded from below. For the correct Z mass vu and

vd are defined as

vu =
v√
2
sin β, vd =

v√
2
cos β, (2.62)

with v =
√
v2u + v2d ∼ 250 GeV the SM vev. Therefore we introduce tan β = vu/vd and use from

now on v and tan β to parametrize the MSSM Higgs vevs.

Since in the MSSM we have two Higgs doublets, each containing four real scalar fields, the

number of degrees of freedom is eight before the symmetry breaking. Three of them are ”eaten” by

the heavy gauge bosons Z, W+ and W− and we are left with five physical scalars. There are two

CP-even scalars h0, H0, one CP-odd scalar A0, and two charged scalars H+ and H−. The tree level

masses of the CP-odd and charged scalars can be written as

m2
A = 2µ2 +m2

Hu
+m2

Hd
, m2

H± = m2
W +m2

A (2.63)

and for the CP-even scalars one gets

m2
h0 ,m

2
H0 =

1

2

(
m2

A +m2
Z ∓

√
(m2

A +m2
Z)

2 − 4m2
Zm

2
A cos2 2β

)
. (2.64)

The most important consequence of eq. (2.64) is that the lighter CP-even Higgs mass m2
h0 gets its

maximal value for cos2 2β = 1. In this limit m2
h0 = (m2

A +m2
Z − |m2

A −m2
Z |)/2 and therefore we

obtain for mA < mZ , m
2
h0 = m2

A < m2
Z , whereas for mA > mZ , m

2
h0 = m2

Z leading to an important

prediction in the MSSM
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mh0 ≤ mZ . (2.65)

That the mass of the Higgs boson mass depends on the gauge boson masses is a consequence of

the quartic couplings in eq. (2.55), which are all fixed by the gauge couplings since they stem from

D-terms of the scalar potential. However, this strong constraint on mh0 only holds at tree level. Eq.

2.65 is modified at the one loop level [111]:

∆(m2
h0) ∼=

Nc

4π2
Y 4
t v

2 sin4 β log

(
mt̃1

mt̃2

m2
t

)
. (2.66)

where mt̃1
and mt̃2

are the two stop masses and Nc a color factor. With a scalar top mass around

∼3 TeV, the lightest Higgs mass can be pushed up to about ∼130 GeV if 2-loop effects are included

[112; 113].

Before discussing the constrained version of the MSSM let us consider the running of the gauge

couplings. Additional degrees of freedom change the running in the region where the new particles

can be produced on shell in the loop 31. For simplification we assume all sparticles at a SUSY scale

mSUSY. At energies below this scale only SM particles contribute to the running whereas above

this scale the full MSSM spectrum is considered in the loop calculation. The running of the gauge

couplings at one loop can be written as

α1(mZ) =
5αem(mZ)

3 cos2 θW
, α2(mZ) =

αem(mZ)

sin2 θW
, (2.67)

αi(mSUSY ) =
αi(mZ)

1− αi(mZ )
4π bSMi log

m2
SUSY

m2
Z

,

αi(mGUT ) =
αi(mSUSY )

1− αi(mSUSY )
4π bMSSM

i log
m2

GUT

m2
SUSY

.

Here, bSMi = (b1, b2, b3)
SM = (4110 ,−19

6 ,−7) for the SM and bMSSM
i = (b1, b2, b3)

MSSM =

(335 , 1,−3) for the MSSM. bSM and bMSSM account for the degrees of freedom contributing to the

loop. It turns out that in the MSSM superpartners change the running between the SUSY scale and

the GUT scale in such a way that gauge couplings unify at ∼ 1016 GeV if mSUSY . 100 TeV [114].

31For energies, at which new heavy particles can not be produced on shell, we can integrate out these heavy degrees
of freedom and are left with an effective operator suppressed by the mass of the new particle. The new dimension 5
operator does not contribute to the running of the couplings and can be neglected.
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2.3.3. The constrained MSSM

In the MSSM the lightest Higgs mass is predicted to be below ∼ 130 GeV and gauge couplings

unify. Nevertheless, plenty of new parameters are introduced in the explicit soft SUSY breaking

terms. As already mentioned soft breaking terms can be motivated by a hidden sector where SUSY

is broken spontaneously and the breaking is communicated to the visible sector by messenger fields.

One of the possible scenarios is Supergravity where gravitational interactions build up the messenger

sector. In such models the soft breaking sector of the MSSM (eq. 2.57) simplifies at mGUT as

follows:

all scalar masses are equal to a common scalar mass m0

all gaugino masses are equal to a common gaugino mass M1/2

all trilinear couplings are equal to a common trilinear coupling A0.

The CMSSM [115] simplifies the parameter space drastically. We are left with four free SUSY

parameters m0, M1/2, A0 and tan β 32. In the rest of this subsection some generic aspects of

CMSSM phenomenology and particle spectrum are discussed.

At the GUT scale all gaugino masses are equal to M1/2 but have different masses at the SUSY

scale. Gaugino masses evolve like gauge couplings

Mi(mSUSY) =
αi(mSUSY)

α(MGUT)
M1/2. (2.68)

Thus in the CMSSM the gauginos from SU(3)c (Gluinos) are heavier than the Winos, the

gauginos of SU(2)L, and the bino, the gaugino of U(1)Y , is the lightest gaugino. The soft mass

parameter of the first two generations can be parametrized at the SUSY scale as [116] 33

m2
f̃
= m2

0 +Af̃M
2
1/2 (2.69)

with

32Note, that solving the tadpole equations fixes µ only up to a sign. Therefore the sign of µ has also to be defined
since it is neither predicted by theory nor experiment.

33In eq. 2.69 no yukawa terms are considered since for the first two generations contributions from yukawa interactions
are negligible.
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Af̃ =
3∑

i=1

cf̃i fi, (2.70)

fi =
1

bMSSM
i

(
1−

[
1 +

α(MGUT)

4π
bi log

M2
GUT

m2
Z

]−2
)
.

f̃ Ẽ L̃ D̃ Ũ Q̃

cf̃1
6
5

3
10

2
15

8
15

1
30

cf̃2 0 3
2 0 0 3

2

cf̃3 0 0 8
3

8
3

8
3

Table 2.9: Coefficients cf̃i for eq. (2.71) [116].

With the coefficients cf̃i given in table 2.9 we get for Af̃

AẼ
∼= 0.14 , AL̃

∼= 0.46 , AŨ
∼= 3.83 , AD̃

∼= 3.78 and AQ̃
∼= 4.19 (2.71)

For the calculation the GUT scale has to be fixed. This can be done by using the condition

α1(MGUT) = α2(MGUT), which gives for αem = 1/127.9, sin2 θW = 0.2312 and MZ = 91.2 GeV

[117] MGUT ≃ 1016 GeV. The right handed soft sfermion masses are smaller than the left handed

ones. The difference of the right and left handed soft masses is much larger in the lepton sector

than in the quark sector, where we have an almost degenerate spectrum. In the limit of large m0

and small M1/2 we get for all soft masses mf̃ ∼ m0.
34 For small m0 and large M1/2 we have to

check that at least one gaugino is lighter than the lightest sfermion. If this condition is not fulfilled

the LSP, which is stable under the assumption of R-Parity, carries electromagnetic charge 35. Dark

matter candidates charged under U(1)em are already excluded by experiment.

For third generation soft masses yukawa interaction can not be neglected and therefore a simple

parametrization as in eq. 2.69 is not possible. The contributions of the yukawa term push one of

the two third generations soft masses down to smaller values. Therefore a third generation sfermion

is usually the lightest sfermion in the spectrum.

34Note, that in this limit no EWSB is possible [118].
35 If the left Sneutrino is assumed to be the lightest supersymmetric particle the LSP does not carry electromagnetic

charge. Left Sneutrinos as dark matter candidates are already excluded by experiment [119].
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2.3.4. Supersymmetry and the LHC

At the LHC we haven’t seen any signal for SUSY particles. With the data taken we can only

update exclusion limits on SUSY parameter space. Recent data already constrains SUSY masses to

be larger than ∼ 1 TeV but exact numbers depend crucially on the considered SUSY model. The

present limits on the CMSSM parameter space at 95% confidence level are shown in tab. 2.10 and

2.11 36. In the analysis a simplified model is used that contains only a gluino octet and a neutralino

within the kinematical reach. Furthermore the gluino is assumed to decay with unit probability as

g̃ → q + q̄ + χ0
1. (2.72)

A more detailed discussion can be found in [122]. In tab. 2.10 the ATLAS limits on M1/2 as a

function of m0 are presented. Already with the first analysis using 35 pb−1 of data limits from LEP

could be significantly improved (see first row in tab. 2.10). For M1/2 . 250 GeV m0 & 600 GeV

were already exluded at 95% confidence level, which corresponds to a squark mass of around 800

GeV if all squarks are assumed to be degenerate 37. At the end of 2012 ATLAS published an update

of the 2011 analysis for an integrated luminosity of L . 4.7 fb−1 (see second row in tab. 2.10).

M1/2 < 300 GeV were excluded for all m0 and for M1/2 > 500 the lower limit on the squark mass

was pushed to 1.4 TeV. In the last published ATLAS combined analysis for L . 20 fb−1 lower limits

on the CMSSM parameter space were slightly improved. Squark masses below 1.6 TeV were now

excluded at 95% confidence level (see third row in tab. 2.10).

In tab. 2.11 CMS and ATLAS, respectively, exclusion limits for the lightest neutralino mass as

a function of the gluino mass are shown. In both plots the regions above the grey dashed lines are

kinematically forbidden. Both experiments show similar results and gluino masses of roughly 1.3 TeV

are excluded for neutralino masses less than 500 GeV.

36 All plots are taken from ref. [120] and [121].
37 In the rest of this subsection limits on squark masses are referred to a degenerate squark spectrum. Deviations of

this assumption can weaken the lower limit on squark masses significantly.
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Table 2.10: Present SUSY limits on the CMSSM parameter space from ATLAS working group. All
plots are taken from [120] and [121].
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Table 2.11: Present SUSY limits on the CMSSM parameter space from CMS and ATLAS working
group. All plots are taken from [120] and [121].
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Supersymmetric seesaws

Due to the large mass scales involved in the seesaw mechanism, no direct experimental test of

“the seesaw” will ever be possible. Extending the standard model (SM) only by a seesaw mechanism

does not even allow for indirect tests, since all possible new observables are suppressed by (some

power of) the small neutrino masses. 1

The situation looks less bleak in the supersymmetric version of the seesaw. This is essentially so,

because soft SUSY breaking parameters are susceptible to all particles and couplings which appear

in the renormalization group equation (RGE) running.

In the MSSM all soft SUSY breaking mass terms are treated as free parameters, to be fixed at

the electro-weak scale. However, these soft parameters potentially contain a wealth of information

about physics at the high scale and understanding the nature of SUSY breaking will become the

main challenge, if signals of SUSY are found at the LHC. Highly precise mass measurements will be

needed to distinguish between different SUSY breaking schemes such as CMSSM, anomaly mediated

SUSY breaking (AMSB) [23; 124] or GMSB, to name just the most familiar ones.

Assuming some simplified boundary conditions at an high energy scale, the SUSY softs at the

electro-weak scale contain indirect information about all particles and intermediate scales. Perhaps

the best known application of this idea is the example of lepton flavour violation (LFV) in seesaw

type-I with CMSSM boundary conditions. A plethora of papers on LFV, both for low-energy and

for accelerator experiments, have been published (for a partial list see, for example, [125; 126; 127;

128; 129; 130; 131; 132; 133; 134; 135; 136; 137; 138; 139; 140]), most of them concentrating on

seesaw type-I. Much less work on SUSY seesaw type-II and type-III has been done than for type-I.

For studies of LFV in SUSY seesaw type-II, see for example [141; 116], for type-III [142; 143].

Apart from the appearance of LFV, adding a seesaw to the SM particle content also leads to

changes in the absolute values of SUSY masses with respect to CMSSM expectations, at least in

1“Low-energy” versions of the seesaw, such as inverse seesaw [123] or linear seesaw [21; 22], might allow for larger
indirect effects. In this chapter we will focus exclusively on the “classical” seesaw with a high (B-L) breaking scale.
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principle.

There are only very few papers, which have studied the impact of the seesaw on SUSY particle

masses. Some aspects of type-I seesaw have been studied focusing on what can be learned from

precision measurements in the slepton sector [133; 134; 144; 145]. Moreover, in such a scenario a

splitting between the masses of the selectrons and smuons can occur which might be measurable at

the LHC [146; 147; 148]. Changes in SUSY spectra can lead to changes in the expected relic density

for the cold dark matter. The impact of large values of soft terms in the sneutrino sector [149] and

of large values for the trilinear A0 parameter [150; 151] have been studied in this context.

The relative scarcity of publications on SUSY spectra and the seesaw is probably explained by

the fact that type-I seesaw, the undoubtedly most popular variant, adds only singlets to the MSSM

particle content. If the Yukawa couplings of these singlets are smaller than, say, the gauge couplings

any effects of the right-handed neutrinos on the SUSY mass eigenvalues become negligibly small.

This leaves only a rather small window for the seesaw scale, mSS, say, roughly [4× 1014, 1.2× 1015]

GeV where any measurable shifts in SUSY masses can be expected at all. And it is, of course,

exactly this range for mSS where the largest values for LFV decays are expected. Exceptions from

this general rule can be found in models where one departs from the universality assumption of the

CMSSM parameters. With huge soft SUSY breaking parameters in the seesaw sector one gets larger

effects [152], in particular in the Higgs sector [153].

Type-II and type-III seesaw add superfields, which are charged under the SM group. Thus, the

running of the gauge couplings is affected, leading to potentially large changes in SUSY spectra at

the EW scale. In [154] it was pointed out, that for type-II and type-III seesaw certain combinations

of soft SUSY breaking parameters are at 1-loop order nearly constant over large parts of CMSSM

parameters space, but show a logarithmic dependence on mSS.
2 This was studied in more detail,

including 2-loop effects in the RGEs, for type-II in [116] and for type-III in [142].

However, all of the models mentioned above break SUSY at energies inaccessible for collider

experiments. Thus, theoretical extrapolations from the TeV scale to the high energy scale will be

needed and any “test” of SUSY breaking schemes can at best take the form of a consistency check.

Based on the results of [155; 156; 157] detailed calculations have been done, quantifying the accuracy

with which such tests can be done using data from LHC and a possible ILC [158; 133; 159; 160; 161].

However, these works concentrated on models with MSSM particle content and thus did not attempt

to take into account the observed non-zero neutrino masses. In this chapter we study the prospects

for the LHC and for a combined LHC+ILC analysis for finding indirect hints for the presence of

a high-scale seesaw mechanism in SUSY spectra. Therefore we calculate the low-energy SUSY

spectra for type-I, type-II and type-III seesaw in the CMSSM and confront our theoretical results

with expectations for the accuracy of SUSY mass measurements at the LHC and at a possible

2These so-called invariants can be useful also in more complicated models in which an inverse seesaw is embedded
into an extended gauge group [98].
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combined LHC+ILC analysis [156; 157]. Given the estimated errors on SUSY masses obtained in

detailed simulations [156; 157] we calculate expected χ2-distributions for the two different seesaw

models, in order to give a theoretical forecast on the expected errors on the model parameters, most

notably the error on the “determination” of the seesaw scale mSS .

3.1. Seesaw type I

Running slepton masses with a type-I seesaw have been discussed qualitatively in [133; 134; 144;

145]. In [148] it was discussed that in CMSSM extended by a type-I seesaw, splitting in the slepton

sector can be considerably larger than in the pure CMSSM. This is interesting, since very small mass

splittings in the smuon/selectron sector might be measurable at the LHC, if sleptons are on-shell in

the decay chain χ0
2 → l± l̃∓ → l±l∓χ0

1 [146].

In this section, we calculate SUSY spectra with CMSSM boundary conditions and a seesaw type-

I. We add three generations of right-handed neutrinos and take special care that observed neutrino

masses and mixing angles are always correctly fitted 3. We then follow the procedure of [2]. Using

predicted error bars on SUSY mass measurements for a combined LHC+ILC analysis, we construct

fake “experimental” observables and use a χ2-analysis to estimate errors on the parameters of our

model, most notably the seesaw scale. We identify regions in parameter space, where hints for a

type-I seesaw might show up at the ILC/LHC and discuss quantitatively the accuracy which need to

be achieved, before a realistic analysis searching for signs of type-I seesaw in SUSY spectra can be

carried out.

The rest of this section is organized as follows. In the next subsection we define the supersym-

metric seesaw type-I model, fix the notation and define the CMSSM. In subsection 3.1.2 we present

our results. After a short discussion of the procedures and observables in subsection 3.1.2.1, we

show a simplified analysis, which allows to identify the most important observables and discuss their

relevant errors in subsection 3.1.2.2. Subsection 3.1.3 then shows our full numerical results. We

then close with a short summary and discussion in subsection 3.1.4.

3.1.1. Setup

3.1.1.1. Supersymmetric seesaw type-I

In the case of seesaw type-I one postulates very heavy right-handed neutrinos with the following

superpotential below the GUT scale, MG:

WI = WMSSM +Wν . (3.1)

3 Note, that in principle the input parameters of the seesaw mecanism can be reconstructed from the neutrino and
sneutrino mass matrices [162].
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Here WMSSM is the usual MSSM part and

Wν = N̂ c
i Y

ν
ij L̂j · Ĥu +

1

2
N̂ c

iMR,iiN̂
c
i . (3.2)

We have written eq. (3.1) in the basis where MR and the charged lepton Yukawas are diagonal. In

the seesaw one can always choose this basis without loss of generality. For the neutrino mass matrix,

upon integrating out the heavy Majorana fields, one obtains the well-known seesaw formula

mν = −v
2
u

2
Y ν,TM−1

R Y ν , (3.3)

where, compared to the non-supersymmetric version of the seesaw type-I defined in eq. 2.37, the

SM Higgs vev v is replaced by vu.

Inverting the seesaw equation, eq. (3.3), allows to express Y ν as [163]

Y ν =
√
2
i

vu

√
M̂R ·R ·

√
m̂ν · U †, (3.4)

where the m̂ν and M̂R are diagonal matrices containing the corresponding eigenvalues. R is in

general a complex orthogonal matrix. Note that, in the special case R = 1, Y ν contains only

“diagonal” products
√
Mimi. For U we will use the standard form defined in eq. 2.29.

Eq. (2.37) contains 9 a priori unknown parameters, eq. (3.4) contains 18. The additional 9

unknowns encode the information about the high scale parameters, the three eigenvalues of MR and

the 3 moduli and 3 phases of R.

3.1.1.2. CMSSM, type-I seesaw and RGEs

The CMSSM is defined at the GUT-scale by: a common gaugino mass M1/2, a common scalar

mass m0 and the trilinear coupling A0, which gets multiplied by the corresponding Yukawa couplings

to obtain the trilinear couplings in the soft SUSY breaking Lagrangian. In addition, at the electro-

weak scale, tan β = vu/vd is fixed. Here, as usual, vd and vu are the vacuum expectation values

(vevs) of the neutral component of Hd and Hu, respectively. Finally, the sign of the µ parameter

has to be chosen.

Two-loop RGEs for general supersymmetric models have been given in [164]. 4 In our numerical

calculations we use SPheno3.1.5 [36; 166], which solves the RGEs at 2-loop, including right-handed

neutrinos. It is, however, useful for a qualitative understanding, to consider first the simple solutions

to the RGE for the slepton mass parameters found in the leading log approximation [126; 132], given

4The only case not covered in [164] is models with more than one U(1) gauge group. This case has been discussed
recently in [165].



3.1 Seesaw type I 45

by

(∆M2
L̃
)ij = − 1

8π2
(3m2

0 +A2
0)(Y

ν,†LY ν)ij (3.5)

(∆Al)ij = − 3

8π2
A0Yli(Y

ν,†LY ν)ij

(∆M2
Ẽ
)ij = 0,

where only the parts proportional to the neutrino Yukawa couplings have been written. The factor

L is defined as

Lkl = log
(MG

Mk

)
δkl. (3.6)

Eq. (3.5) shows that, within the type-I seesaw mechanism, the right slepton parameters do not run

in the leading-log approximation. Thus, LFV is restricted to the sector of left-sleptons in practice,

apart from left-right mixing effects which could show up in the scalar tau sector. Also note that for

the trilinear parameters running is suppressed by charged lepton masses.

It is important that the slepton mass-squareds involve a different combination of neutrino Yukawas

and right-handed neutrino masses than the left-handed neutrino masses of eq. (3.3). In fact, since

(Y ν,†LY ν) is a hermitian matrix, it obviously contains only nine free parameters [127], the same

number of unknowns as on the right-hand side of eq. (3.4), given that in principle all 3 light neutrino

masses, 3 mixing angles and 3 CP phases are potentially measurable.

Apart from the slepton mass matrices, Y ν also enters the RGEs form2
Hu

at 1-loop level. However,

we have found that the masses of the Higgs bosons are not very sensitive to the values of Y ν , see

also next subsection. We thus do not give approximate expressions for m2
Hu

. For all other soft SUSY

parameters, Y ν enters only at the 2-loop level. Thus, the largest effects of the SUSY type-I seesaw

are expected to be found in the left slepton sector.

3.1.2. Numerical results

3.1.2.1. Preliminaries

We use SPheno3.1.5 [36; 166] to calculate all SUSY spectra and fit the neutrino data. Unless

noted otherwise the fit to neutrino data is done for strict normal hierarchy (i.e. mν1 = 0), best-fit

values for the atmospheric and solar mass squared splitting [68] and tri-bimaximal mixing angles

[167]. To reduce the number of free parameters in our fits, we assume right-handed neutrinos to be

degenerate and R to be the identity. The seesaw scale, called mSS below, is equal to the degenerate

right-handed neutrino masses. If any of these assumptions is dropped in the next subsections, we will

comment on expected changes of our results. Especially, recently there have been some indications

for a non-zero reactor angle, both from the long-baseline experiment T2K [168] as well as from the

first data in Double CHOOZ [169]. We will therefore comment also on non-zero values of θ13 = θR.
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SPheno solves the RGEs at 2-loop level and calculates the SUSY masses at 1-loop order, except

for the Higgs mass, where the most important 2-loop corrections have been implemented too. The-

oretical errors in the calculation of the SUSY spectrum are thus expected to be much smaller than

experimental errors at the LHC. However, since for the ILC one expects much smaller error bars,

theory errors will become important at some point. We comment on theory errors in the discussion

section.

Observables and their theoretically forecasted errors are taken from the tables (5.13) and (5.14)

of [156] and from [157]. For the LHC we take into account the “edge variables”: (mll)
edge, (mlq)

edge
low ,

(mlq)
edge
high , (mllq)edge and (mllq)thresh from the decay chain q̃L → χ0

2q and χ
0
2 → ll̃ → llχ0

1 [170; 171;

172]. In addition, we consider (mllb)thresh, (mτ+τ−) (from decays involving the lighter stau) and the

mass differences ∆g̃b̃i
= mg̃−mb̃i

, with i = 1, 2, ∆q̃Rχ0
1
= mq̃R−mχ0

1
and∆l̃Lχ

0
1

= ml̃L
−mχ0

1
. Since

mũR
≃ md̃R

≃ mc̃R ≃ ms̃R applies for a large range of the parameter space LHC measurements

will not be able to distinguish between the first two generation squarks. The combined errors for an

LHC+ILC analysis, tables (5.14) of [156], are dominated by the ILC for all non-coloured sparticles,

except the stau. For us it is essential that both, left and right sleptons are within reach of the

ILC. Also the two lightest neutralinos and the lighter chargino measured at ILC are important. The

errors in [156] were calculated for relatively light SUSY spectra, thus we extrapolate them to our

study points, see below, assuming constant relative errors on mass measurements. We will comment

in some detail on the importance of this assumption below. Finally, we use the splitting in the

selectron/smuon sector [146] as an observable:

∆(mẽµ̃) =
mẽ −mµ̃

mmean
l̃

. (3.7)

Here, mmean
l̃

= 1
2 (mẽ + mµ̃). The LHC can, in principle, measure this splitting from the edge

variables for both, left and right sleptons, if the corresponding scalars are on-shell. In CMSSM type-I

seesaw only the left sector has a significant splitting, we therefore suppress the index “L” for brevity.

For this splitting [146] quote a “one sigma observability” of ∆(mẽµ̃) ∼ 2.8 h for SPS1a. 5 For

comparison, the errors on the left selectron and smuon mass at the ILC for this point are quoted as

∆(mẽ) ≃ 1 h and ∆(mµ̃) ≃ 2.5 h, respectively [156].

The negative searches for SUSY by CMS [173] and ATLAS [174] define an excluded range in

CMSSM parameter space, ruling out the lightest SPS study points, such as SPS1a’ [157] or SPS3

[175]. For our numerical study we define a set of five points, all of which are chosen to lie outside

the LHC excluded region, but have the lightest non-coloured SUSY particles within reach of a 1 TeV

linear collider. The points are defined as follows 6:

5SPS1a has only the edge in the right-slepton sector on-shell, see discussion fig. (3.3).
6These points are ruled out now by recent LHC data (see subsection 2.3.4, but were allowed when the paper was

published.
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P1 → (m0 = 120,M1/2 = 600, A0 = 0, tan β = 10)

P2 → (m0 = 120,M1/2 = 600, A0 = 300, tan β = 10)

P3 → (m0 = 120,M1/2 = 600, A0 = −300, tan β = 10) (3.8)

P4 → (m0 = 180,M1/2 = 550, A0 = 0, tan β = 10)

P5 → (m0 = 180,M1/2 = 550, A0 = 300, tan β = 10)

All points have sgn(µ) > 0, masses are in units of GeV. Points P1-P3 lie very close to the stau-

coannihilation line. We have checked by an explicit calculation with MicrOmegas [176; 177; 178; 179]

that the relic density of the neutralino agrees with the current best fit value of ΩCDMh
2 within the

quoted error bars [180] for P1. P4 and P5 have been chosen such that deviations from the pure

CMSSM case are larger than in P1-P3, see eq.(3.5), i.e. to maximize the impact of the seesaw type-I

on the spectra, see below.

3.1.2.2. Observables and seesaw scale

In this subsection we will first keep all parameters at some fixed values, varying only the seesaw

scale. These calculations are certainly simple-minded, but also very fast compared to the full Monte

Carlo parameter scans, discussed later. However, as will be shown in the in the next subsection,

there is nearly no correlation between different input parameters. Thus, the simple calculation

discussed here already gives a quite accurate description of the results of the more complicated

minimization procedures of the “full” calculation. Especially, this calculation allows us to identify

the most important observables and discuss their maximally acceptable errors for our analysis.

In fig. (3.1) we show

σi =
mmSS

i −mCMSSM
i

mCMSSM
i

/
∆(mi), (3.9)

where ∆(mi) is the expected relative experimental error for the mass of sparticle i at the ILC, as

a function of mSS. We remind the reader that we assume that ∆(mi) can be extrapolated to our

study points. To the left results for P1 and to the right for P5. m
CMSSM
i is the value of the mass

calculated in the CMSSM limit and mmSS
i the corresponding mass for a seesaw scale of mSS . These

latter values have always been calculated fitting the Yukawa matrix of the neutrinos at mSS , such

that the best fit values of solar and atmospheric neutrino mass differences are obtained and mν1 ≡ 0

is maintained. As expected the departures from the CMSSM values then increase with increasing

seesaw scale. Note that the lines stop at values of mSS ∼ (2− 3)× 1015 GeV, since for larger values

neutrino Yukawas, which are required to fit the neutrino data, are non-perturbative.

Significant departures with respect to the CMSSM values are found (with decreasing importance)
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Figure 3.1: Calculated deviations of masses from their nominal CMSSM values as function of mSS

for the most important masses. To the left P1, to the right P5.

for the following observables: left smuon mass, left selectron mass, mass of χ0
1, mh0 and χ+

1 . We

have checked that all other observables have much milder dependences on mSS, as expected. The

smuon mass is more important than the selectron mass, despite the latter having a smaller predicted

error, due to our choice of degenerate right-handed neutrinos in the fits. With this assumption the

running of the smuon mass has contributions from Yukawas responsible for both, atmospheric and

solar scale, while the selectron has contributions from the Yukawas of the solar scale only. The

change in χ0
1 and χ+

1 masses are small in absolute scale, but it is expected that ILC will measure

these masses with very high accuracy. Alsomh0 shows some mild dependence on mSS, but on a scale

of an expected experimental error of 50 MeV [157], i.e. much smaller than our current theoretical

error, see below.

As the figure shows deviations from CMSSM expectations of the order of several standard devi-

ations are reached for left smuon and selectron for values of mSS above 1014 GeV. Comparing the

results for P1 (left) with those for P5 (right) it is confirmed that P5 shows much larger deviations

from CMSSM. We have checked that results for the other points P2-P4 fall in between the extremes

of P1 and P5. Lines for P2 and P3 are nearly indistinguishable in such a plot, apart from some minor

difference in the Higgs mass.

In fig. (3.2) we show the calculated χ2 as a function of mSS for 4 different CMSSM points.

Here, χ2 is calculated with respect to CMSSM expectations. To the left we show χ2
T including all

observables, to the right χ2
T without the mass splitting in the (left) smuon-selectron sector. The figure

demonstrates again that P1 (P5) has the smallest (largest) departures from CMSSM expectations. A

non-zero value of A0 can lead to significant departures from CMSSM expectations. Determination of

A0 from measurements involving 3rd generation sfermions and the lightest Higgs mass will therefore

be important in fixing mSS .

Fig. (3.2) also demonstrates that ∆(mẽµ̃) at its nominal error gives a significant contribution

to the total χ2. Thus, LHC measurements only might already give some hints for a type-I seesaw
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[148]. However, with the rather large error bars of mass measurements at the LHC it will not be

possible to fix the CMSSM parameters with sufficient accuracy to get a reliable error on the value

of mSS. Unfortunately, also the accuracy with which ∆(mẽµ̃) can be measured at the LHC is quite

uncertain. According to [146] such a splitting could be found for values as low as (few) 10−4 or as

large as (several) percent, depending on the kinematical configuration realized in nature. Moreover,

our points P1-P5 have heavier spectra than the ones studied in [146], so larger statistical errors are

to be expected.

Fig. (3.3) shows the relative deviation of ∆(mẽµ̃) for P1 (left) and P5 (right) for different

assumed values of the error in this observable, relative to CMSSM. Here, σ = 1, 2, 3, 4 means that

we have multiplied the “error” quoted in [146] by factors 1, 2, 3, 4. The deviation drops below one

sigma for any value of mSS shown for P1 (P5) when this error is larger than twice (six times) the

nominal error. This implies that no hints for seesaw type-I can be found in LHC data if the error on

∆(mẽµ̃) is larger than 5 h (1.6 %) in case of P1 (P5).

We should also mention that the actual value of ∆(mẽµ̃) is not only a function of mSS and the

CMSSM parameters, but also depends on the type of fit used to explain neutrino data. We have used

degenerate right-handed neutrinos and mν1 ≡ 0 in the plots shown above. Much smaller splittings

are found for (a) nearly-degenerate light neutrinos, i.e. mν1 ≥ 0.05 eV; or (b) very hierarchical

right-handed neutrinos. We have checked by an explicit calculation that, for example, for P5 and

mν1 ≡ 0, ∆χ2 ≥ 5.89 7 for values of mSS larger than mSS ≃ 1.6 × 1014 GeV from ∆(mẽµ̃) alone,

whereas the same ∆χ2 is reached for mν1 = 0.05 eV only for mSS >∼ 7 × 1014 GeV. Consequently,

even though one expects that a finite mass difference between left smuon and selectron is found in

CMSSM type-I seesaw, this is by no means guaranteed.

Similar comments apply to the errors for the selectron and smuon mass at the ILC. For P1 (P5)

the departure of the left selectron mass from the CMSSM expectations is smaller than 1 σ even

for mSS ∼ 3 × 1015 if the error on this mass is larger than 1.5h (1%). For the left smuon the

corresponding numbers are for P1 and P5 approximately 1.5% and 5%, respectively.

Naively one expects LFV violation to be large, whenever the neutrino Yukawa couplings are large,

i.e. for large values of mSS. That is, the regions testable by SUSY mass measurements could already

be excluded by upper bounds on LFV, especially the recent upper bound on µ→ eγ by MEG [181].

That this conjecture is incorrect is demonstrated by the example shown in fig. (3.4). In this figure

we show the calculated Br(µ → eγ) to the left and the calculated χ2 (total and only ∆(mẽµ̃)) to

the right for δ = π and two different values of the reactor angle, θ13 for the point P1. For θ13 = 0 all

values of mSS above approximately mSS ∼ 1014 GeV are excluded by the upper bound Br(µ→ eγ)

≤ 2.4 × 10−12 [181]. For θ13 = 6◦ nearly all values of mSS become allowed. At the same time,

this “small” change in the Yukawas has practically no visible effect on the calculated χ2 from mass

measurements as the plot on the right shows. This demonstrates that SUSY mass measurements

7∆χ2 ≥ 5.89 corresponds to 1 σ c.l. for 5 free parameters.
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Figure 3.4: To the left Br(µ → eγ) and to right calculated χ2 as function of mSS for two different
values of the reactor angle θR.

and LFV probe different portions of seesaw type-I parameter space, contrary to what is sometimes

claimed in the literature. That one can fit LFV and SUSY masses independently even for such a

simple model as type-I seesaw is already obvious from eq. (3.5): Even after fixing all low energy

neutrino observables we still have nine unknown parameters to choose from to fit any entry of the

left slepton masses independently.

Fig. (3.4) also shows that non-zero values of θ13, as preferred by the most recent experimental

data [168; 169], should have very little effect on our parameter scans. In our numerical scans,

discussed next, we therefore keep θ13 = 0 unless mentioned otherwise. We will, however, also briefly

comment on changes of our results, when θ13 is allowed to float within its current error.

3.1.3. Numerical scans

For the determination of errors on the CMSSM parameters and mSS we have used two inde-

pendent programmes, one based on MINUIT while the other uses a simple MonteCarlo procedure

to scan over the free parameters. For a more detailed discussion see [2]. Plots shown below are

obtained by the MonteCarlo procedure, but we have checked that results from MINUIT and our

simplistic approach described above give very similar estimates for the χ2, with MINUIT only slightly

improving the quality of the fit. In this subsection we always use all observables in the fits and quote

all errors at 1 σ c.l., unless noted otherwise. Since our “fake” experimental data sets are perfect

sets, the minimum of χ2 calculated equals zero and is thus not meaningful; only ∆χ2 calculated

with respect to the best fit points has any physical meaning in the plots shown below.

Fig. (3.5) shows the allowed parameter space obtained in a MonteCarlo run for m0, M1/2, tan β,

A0 and mSS for 7 free parameters, P5 and mSS = 5 × 1014 GeV. Shown are the allowed ranges of

m0 andM1/2 versus mSS , as well as m0 versus M1/2 and tan β versus A0. On top of the 4 CMSSM

parameters andmSS in this calculation we allow the solar angle (θ12) and the atmospheric angle (θ23)
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to float freely within their allowed range. Errors on neutrino angles for this plot are taken from [182].

Plots for other points and/or different sets of free parameters look qualitatively very similar to the

example shown in the figure. There is very little correlation among different parameters, contrary to

the situation found in case of seesaw type-II and type-III [2]. Especially no correlations between m0,

M1/2 and mSS are found. However, there is some correlation between tan β and A0, driven by the

fact that mh0
1
alone can only fix a certain combination of these two parameters well. The correlation

between tan β and A0 is slightly stronger than in the CMSSM case, due to the contribution of A0

in the running of slepton masses, see eq. (3.5).

For our assumed set of measurements, m0 andM1/2 are mainly determined by the highly accurate

measurements of right slepton and gaugino masses of the ILC. A0 and tan β are fixed by a combination

of the lightest Higgs mass and the lighter stau mass. LHC measurements help to break degeneracies

in parameter space, but are much less important. We stress that the highly accurate determination

of CMSSM parameters shown in fig. (3.5) is a prerequisite for determining reliable errors on mSS.
8

Fig. (3.6) shows calculated χ2 distributions versus mSS for the same 7 free parameters as in

fig. (3.5), P5 and mSS = 1014 GeV (to the left) and mSS = 5 × 1014 GeV (to the right). For

the latter an upper (lower) limit of mSS ≃ 8 × 1014 GeV (mSS ≃ 3 × 1014 GeV) is found. For

mSS = 1014 GeV a clear upper limit is found, but for low values of mSS the χ2 distribution flattens

out at ∆χ2 ∼ 6.5. This different behaviour can be understood with the help of the results of the

previous subsection, see fig. (3.2). For mSS = 5 × 1014 GeV, there exists a notable difference in

some observables with respect to the CMSSM expectation, especially left smuon and selectron mass

can no longer be adequately fitted by varying m0 and M1/2 alone, without destroying the agreement

with “data” for right sleptons and gauginos. Therefore both, a lower and an upper limit on mSS

exist for this point. The situation is different for mSS = 1014 GeV, for which the spectrum is much

8We have checked this explicitly in a calculation using only LHC observables.
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Figure 3.7: Calculated allowed range of mSS versus mSS for 5 (left) and 7 (right) free parameters
and P5. The two different error bars correspond to 1 and 3 σ c.l.

closer to CMSSM expectations. Larger values of mSS are excluded, since they would require larger

Yukawas, i.e. larger deviation from CMSSM than observed. Smaller values of mSS, on the other

hand, have ever smaller values of Y ν , i.e. come closer and closer to CMSSM expectations. For an

input value of mSS just below mSS = 1014 GeV there is then no longer any lower limit on mSS, i.e.

the data becomes perfectly consistent with a pure CMSSM calculation. In this case one can only

“exclude” a certain range of the seesaw, say values of mSS above a few 1014 GeV.

One standard deviation is, of course, too little to claim an observation. We therefore show in

fig. (3.7) ∆(mSS) versus mSS for 5 (left) and 7 (right) free parameters and P5 at 1 and 3 σ c.l. At

mSS = 1014 formally a 1 sigma “evidence” could be reached, but at 3 σ c.l. the spectrum is perfectly

consistent with a pure CMSSM. For larger values of mSS, however, several standard deviations can

be reached. For the two largest values of mSS calculated in this figure, a 5 σ “discovery” is possible.

Fig. (3.7) shows ∆(mSS) for 5 and 7 free parameters. We have repeated this exercise for

different sets of free parameters and mSS = 5 × 1014. Here, 5 free parameters correspond to the 4

CMSSM parameters plus mSS, 7 free parameters are the original 5 plus θ12 and θ23. We have also

tried other combinations such as 6 parameters: original 5 plus θR and 8 parameters, where we let all

3 neutrino angles float freely. Sets with larger numbers of free parameters are no longer sufficiently

sampled in our MonteCarlo runs, so we do not give numbers for these, although in principle the

calculation could allow also to let the neutrinos mass squared differences to float freely. Error bars

are slightly larger for larger number of free parameters, as expected. However, since there is little or

no correlation among the parameters, the differences are so small as to be completely irrelevant.

3.1.4. Summary and discussion

In this section we have discussed the prospects for finding indirect hints for type-I seesaw in

SUSY mass measurements. Since type-I seesaw adds only singlets to the SM particle content, only

very few observables are affected and all changes in masses are small, even in the most favourable
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circumstances. Per-mille level accuracies will be needed, i.e. measurements at an ILC, before any

quantitative attempt searching for type-I seesaw can hope for success, even assuming admittedly

simplistic CMSSM boundary conditions. The SUSY parameter space used in this chapter is already

excluded by recent LHC data (see subsection 2.3.4). At the time of the publication [1] the points

were still allowed. Therefore, accuracies needed to find any indirect hint from seesaw type-I at LHC

can not be reached anymore. Taking into account recent exclusion limits on SUSY masses from

CMS and ATLAS analysis also prospects for possible mass measurements of SUSY particles at linear

colliders like the ILC has to be reconsidered, since we need at least part of the SUSY spectrum within

the kinematical reach of those future experiments.

Our calculation confirms quantitatively that slepton mass measurements can contain information

about the type-I seesaw. Right sleptons are expected to be degenerate, while the left smuon and

selectron show a potentially measurable splitting between their masses. If such a situation is indeed

found, an estimate of mSS might be derivable from ILC SUSY mass measurements.

Above we have commented only on experimental errors. However, given the per-mille require-

ments on accuracy, stressed several times, also theoretical errors in the calculation of SUSY spectra

are important. Various potential sources of errors come to mind. First of all, a 1-loop calculation of

SUSY masses is almost certainly not accurate enough for our purposes. We have tried to estimate

the importance of higher loop orders, varying the renormalization scale in the numerical calculation.

Changes of smuon and selectron mass found are of the order of the ILC error or even larger, de-

pending on SUSY point and variation of scale. For the mass of the lightest Higgs boson it has been

shown that even different calculations at 2-loop still disagree at a level of few GeV [34]. Second,

our calculation assumes a perfect knowledge of the GUT scale. Changes in the GUT scale do lead

to sizeable changes in the calculated spectra for the same CMSSM parameters, which can be easily

of the order of the required precision of the calculation and larger. In this sense, ∆(mẽµ̃) is an

especially nice observable, since here the GUT scale uncertainty nearly cancels out in the calculation.

In summary, if ILC accuracies on SUSY masses can indeed be reached experimentally, progress on

the theoretical side will become necessary too.

In our calculations, we have considered only SUSY masses. We have not taken into account

data from lepton flavour violation, mainly because currently only upper limits are available. If in

the future finite values for li → lj + γ become available, it would be very interesting to see, how

much could be learned about the type-I seesaw parameters in a combined fit. Including LFV one

could maybe also allow for non-degenerate right-handed neutrinos in the fits. However, we stress

again, that LFV and SUSY mass measurements test different portions of seesaw parameter space.

For a more complete “reconstruction” of seesaw parameters, than what we have attempted here,

both kinds of measurements would be needed.
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3.2. Seesaw type II and III

In this section we calculate the low-energy SUSY spectra for type-II and type-III seesaw in CMSSM

and confront our theoretical results with expectations for the accuracy of SUSY mass measurements

at the LHC and at a possible combined LHC+ILC analysis [156; 157]. Given the estimated errors on

SUSY masses obtained in detailed simulations [156; 157] we calculate expected χ2-distributions for

the two different seesaw models, in order to give a theoretical forecast on the expected errors on the

model parameters, most notably the error on the “determination” of the seesaw scale mSS.

The rest of this section is organized as follows. In the next subsection we summarize the super-

symmetric variants of the seesaw type II and III, to set up the notation. We embed the new particles

required by the different seesaw mechanisms in complete SU(5) multiplets in order to maintain the

successful unification of gauge couplings observed in the MSSM. Subsection 3.2.2 contains the bulk

of this section. It first defines our setup, lists the observables we use and then discusses SUSY spectra

in the different models. With these results we then proceed to calculate theoretical χ2 distributions.

We first discuss a combined LHC+ILC analysis and then go to the case of using only the less accurate

LHC data. Our results, of course, depend crucially on the accuracy with which the SUSY masses

can be measured in future accelerator experiments. We therefore dedicate a subsection to discuss in

detail the requirements for the accuracies on the most important observables needed for our analysis.

We then close with a short discussion and outlook.

3.2.1. Supersymmetric seesaw type II and III

In this subsection we define the supersymmetric versions of the tree-level variants of the seesaw

type II and III. A more detailed discussion including the embedding in SU(5) can be found in [183].

For brevity, we will discuss only the superpotential terms.

In supersymmetric models the simplest way to generate a type-II, while maintaining gauge cou-

pling unification, is to add a pair of 15-plets of SU(5) to eq. (2.55). The SU(5) invariant superpo-

tential than reads

W =
1√
2
Y155̄M · 15 · 5̄M +

1√
2
λ15̄H · 15 · 5̄H +

1√
2
λ25H · 15 · 5H +Y510 · 5̄ · 5̄H

+ Y1010M · 10M · 5H +M1515 · 15 +M55̄H · 5H . (3.10)

Here, 5̄M and 10M are the usual SU(5) matter multiplets and 5H = (Hc,Hu) and 5̄H = (H̄c,Hd).

Under SU(3) × SU(2)× U(1) the 15-plet decomposes as [141]

15 = S + T + Z , (3.11)

S ∼ (6, 1,−2

3
), T ∼ (1, 3, 1), Z ∼ (3, 2,

1

6
).
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Below the GUT scale, MG, in the SU(5)-broken phase the superpotential reads

WII =
1√
2
(YT L̂T̂1L̂+ YSD̂

cŜ1D̂
c) + YZD̂

cẐ1L̂

+
1√
2
(λ1ĤdT̂1Ĥd + λ2ĤuT̂2Ĥu) +MT T̂1T̂2 +MZẐ1Ẑ2 +MSŜ1Ŝ2, (3.12)

where fields with index 1 (2) originate from the 15-plet (15-plet). The first term in eq. (3.12) is

responsible for the generation of neutrino masses, which at low energies are given by

mν =
v2u
2

λ2
MT

YT (3.13)

As in the non-supersymmetric case defined in eq. (2.38), the seesaw scale is estimated to be
MT
λ2

≃ 1015 GeV.

In the case of a seesaw model type-III one needs new fermions Σ at the high scale belonging

to the adjoint representation of SU(2). The simplest complete SU(5) embedding possible is the

24-plet [184]. The superpotential of the unbroken SU(5) is then

W =
√
2 5̄MY510M 5̄H − 1

4
10MY1010M5H + 5H24MY

III
N 5̄M +

1

2
24MM2424M . (3.14)

The 24M decomposes under SU(3) × SU(2)× U(1) as

24M = (1, 1, 0) + (8, 1, 0) + (1, 3, 0) + (3, 2,−5/6) + (3∗, 2, 5/6) , (3.15)

= B̂M + ĜM + ŴM + X̂M + ̂̄XM .

The B̂M has the same quantum numbers as the N̂ c, while the fermionic component of the ŴM

corresponds to the Σ. Thus, the 24M always produces a combination of the type-I and type-III

seesaw.

In the SU(5) broken phase the superpotential contains

WIII = Ĥu(ŴMYW −
√

3

10
B̂MYB)L̂+ Ĥu

̂̄XMYXD̂
c

+
1

2
B̂MMBB̂M +

1

2
ĜMMGĜM +

1

2
ŴMMW ŴM + X̂MMX

̂̄XM . (3.16)

Integrating out the heavy fields, as before, leads to

mν = −v
2
u

2

(
3

10
Y T
BM

−1
B YB +

1

2
Y T
WM

−1
W YW

)
. (3.17)

There are two contributions: (i) from the gauge singlet and (ii) from the SU(2) triplet. Starting
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with a common Y III
N , Y T

B evolves slightly differently from Y T
W under the RGEs. Thus, in principle

two non-zero neutrino masses are generated from one 24M only. However, the ratio of the two

non-zero neutrino masses generated in the RGE running is much too tiny to explain the observed

neutrino data and thus at least 2 copies of 24M are needed for a realistic neutrino mass spectrum.

In our numerical calculations we use 3 copies of 24M , motivated by the observed 3 generations.With

∀Y ij
B /Y

ij
W ≃ 1, one can simplify eq. (3.17) to

mν = −v2u
4

10
Y T
WM

−1
W YW (3.18)

which is the supersymmetric version of eq. 2.39. The scale of MW is then estimated to be mSS ∼
8× 1014 GeV for Y ij

W = O(1).

3.2.2. Results and discussion

In subsection 3.2.2.1 we will define our setup and discuss the input observables. In 3.2.2.2 we

discuss the SUSY spectra in the different models and how the observables change under changes of

the seesaw scale. In subsection 3.2.2.3 we present our results for a combined LHC+ILC analysis,

while 3.2.2.4 shows the results for an analysis using only LHC data. Subsection 3.2.2.5 discusses

the accuracies on the different observables, which need to be achieved experimentally, before any

conclusions on the presence (or absence) of a seesaw mechanism can be drawn. Given the inherent

unreliability of theoretical error forecasts in general, subsection 3.2.2.5 can be considered to contain

the central parts of this section.

3.2.2.1. Setup, observables and data input

All the numerical results shown in the following have been obtained with the programme package

SPheno [36; 185]. The RGE equations, complete at the 2-loop order, have been calculated and

incorporated into SPheno with the help of SARAH [35; 186; 187]. Details and discussion of the

implementation can be found in [142].

To completely specify the low-energy SUSY spectra, we have to assume a specific SUSY breaking

scenario. In this subsection we use CMSSM. In the following we will call “pure CMSSM”, pCMSSM

for short, the version of the model with no seesaw mechanism at all. Note that this is equivalent to

putting the seesaw scale mSS equal to the GUT scale MG. For brevity, we will call “type-II” and

“type-III” models with CMSSM boundary conditions, to which on top of the MSSM particle content

the corresponding “seesaw particles”, as specified in the previous subsection, are added at scalemSS.

In our numerical calculations we concentrate on some selected sets of CMSSM parameters. This

is mainly motivated by the exorbitant amount of CPU time a full scan over the CMSSM space

would require, see also the discussion below. The points we have studied are SPS1a’ [157] and
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the points SPS1b and SPS3 [175]. In addition, for reasons explained in subsection 3.2.2.2, we

consider a few more points with modified CMSSM parameters. We will call these points MSP-1

(m0,M1/2, tan β,A0) = (70, 400, 10,−300), MSP-2 (220, 700, 30, 0) and MSP-3 (120, 720, 10, 0).

MSP-1 is similar to SPS1a’ but with a larger value of M1/2, MSP-2 is a point with larger tan β and

MSP-3 is similar to SPS3, but again with a larger value of M1/2. All these points choose µ > 0. We

have not found any qualitatively new features in points with negative µ, as far as the determination

of mSS is concerned.

Observables and their theoretically forecasted errors are taken from the tables (5.13) and (5.14)

of [156] and from [157]. For the LHC we take into account the “edge variables”: (mll)
edge, (mlq)

edge
low ,

(mlq)
edge
high , (mllq)edge and (mllq)thresh from the decay chain q̃L → χ0

2q and χ
0
2 → ll̃ → llχ0

1 [170; 171;

172]. In addition, we consider (mllb)thresh, (mτ+τ−) (from decays involving the lighter stau) and

the mass differences ∆g̃b̃i
= mg̃ −mb̃i

, with i = 1, 2, ∆q̃Rχ0
1
= mq̃R −mχ0

1
and ∆l̃Lχ

0
1

= ml̃L
−mχ0

1
.

Since mẽR ≃ mµ̃R
and mũR

≃ md̃R
≃ mc̃R ≃ ms̃R applies for a large range of the parameter space

LHC measurements will not be able to distinguish between the first two generation sfermions. 9 This

allows us to define the masses ml̃L
= (mẽL +mµ̃L

)/2 and mq̃R = (mũR
+md̃R

+mc̃R +ms̃R)/4

which will be used from now on for the mass differences ∆q̃Rχ0
1
and ∆l̃Lχ

0
1

. As discussed below in

subsection 3.2.2.5, especially ∆g̃b̃i
and the edge variables are important for the LHC analysis. For

the ILC we assume that at least mχ0
1
, mẽR ≃ mµ̃R

and mẽL ≃ mµ̃L
are kinematically accessible. In

addition, whenever within the reach of the ILC, we also take into account τ̃1, χ
0
2, χ

+
1 and t̃1, which

are, however, less important. We also assume that the lighter Higgs, h0, has been found and its mass

measured with an accuracy which depends on whether the analysis is for LHC only or for LHC+ILC,

see the corresponding error estimates in [157]. Errors for the ILC are taken directly from the tables

of the above papers. For the error bars for the LHC, however, we have rescaled all statistical errors

from the values for 300 fb−1 to a luminosity of (only) 100 fb−1. To be conservative the total

error is obtained summing statistic and systematic error linearly. Note that we did not make use of

the combined LHC and ILC errors calculated in the papers mentioned above. When we discuss the

calculations for LHC and ILC observables in 3.2.2.3 we refer to an analysis in which the LHC and

ILC observables are all enabled but the errors are the errors for the LHC or ILC only. Nevertheless,

we have checked that using the combined errors changes the results only by an irrelevant amount.

We will call this analysis therefore “ILC+LHC combined”.

In [156] and [157], only standard SPS points have been studied in detail. In the calculation

of the χ2-distributions we assume that relative errors for different CMSSM points and/or seesaw

points are constant. The assumption to use constant relative errors in all of our calculations is, of

course, a crucial simplification which has to be checked very carefully. However, we have chosen

to do so for the following two reasons: (a) It allows us to perform a χ2 analysis for all different

spectra within reasonable CPU time. And (b) uncertainties of the theoretically forecasted error bars

9See however [146; 147; 148].
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are nearly impossible to estimate. Only experiments can finally determine total errors on observables.

We thus use errors-as-predicted and discuss in subsection 3.2.2.5, how our conclusions will change

as a function of these unknown errors.

To numerically estimate the allowed ranges for the model parameters we use a simple χ2 proce-

dure. We have found that, see below, errors on m0, M1/2 and mSS are very strongly correlated. To

assure that our estimates are reliable in all cases we have written two completely independent numeri-

cal codes. The first of these is based on MINUIT, 10. enforcing themSS scan while MINUIT is fitting

the parameters m0, M1/2, tanβ and A0 for fixed mSS. The second code uses a straight-forward but

slow Monte Carlo random walk procedure, which can be “heated” to find separated minima. In the

MC calculations we use usually a (few) 106 points to assure convergence. This makes the MC code

slow, but reliable. We have done calculations using both codes in all cases necessary, to ensure that

convergence has been reached.

Finally we need to mention that in all calculations shown below we put neutrino Yukawa couplings

to negligibly small values, unless noted otherwise. Again the reason for this choice is simply to limit

the amount of CPU time necessary for our fits. 11 We will comment, however, in subsection (3.2.2.5)

on the differences expected with fits, where the Yukawas are chosen to fit neutrino data correctly.

In general, if mSS is below, say, 1014 GeV the differences of the full fit to our calculation with

negligible Yukawas is found to be completely irrelevant. If any hints of seesaw with mSS in the range

[1014, 1015] were indeed found in SUSY spectra, however, we expect that a full analysis would find

results which differ by some (10−30) % (depending on the exact value of mSS) from our preliminary

numbers.

3.2.2.2. Mass spectra and LHC and ILC observables

In this subsection we briefly summarize the differences in the calculated mass spectra of the

different models and how this affects the LHC and ILC observables, which we use in our fits. In the

following all numerical results shown in the figures have been calculated solving the full 2-loop RGEs

numerically. Moreover, we have taken into account the 1-loop thresholds of the seesaw particles at

the seesaw scale as described in [142] and include the one-loop contributions to the SUSY masses

[188]. We have also included the shifts of the gauge couplings to the DR-scheme. It is instructive

to discuss some (semi-) analytical approximations at 1-loop order, which will allow to understand

qualitatively the numerical results. We stress that none of the following approximations is used in

any way in the numerical calculations.

The introduction of complete SU(5) multiplets at a scale below the GUT scale changes the

10Minimization package from the CERN Programme Library. Documentation can be found at
http://cernlib.web.cern.ch/cernlib/

11We let 5 parameters flow freely. For a type-II, for example, we have in YT six more complex parameters. A full fit
would require minimizing χ2 for 5+12-3=14 parameters, which can not done for all spectra we need to consider within
realistic amounts of CPU time.
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running of the gauge couplings. Incorporating a seesaw mechanism with full SU(5) multiplets at

1-loop order in eq. 2.67 the gauge couplings at the different scales are given as [116]

α1(mZ) =
5αem(mZ)

3 cos2 θW
, α2(mZ) =

αem(mZ)

sin2 θW
, (3.19)

αi(mSUSY ) =
αi(mZ)

1− αi(mZ )
4π bSMi log

m2
SUSY

m2
Z

,

αi(mSS) =
αi(mSUSY )

1− αi(mSUSY )
4π bi log

m2
SS

m2
SUSY

,

αi(MG) =
αi(mSS)

1− αi(mSS)
4π (bi +∆bi) log

M2
G

m2
SS

.

mSS denotes the seesaw scale, i.e. the mass of the 15-plet or the mass(es)12 of the 24-plets. For the

case of the 15-plet one finds ∆bi = 7 whereas for the case with three 24-plets one finds ∆bi = 15,

since each 24M gives a ∆bi = 5. It is easy to show that at the 1-loop level the GUT scale is not

changed by the introduction of the complete SU(5) multiplets. However, the∆bi 6= 0 lead to a faster

“running” of the gauge couplings and thus to a larger value of α(MG) compared to the CMSSM

case. For seesaw scales smaller than roughly mSS ∼ 109 GeV (1013 GeV) one then encounters a

Landau pol in α(MG) for seesaw type-II (type-III) [142]. This defines in each case a lower limit on

the seesaw scale, if we insist on perturbativity.13

Gaugino masses evolve like gauge couplings:

Mi(mSUSY ) =
αi(mSUSY )

α(MG)
M1/2. (3.20)

Eq. (3.20) implies that the ratio M2/M1, which is measured at low-energies, has the usual CMSSM

value, but the relationship to M1/2 is changed. I.e. since α(MG) is larger in the seesaw case than

in the standard pCMSSM, Mi are smaller in seesaw than in pCMSSM.

12We assume that the 3 copies of 24-plets are degenerate. In principle, given enough accurately measured observables,
it might be possible to drop this assumption.

13Note, however, the SPheno never allows us to push the seesaw scales down to these limits. Convergence problems
are usually encountered already for α(MG) >∼ 0.25 depending on the CMSSM parameters.
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For the soft mass parameters of the first two generations one obtains [116]

m2
f̃

= m2
0 +

3∑

i=1

cf̃i

((
αi(mSS)

α(MG)

)2

fi + f ′i

)
M2

1/2, (3.21)

fi =
1

bi

(
1−

[
1 +

αi(mSS)

4π
bi log

m2
SS

m2
Z

]−2
)
,

f ′i =
1

bi +∆bi

(
1−

[
1 +

α(MG)

4π
(bi +∆bi) log

M2
G

m2
SS

]−2
)
. (3.22)

The various coefficients cf̃i are given in table 2.9. In the limit mSS → MG the functions f ′i go

to zero and one recovers the standard CMSSM estimations for the sfermion masses. For any mSS

belowMG, the contribution from fi are smaller than in the CMSSM case, due to the prefactor which

is always smaller than one. The contribution from the f ′i can only partially compensate for this

and thus, at low energies for a given pair of m0 and M1/2 one expects the sfermion masses to be

smaller in seesaw than in pCMSSM. It is important, however, to note that the different coefficients

ci differ not only from sparticle to sparticle, but also are different for the same particle but different

gauge groups. This observation is fundamentally the reason explaining the statement that accurate

sfermion mass measurements will allow to distinguish pure CMSSM from CMSSM plus seesaw.14

As in the case of pCMSSM, coloured particles are expected to be heavier than non-coloured ones in

seesaw.

Before discussing the numerical results, we briefly comment on seesaw type-I. In type-I one only

adds singlets to the MSSM particle content. Thus, ∆bi = 0 ∀i and there is no deformation of the

spectrum with respect to CMSSM due to the gauge part. The only change one expects for type-I is

due to a different running of m2
L, when Yukawas are taken into account. Since only m2

L is affected,

most of the observables we have discussed above are not sensitive to the seesaw scale in type-I and

our current analysis can not directly be applied to type-I seesaw.

Fig. (3.8) shows some examples of SUSY masses for two specific choices of CMSSM parameters.

The top panel shows CMSSM parameters chosen as in the standard point SPS1a’ [157], while the

bottom panel shows MSP-1 for comparison. All plots show masses as function of mSS , to the left for

seesaw type-II and to the right for type-III. Shown are masses of the lighter two neutralinos, χ0
1 and

χ0
2, and masses of charged sleptons. As is also typical in CMSSM, the mass of the lighter chargino

mχ+

1

is very similar to mχ0
2
and smuons and selectrons are nearly degenerate. We note in passing,

that the mass of the lightest Higgs, h0, shows little or no sensitivity at all on mSS but is important

in the fits.

As discussed above, all masses get smaller for smaller values of mSS and are always smaller than

in the pCMSSM limit. Note the wide range for type-II shown and the much smaller range of mSS

14If all ci where the same, one could always fit the data by a simple rescaling of m0 and M1/2.
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Figure 3.8: Supersymmetric masses for two specific choices of CMSSM parameters as a function of
the seesaw scale. To the left: type-II. To the right: type-III. The CMSSM parameters are fixed at the
values of SPS1a’ (top) and to MSP-1 (bottom). Note the different scales for type-II and type-III.
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Figure 3.9: Running masses as a function of the seesaw scale, left: type-II; right: type-III. As fig.
(3.8), but showing only the point SPS1a’. The masses shown in this figure are the most important
coloured particles for our analysis.

plotted for type-III. Ratios of gaugino masses follow standard expectations for all values of mSS and

both types of seesaw. The slopes of the curves are different for different sparticles and the relative

changes are larger in type-III than in type-II. This simply reflects the fact that type-III causes a larger

change in the beta coefficients (∆bi = 15) than type-II (∆bi = 7).

For the point SPS1a’ the lighter chargino becomes lighter than 105 GeV for type-II (type-III)

seesaw scales below roughly mSS ∼ 2×1013 GeV (mSS ∼ 1015 GeV). Thus, mSS below these values

are ruled out by the LEP bounds [180; 189]. Note that this implies that type-III can not explain

neutrino data for CMSSM parameters as in SPS1a’ with Yukawas smaller than Y ij
W ≤ 1.

Changing the seesaw scale can lead to a different mass ordering for different sparticles. For

example, for SPS1a’ the χ0
2 is heavier than ẽR and τ̃1 in the CMSSM limit (seesaw scale equal to

MG), but lighter than ẽR for type-II (type-III) seesaw scales belowmSS ∼ 3×1013 (mSS ∼ 8×1014).

This is important for our study, since as a function of mSS it can happen that some observables are

kinematically open for some values of mSS but not for others, see also the discussion in subsection

3.2.2.4.

The modified value of M1/2 = 400 GeV in MSP-1 with respect to SPS1a’ is motivated by

the fact that for this choice of parameters the edge variables from the chain χ0
2 → l̃Rl → llχ0

1

are kinematically possible for all relevant values of mSS. The larger value of M1/2 implies heavier

neutralinos and also that the LEP bounds on sparticle masses are fulfilled for all values of mSS

shown. Note, that all sparticles shown in the plot are kinematically accessible at an ILC with
√
s = 1

TeV. For MSP-1 the lighter stau is the LSP for mSS larger than roughly mSS = 1016 GeV. Thus,

this point formally has no cosmologically acceptable pCMSSM limit.

Fig. (3.9) shows the dependence of several coloured sparticle masses on mSS. Again to the left

(right) we show seesaw type-II (type-III). Note the different scales for type-II and type-III. We show
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Figure 3.10: Relative change of different LHC observables as a function of the seesaw scale for
type-II seesaw. Top CMSSM parameters as in SPS1a’, bottom MSP-1. For an explanation see text.
(mee)

edge is repeated in the left plot for comparison.

only the values for SPS1a’ in this figure, masses for MSP-1 are larger but behave qualitatively very

similar. The relative change of masses as a function of mSS is much larger than for the non-coloured

sparticle masses shown in fig. (3.8). Here the range where mg̃ ≃ mq̃L,R
<∼ 300 GeV is excluded

by Tevatron data [180; 190]. However, this region is already excluded by LEP data. Note, that

mg̃ > mb̃1
for all values of mSS in this point. Coloured sparticle production gives the bulk of the

SUSY cross section at the LHC as usual. In these points most of the coloured sparticles are not

kinematically accessible at the ILC, except for low values of mSS. Except t̃1 we therefore do not

take into account measurements of coloured sparticles at the ILC in our analysis, even though they

could be potentially much more accurate than the corresponding measurements at the LHC.

With the masses shown in fig. (3.8) and fig. (3.9) one obtains the LHC observables shown in
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fig. (3.10) for type-II. Again in the top panel we show SPS1a’ and in the bottom panel MSP-1.

The figure shows several mass differences (left) and the edge variables (right) stemming from the

decay chain q̃ → qχ0
2 with the subsequent decay χ0

2 → l± l̃∓ → l±l∓χ0
1 [170; 171; 172]. We have

normalized all observables to their expected values for mSS = MG. Thus relative changes in the

different observables with respect to pCMSSM are plotted.

The two kinks in the running of (mlq)
edge
low and (mlq)

edge
high stem from the fact that one has to

consider different cases in these observables. They can be written as [171]

(mlq)
edge
high = max[(mmax

lnearq)
2, (mmax

lfarq
)2] (3.23)

(mlq)
edge
low = min[(mmax

lnearq)
2, (m2

q̃ −m2
χ0
2

)(m2
l̃R

−m2
χ0
1

)/(2m2
l̃R

−m2
χ0
1

)]

where

(mmax
lnearq)

2 = (m2
q̃ −m2

χ0
2

)(m2
χ0
2

−m2
l̃R
)/m2

χ0
2

(3.24)

(mmax
lfarq

)2 = (m2
q̃ −m2

χ0
2

)(m2
l̃R

−m2
χ0
1

)/(m2
l̃R
).

These conditions change as a function of mSS causing the kinks shown in the figure. Except for the

(mll)
edge different cases appear in the expressions for all edges, but only for the variables (mlq)

edge
low

and (mlq)
edge
high do the kinematical conditions change as function of mSS normally.

The plot in fig. (3.10) demonstrates the strong dependence of the LHC observables on mSS.

Increasing and decreasing values of the edges are possible, while mass differences usually decrease for

lower values of mSS. Note that in the χ2 fits, discussed in the next subsections, observables which

show (a) the largest relative change with respect to mSS and (b) have the smallest expected errors

will give the most important contributions. Finally we mention that fig. (3.10) shows only type-II,

since results for type-III are qualitatively similar but with larger relative changes.

3.2.2.3. χ2 analysis for combined LHC and ILC data

In this subsection we take into account all possible LHC and ILC observables. We discuss this

more futuristic (but simpler) case first. Results for an analysis taking only LHC observables are

discussed in the next subsection. We note in passing that we have checked that we can roughly

reproduce the error on parameters for the pure CMSSM results for the point SPS1a’ discussed in

detail in [157].

Fig. (3.11) shows the allowed ranges of the parameters for the point MSP-1 and one specific

choice of mSS = 5 × 1013 GeV for type-II seesaw. The allowed regions have been found in a MC

random walk procedure letting 5 parameters, m0,M1/2, A0, tan β and mSS, float freely. The ranges

shown correspond to a ∆χ2 ≃ 5.89, i.e. 1 σ c.l. for 5 free parameters, where we have taken

into account the correlations between the various parameters. Plotted are different 2-dimensional
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Figure 3.11: Allowed parameter space for m0, M1/2, tan β, A0 and mSS for all 5 parameters varied
freely. The input value for the seesaw scale is mSS = 5 × 1013 GeV and seesaw type-II has been
used.
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projections of parameters.

As mentioned already above, the three parameters m0, M1/2 and mSS are highly correlated

among each other. Lower values of mSS can be compensated by increasing M1/2 and decreasing

m0 at the same time. This feature is present in all parameter space for both types of seesaw. This

correlation results in errors on m0 and M1/2 which are larger (some times much larger, see below)

than in pCMSSM for the same input errors on observables. We note that the χ2 in this calculation is

dominated by the much more accurate ILC data, see also the discussion in subsection 3.2.2.5 below.

In contrast, tan β and A0 show very little correlation with mSS (and m0 and M1/2) and only a

rather moderate correlation among themselves. tan β and A0 are mostly determined by the Higgs

mass measurement, and to some extend by 3rd generation sfermions. Note that A0 and tan β do

not have much influence on the determination of m0, M1/2 and mSS, apart from a slight increase

in the errors of the latter. However if m0 cannot be fixed a determination of A0 and also tan β

becomes practically impossible, because almost any shift of tan β and A0 can then be compensated

by changing m0 and/or M1/2. This will be important when we discuss the calculations using LHC

observables only in subsection 3.2.2.4.

For this choice of parameters, the error on mSS itself is found to be around ∆mSS ∼ 1.2× 1013,

i.e. values of mSS = MG are formally excluded by many standard deviations. However, ∆mSS is a

very strong function of mSS itself, as we will discuss below.

Fig. (3.11) shows results for a comparatively low value ofmSS . Fig. (3.12) shows χ
2 distributions

for MSP-1 obtained by a random walk for seesaw type II and two slightly different but much higher

values of mSS : To the left: mSS = 1015 GeV and to the right: mSS = 1.3 × 1015. The plots show

the true χ2-minimum and a second (fake) minimum at mSS =MG. For the lower value of mSS this

fake minimum is just excluded at 1 σ c.l., while for the slightly higher value of mSS it is accepted at

1 σ c.l. These kind of false minima appear in all our calculations when mSS approaches MG. This

is to be expected, since the models approach pCMSSM in this limit.

Fig. (3.13) shows the allowed range of parameters mSS, m0 and M1/2 for mSS = 1.3 × 1015

GeV. Two separate minima show up. For slightly larger values of mSS the two solutions overlap

completely. Note that this also increases the errors on m0 and M1/2. For slightly smaller values

of mSS this fake solution disappears resulting in a drastic decrease in the error bars of these three

parameters. In case of type-III this fake minima does not show up separately, but indirectly by

deforming the χ2 distributions. Thus for type-III the error bars go up to MG until it gets compatible

with pCMSSM. This will be important when we discuss CMSSM plus type-III later on.

In case of the ILC+LHC analysis this kind of “false” minima are usually the only class of fake

minima that appear. Using only LHC data, the χ2 distributions are not that well behaved and false

minima can also appear considerably below MG, this will be shown in the next subsection.

Fig. (3.14) shows 1 σ, 3 σ and 5 σ c.l. error bars on the different parameters of the model as a

function of the seesaw scale for one specific CMSSM set, MSP-1, for the case of type-II. The plots
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Figure 3.12: χ2 distributions of the random walk for MSP-1 and Seesaw type II. The dashed line
indicates a χ2 of 5.89. Recall that 5.89 corresponds to a 1σ confidence level for five free parameters.
The plots show the χ2 distributions for mSS = 1 × 1015 GeV (left) and mSS = 1.3 × 1015 GeV
(right).
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Figure 3.13: Allowed ranges of parameters mSS, m0 and M1/2 for MSP-1 and type-II seesaw with
input mSS = 1.3 × 1015 GeV. Two separate solutions appear, one fake but acceptable minimum is
at mSS =MG.

show a large range of mSS between [1012, 1015] GeV. Lower values of mSS are in principle possible,

but show no new features. Larger values of mSS can not fit current neutrino data. Error bars on

all parameters increase with increasing values of mSS, and for values of mSS larger than (roughly)

(1−2)×1015 GeV the error ∆(mSS) is so large that the type-II can no longer be distinguished from

pCMSSM at the 1-σ level, given the ILC+LHC observables with our “standard” errors. ∆(mSS)

decreases very rapidly as a function of mSS and for values of mSS = 6.5×1014 (4.5×1014) pCMSSM

and type-II can be formally distinguished by more than 3 (5) standard deviations.

Also the errors ∆(m0) and ∆(M1/2) do show dependence on mSS, especially at larger values of

mSS. Again, the reason for this dependence is found in the strong correlation among those three

parameters, as discussed above. The error ∆(tan β) (and to some extend ∆(A0)), on the other

hand, shows less dependence on mSS. This is explained by the fact that the lightest Higgs mass,

mh0 , shows very little dependence on the seesaw scale. The slight dependence of ∆(A0) on mSS

is due to the lightest stop mass. For simplicity in all following plots we show only the 1 σ allowed

regions.

Fig. ( 3.15) shows two more examples of ∆(mSS) as a function of mSS. Here results for the

points MSP-2 and MSP-3 are shown for type-II seesaw. Only ∆(mSS) as a function ofmSS is shown.

We do not repeat the plots for the other parameters because they are qualitatively very similar to

the case shown in fig. (3.14). As the plots show results for MSP-2 and MSP-3 are similar to MSP-1.

Values of mSS below roughly mSS ∼ 1015 GeV are inconsistent with pCMSSM. This implies that

for the ILC errors as estimated in [156] and [157] a combined ILC+LHC analysis should be able to

distinguish pCMSSM from type-II seesaw for nearly all values of mSS relevant for neutrino data. We

stress that this conclusion is correct only for those CMSSM parameters for which (both left- and

right-) sleptons and the lightest neutralino are kinematically accessible at the ILC.
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Figure 3.14: Error of mSS , m0, M1/2, tanβ and A0 against mSS for all 5 parameters freely varied.
For these plots we used the LHC and ILC observables. The chosen values for mSS, m0, M1/2, tanβ
and A0 are the values for MSP-1. The plots show the results for seesaw type II where we used a 1σ,
3σ and 5σ c.l..
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Figure 3.16: Error of mSS, m0 and M1/2 against mSS for 5 parameters varied freely. For these plots
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Figure 3.17: The plots show random walks in which as starting point SPS1a’ was chosen. For the
parameter fit we used CMSSM plus seesaw type-II and III, respectively. The runs take into account
LHC and ILC observables.

Up to now we have shown only results for seesaw type-II. Fig. (3.16) shows a corresponding

calculation for type-III and CMSSM parameters as in MSP-1. Again, MSP-2 and MSP-3 show similar

behaviour and we do not repeat the plots for these points. Again, the scale of mSS is different from

the case of type-II. Since SUSY masses show a stronger dependence on mSS in type-III than in type-

II, larger values of mSS can be distinguished from pCMSSM in this case. In the examples shown

in the figure all values of mSS below roughly mSS ∼ 5 − 6 × 1015 GeV can be distinguished from

pCMSSM with more than 1 σ c.l. Recall that in type-III one expects mSS <∼ 8 × 1014 in order to

explain neutrino data. Such “low” values of mSS differ from pCMSSM in the fits by many standard

deviations.

Errors on m0 are similar to the values observed for type-II, while ∆(M1/2) is larger in type-III.

The correlation between m0, M1/2 and mSS, discussed above for type-II, is also present in type-III

and with an even larger correlation between M1/2 and mSS in this case. The CMSSM solution does

not show up explicitly as a second separate minimum, but deforms the χ2 distributions, thus cutting

the allowed ranges of m0 and M1/2.

Up to now we have always used a seesaw spectrum as input. One can also ask the opposite

question: Can a pCMSSM point mimic a seesaw spectrum? An example of such a calculation is

shown in fig. (3.17). In this figure we show the allowed ranges for mSS and m0 for CMSSM

parameters as in SPS1a’ for type-II (left) and type-III (right). As one can see mSS as low as

mSS ∼ 1015 GeV (mSS ∼ 7 × 1015 GeV) are allowed at 1 σ c.l. for type-II (type-III) fits. Also

note that ∆(m0) is much larger than in a pCMSSM fit, due again to the observed correlation among

parameters. The results shown in fig. (3.17) are consistent with the results discussed above, when

a seesaw spectrum is used as input: mSS compatible with MG is reached at a very similar value of

mSS.



3.2 Seesaw type II and III 74

Finally we note, that distinguishing type-II from type-III requires extremely high precision, since

they differ only at 2-loop order. The reason is that for 1-loop RGEs one can always cancel the shifts

in the coefficient of the beta-functions by a rescaling of mSS. We have checked this numerically.

Closing this subsection we note that all results shown above have been obtained for the full

2-loop calculation. We have repeated the exercise in several cases using 1-loop RGEs only. As a

general result, due to the weaker running of 1-loop RGEs, differences between pCMSSM and seesaw

are slightly smaller, leading to slightly larger errors on the parameters. For the case of the ILC+LHC

analysis, however, differences between both calculations are rather small, with errors in parameters

typically increasing in the order of (10-30) % when going from a 2-loop to a 1-loop calculation.

3.2.2.4. LHC only

In this subsection we discuss the results for an analysis using only LHC measurements. At the

LHC observables do not measure SUSY masses directly. Instead, observables measure either mass

differences or, in case of the edge variables, combinations of mass squared differences. Also one

expects that LHC measurements will be much less precise than what can be done in case of the ILC.

As a result the χ2 distributions for an LHC-only analysis show more complicated features than for the

case of LHC+ILC. Especially it should be noted that in some cases we do not have a sufficiently large

number of well determined observables and fake minima can appear, which will lead to sometimes

rather large error bars on parameters, as discussed below.

Fig. (3.18) shows error bars on mSS, m0, M1/2 against mSS for the point MSP-3 and seesaw

type-II, again for all 5 parameters varied freely. Note the change in the scale formSS, the largest value

shown is mSS = 1014 GeV. For larger values of mSS type-II seesaw can no longer be distinguished

in this fit from pCMSSM with at least 1 σ c.l. Note, however, that ∆(mSS) decreases very rapidly

for decreasing values of mSS and for values of mSS below mSS ∼ (few) 1013 GeV pCMSSM and

type-II are formally different by several standard deviations.

The figure shows also that ∆(m0) and ∆(M1/2) are much larger for the case of using only LHC

observables than in the combined ILC+LHC analysis, as expected. Errors on m0 and M1/2 decrease

in general with decreasing mSS. The increase in ∆(m0) and ∆(M1/2) around mSS ∼ 7× 1012 GeV

is due to the appearance of a fake side-minimum. Such fake minima appear only for certain ranges

of mSS. Depending on which side of the real minimum they appear they can lead to an asymmetric

increase of the errors as observed in this figure.

Fig. (3.19) shows an example of a corresponding fit for type-III. Again, ∆(m0) and ∆(M1/2)

and ∆(mSS) are shown as a function of mSS for MSP-3. Note that other points show qualitatively

similar behaviour and that the range shown for mSS is comparatively small. Values of mSS larger

than mSS ∼ 5 × 1014 are 1 σ c.l. consistent with pCMSSM. Since mSS <∼ 8 × 1014 to explain

neutrino data, LHC-only can probe interesting parts of the parameter space, but certainly will not be

able to cover all possible values of mSS - unless LHC errors on mass measurements can be improved
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Figure 3.18: Error of mSS, m0, M1/2, tanβ and A0 against mSS for mSS, m0, M1/2, tanβ and A0

varied. For these plots we used only the LHC observables. The chosen values for mSS, m0, M1/2,
tanβ and A0 are the values according to MSP-3. The plots show the results for seesaw type II.
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Figure 3.19: Error of mSS, m0, M1/2 against mSS for 5 parameters varied freely. For these plots we
used only the LHC observables. The chosen values for mSS, m0, M1/2, tanβ and A0 are the values
according to MSP-3. The plots show the results for seesaw type III.
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Figure 3.20: The plots show the result of a random walk in which as a starting point SPS1a’ was
chosen. For the parameter fit we used CMSSM plus seesaw type II and III, respectively. The runs
were made for LHC observables enabled only.

compared to expectations by considerable factors.

For decreasing mSS errors again decrease in general. There are two exceptions from this general

rule in this plot. First, errors increase aroundmSS ∼ 2×1014 GeV. This is again due to the appearance

of a fake side minimum, which slowly disappears again when going towards smaller values of mSS.

The large increase in the error bars around mSS ∼ 6× 1013 GeV is due to the fact that for smaller

values of mSS in this calculation χ0
2 is lighter than ẽR, i.e. the edges variables are lost completely.

With only a few observables in the fit, all based on mass differences, m0 and M1/2 can hardly be

fixed at all. The dramatic increase of the error bars of m0 can be understood easily from Eq. (3.21).

As this equation shows the sfermion masses behave approximately like m2
f̃
= m2

0+aM
2
1/2. When all

edges are lost the remaining LHC observables can be fitted by varying mSS and M1/2 only.

Finally we have calculated the allowed parameter space in a seesaw fit when the true input point

is pCMSSM. Two examples are shown in Fig. (3.20). The CMSSM parameters are for SPS1a’ and

type-II (type-III) seesaw is shown to the left (right). The allowed regions are much larger than in

the combined ILC+LHC analysis, compared to the discussion in the last subsections. For type-II

(type-III) values of mSS as low as mSS <∼ 1014 GeV (mSS <∼ 6× 1014 GeV) are allowed at the 1 σ

level. This is similar - and consistent - with the results discussed above for the opposite fit.

In summary mass measurements from the LHC only should be able to distinguish between

pCMSSM and type-II (type-III) seesaw for seesaw scales below roughlymSS <∼ 1014 GeV (mSS <∼ 6×
1014 GeV). This conclusion depends critically on the possibility to measure accurately several ob-

servables, as we are going to discuss next.
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Figure 3.21: Error of mSS with respect to the error of the ILC observables, fILC .

3.2.2.5. Required accuracies on mass measurements and ∆(mSS)

All our results shown above crucially depend on the size of the expected error bars for the different

observables. In this subsection we therefore discuss in some detail: (a) Which are the most important

observables in our fits? And, (b) How accurately do we need to measure them to distinguish pCMSSM

from seesaw for a given, fixed value of mSS. Again we will discuss the ILC+LHC case first.

Fig. (3.21) shows ∆(mSS) for the points MSP-1 for two choices of mSS. ∆(mSS) is shown as

a function of the error of the ILC mass measurements. According to [157] it is expected that the

ILC can measure SUSY masses of χ0
i and l̃ states kinematically accessible with errors of the order

(0.5-2) per-mille. We define a common factor fILC and multiply all relative errors given in table 6

of [157] with this common factor. ∆(mSS) is then shown as a function of this factor in fig. (3.21).

Note that in this calculation we keep all LHC errors unchanged at their “standard values”.

As fig. (3.21) to the left shows, ∆(mSS) increases with the assumed errors of the ILC mea-

surements. However, for MSP-1 and mSS = 1014 GeV, LHC measurements alone are sufficient to

distinguish type-II from pCMSSM. Thus, error bars on mSS hardly increase going from fILC = 24 to

fILC = 32. This means that ILC data dominate the fit until errors are about one order of magnitude

larger than estimated in [157], for larger ILC errors LHC measurements become more important for

this choice of mSS.

The situation is quite different for mSS = 2× 1014 GeV, see fig. (3.21) right. While fILC = 6

still allows to distinguish between pCMSSM and type-II, for fILC = 8, ∆(mSS) becomes to large

to differentiate between type-II and pCMSSM. The required accuracy of measurements of SUSY

masses at the ILC is therefore a strong function of mSS itself. Errors of the order (1-2) percent are

in general tolerable for seesaw scales below mSS = 1014 GeV, while per-mille level measurements are

required in the interval [1014, 1015] GeV. We note that other SUSY points behave very similar and

that for type-III correspondingly larger errors are tolerable.
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Fig. (3.21) treats all ILC observables equally. An interesting question to ask is, of course, which

ILC observables are the most important ones for our analysis. Fig. (3.22) provides the answer.

Again for the point MSP-1 and for seesaw type-II we show ∆(mSS) as a function of mSS for

different calculations taking into account different observables. We have kept all LHC observables

“on” at their standard errors. “All ILC obs” is the standard fit, taking into account all kinematically

accessible mass measurements with their original errors from [157]. We then switched off by hand

completely the contributions from different observables. Switching off the measurement of the mass

of t̃1 hardly changes the result. On the other hand, it can be seen that measuring left-slepton masses

is highly important. Error bars increase sizeably if this observable is not taken into account and while

a set of measurements with all observables can distinguish pCMSSM from type-II all the way up to

mSS = 1015 GeV, without the accurate measurement of ml̃L
all values of mSS >∼ 4× 1014 GeV are

compatible with pCMSSM at the 1 σ level. The relative importance of l̃L despite its larger error

stems from the fact that ml̃R
has very little sensitivity to mSS, see fig. (3.8).

We now turn to the discussion of LHC errors. In this case we do not use any input from the

ILC. Fig. (3.23) shows ∆(mSS) as a function of the assumed error. Two observables are shown:

to the left as a function of ∆g̃b̃i
and to the right as a function of the edge variables. Note that for

SPS1a the LHC error for ∆g̃b̃1
is estimated to be ∼ 3.5 %, while ∆(medge

ll ) should be measured to an

accuracy of 0.17 %. Note that, while ∆(medge
ll ) can possibly be accurately measured in wide ranges

of CMSSM parameter space, the accuracy with which ∆g̃b̃i
can be measured is far less certain. Both

smaller and much larger errors on this quantity have been found in different study points, see [156].

The figure shows that for mSS = 2× 1013 a 7 % error on ∆g̃b̃1
(which corresponds to a factor of
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2 in the plot) is sufficient to distinguish between pCMSSM and type-II, while an error of 9 % on this

quantity is not sufficient. Again, the maximum value of this error which still allows to distinguish

between type-II and pCMSSM is a strong function of the (unknown) mSS itself. However, we have

found that always ∆g̃b̃1
is a critical input observable for our analysis. 15 The importance of ∆g̃b̃1

can

be understood from Fig. (3.9) and (3.10): coloured sparticle masses depend much more strongly on

mSS than masses of, for example, sleptons. Thus, despite the larger relative error on ∆g̃b̃1
compared

to the edge variables,it is nearly as important as demonstrated in fig. (3.23) to the right.

Fig. (3.24) shows the results of different runs, where we have switched off artificially different

combinations of observables. As noted above, ∆g̃b̃1
and the edges are the most important observables

for fixing ∆(mSS). However, the Higgs mass measurement is not negligible, despite the fact that

∆(mSS) does not increase much in the figure, when mh0 is switched off. This importance lies in the

fact that without mh0 the largest value of mSS not compatible with MG is 2× 1013 GeV, compared

to mSS = 1014 GeV for mh0 switched on.

We do not repeat the discussion for type-III seesaw. Results are very similar qualitatively, but

again larger values of mSS can be tested for the same errors on the observables.

Finally, we turn to the question of Yukawa couplings. Fig. (3.25) shows again ∆(mSS) as

a function of mSS for two different calculations: (i) a calculation with triplet Yukawa couplings

negligibly small (all (YT )ij ∼ O(10−4)) and (ii) a calculation in which YT has been fitted to give

the atmospheric and solar neutrino mass squareds at their best fit values with neutrino angles taking

tri-bimaximal values. As can be seen, differences between both calculations become negligible below

roughly mSS = 1014 GeV, as expected. For larger values of mSS correctly fitting the Yukawas leads

to slightly smaller errors on mSS. This can be understood, since for finite Yukawas SUSY masses

15We also consider ∆g̃b̃2
, which, however, is less important due to its larger error.
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change slightly stronger than for infinitesimal values of YT , making the fit easier. Note, however, that

we have not scanned over all allowed range of YT in this calculation. In a complete 14 parameter χ2

fit errors might be larger. Note also, we can not find any good neutrino solution for mSS larger than

mSS = 6 × 1014, since in this calculation we have chosen for the coupling λ2 = 0.5. In conclusion,

a full fit including Yukawa couplings will be necessary only if signs of mSS >∼ 1014 GeV have been

found in SUSY mass data.

3.2.3. Conclusions and discussion

In this section we have studied the possibility to obtain indirect information on the seesaw scale

from SUSY mass measurements at future colliders in case of seesaw type II and III. Assuming

CMSSM boundary conditions and taking error estimates as forecasted by study groups we find that

a combination of LHC and ILC measurements should be able to distinguish pure CMSSM from

CMSSM plus either type-II or type-III seesaw for nearly any relevant values of the seesaw scale, if

(a) at least χ0
1, ẽR/ µ̃R and ẽL/ µ̃L are kinemetically accessible at the ILC and (b) the LHC can

measure mg̃ −mb̃1
and the edge observables accurately. We always assume that the lightest Higgs

has been found. The degree of confidence with which pCMSSM can be distinguished from CMSSM

plus seesaw depends sensitively on the actual value of the seesaw scale. At the “critical” value of

mSS ∼ 1015, beyond which neutrino data can no longer be explained with Yukawas smaller than 1,

the difference between type-II + CMSSM and pCMSSM could be as low as only 1 σ c.l. However,

the difference between pCMSSM and CMSSM + seesaw rises very sharply with decreasing mSS and

formally more than 5 σ c.l. could be reached already at (5−6)×1014 for type-II. Differences between

pCMSSM and CMSSM plus type-III are always found to be larger than for CMSSM plus type-II for

the same value of mSS.

As expected, the future is not as bright, if we take into account only LHC data. We found that one

can distinguish pure CMSSM and CMSSM plus seesaw in some favourable parts of parameter space.

However, recent LHC data was not included in our analysis. Already with the first published results

from CMS and ATLAS the SUSY parameter space used for this work was excluded (see subsection

2.3.4). With recent LHC data it has become unlikely that one can distinguish pure CMSSM and

CMSSM plus seesaw. Nevertheless, it is important to keep in mind that the lower the real value

of the seesaw scale mSS is, the easier it becomes to distinguish pure CMSSM from CMSSM plus

seesaw. Therefore, at the lower limit of mSS may remain the possibility to see deviations from a

seesaw mechanism in the SUSY spectrum but with much less accuracy than presented in this work.

To evaluate in which regions of the parameter space our analysis is possible we have discussed the

most important measurements for the LHC and the ILC and the relative errors with which these

observables need to be measured. In our analysis we used exclusively CMSSM SUSY breaking

boundary conditions, but other, more involved SUSY breaking schemes with more free parameters

could, in principle, be “tested” in a similar way.
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Of course, the analysis presented in this paper is far from being complete. If SUSY is found

at the LHC, one would need to redo our calculations with real data. However, the experimentalist

would not, as we have always assumed in our fits, know the real values of the parameters. We have

tried for a few points, whether the correct input parameters can be retrieved for arbitrary starting

points in our MC random walk procedure and - given enough CPU-time - are able to find the correct

minimum. However, our “observables” are theoretically calculated observables and thus perfect in

contrast to real data which are expected to scatter around the true values and might show tension

between different observables. Thus, finding the correct minimum in real data might be more difficult.

Moreover, the underlying model will not be known a priori and, thus, χ2
Min for different models need

to be calculated and compared.



4
Higgs, LHC and extended gauge groups

Within the MSSM the gauge couplings unify nearly perfectly around an energy scale of approxi-

mately mG ≃ 2×1016 GeV, if SUSY particles exist with masses of the order of O(1) TeV. Extending

the MSSM with non-singlet superfields tends to destroy this attractive feature, unless (a) the addi-

tional fields come in complete SU(5) multiplets or (b) the standard model gauge group is extended

too. Here we study a model in which the SM group is enlarged to SU(3)c × SU(2)L × U(1)B−L ×
U(1)R. It is a variant of the models first proposed in [97] and later discussed in more detail in [98].

Our main motivation for studying this model can be summarized as: (i) It unifies, in the same way

the MSSM does, even if the scale of U(1)B−L ×U(1)R breaking is as low as the electro-weak scale;

(ii) it can be easily embedded into an SO(10) grand unified theory; (iii) it has the right ingredients

to explain neutrino masses (and angles) by either an inverse [123] or a linear [21; 22] seesaw; (iv) it

allows for Higgs masses significantly larger than the MSSM without the need for a very heavy SUSY

spectrum [3] and (v) it potentially leads to rich phenomenology at the LHC.

As already discussed in chapter 2 both ATLAS [191] and CMS [192] announced the discovery

of a new boson which might be the SM Higgs boson with a mass of roughly mh ∼ 125 GeV. This

result, perhaps unsurprisingly, has triggered an avalanche of papers studying the impact of such a

relatively hefty Higgs on the supersymmetric parameter space [193; 194; 195; 196; 197; 198; 199;

200; 201; 8; 202; 203; 204; 205; 206; 207; 208; 209; 210; 211; 212; 213; 214; 215; 216; 217; 218;

219; 220; 221; 222; 223; 224; 225; 226]. The general consensus seems to be, that the MSSM can

generate mh ∼ 125 GeV only if squarks and gluinos have masses in the multi-TeV range. While

this is, of course, perfectly consistent with the lower bounds on SUSY masses obtained from ET

/ searches at the LHC [227; 228], such a heavy spectrum could make it quite difficult indeed for

the LHC to find direct signals for SUSY.

There are, of course, several possibilities to circumvent this conclusion. First of all, it is well-

known that the loop corrections to h0 are dominated by the top quark-squark loops. Thus, little

or no constraints on sleptons and on squarks of the first two generations can in fact be derived



85

from Higgs mass measurements, once the assumption of universal boundary conditions for the soft

SUSY parameters is abandoned. Second, in the next-to-minimal SSM (NMSSM) the h0 can be

heavier than in the MSSM due to the presence of new F-terms from the additional singlet Higgs

[8; 226], especially in models with non-universal boundary conditions for the (soft) Higgs mass terms

[208] or in the generalized NMSSM [209; 210]. And, third, in models with an extended gauge

group additional D-terms contribute to the Higgs mass matrices, relaxing the MSSM upper limit

considerably [229; 230; 231; 232; 233]. This latter possibility is the case we have studied in a previous

paper [3] using the minimal U(1)B−L×U(1)R models of [97]. In this chapter we extend the analysis

of [3], including both Higgs and SUSY phenomenology.

Due to the extended gauge structure the model necessarily has more Higgses than the MSSM.

Near D-flatness of the U(1)B−L × U(1)R breaking then results in one additional light Higgs, h0BLR

[3]. Mixing between the MSSM h0 ≡ h0L and h0BLR enhances the mass of the mostly MSSM Higgs

and, potentially, affects its decays. This is reminiscent to the situation in the NMSSM, where an

additional light and mostly singlet Higgs state seems to be preferred [8; 226] if the signals found by

ATLAS [191] and CMS [192] are indeed due to a 125 GeV Higgs.

The MSSM-like h0L in our model can have some exotic decays. For example, the h0L will decay

to two lighter Higgses, if kinematically possible, although this decay can never be dominant due

to constraints coming from LEP. The model also includes right-handed neutrinos with electro-weak

scale masses and there is a small but interesting part in parameter space where mZ0 ≤ mνR ≤ mh0
L
,

where the Higgs decays to two neutrinos. These decays always lead to one light and one heavy

neutrino, with the latter decaying promptly to either W±l∓ or Z0ν. (Mostly right) sneutrinos can

be lighter than the h0L, in which case the Higgs can have invisible decays.

The SUSY spectrum of the model is also richer than the MSSM: It has seven neutralinos and nine

sneutrino states. These additional sneutrinos can easily be the lightest supersymmetric particle (LSP)

and thus change all the constraints on SUSY parameter space, usually derived from the requirement

that the neutralino be a good dark matter candidate with the correct relic density [180]1. Even though

the lightest sneutrino can also be the LSP in the MSSM, direct detection experiments have ruled out

this possibility a long time ago [119]. In SUSY decays, within the MSSM right squarks decay directly

to the bino-like neutralino, leading to the standard missing momentum signature of supersymmetry.

Due to the extended gauge group, right squarks can decay also to heavier neutralinos, leading to

longer decay chains and potentially to multiple lepton edges2. Decays of the heavier neutralinos also

produce Higgses, both the h0L and the h0BLR appear, with ratios depending on the right higgsino

content of the neutralinos in the decay chains.

The rest of this chapter is organized as follows. In the next section we discuss the setup of

1Also for the case of a neutralino LSP, constraints on the SUSY parameter space from dark matter can change in
case the right Higgsino is light.

2Longer SUSY cascades from larger number of neutralino states have also been discussed in [234; 235].
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the model, its particle content, superpotential and soft terms and the symmetry breaking. The

phenomenologically most interesting mass matrices of the spectrum are given in section 4.2 where

we also discuss numerical results on the SUSY and Higgs mass eigenstates. Here, we focus on Higgs

and slepton/sneutrino masses, which are the phenomenologically most interesting. We will discuss in

detail how far the lightest Higgs mass can be pushed to larger values compared to MSSM expectations.

In section 4.3 we define some benchmark points for the model and discuss their phenomenologically

most interesting decay chains. We then close with a short summary. In the appendix we give mass

matrices not presented in the text, formulas for the 1-loop corrections in the Higgs sector and more

information about the calculation of the RGEs, including anomalous dimensions as well as the 1-loop

β functions for gauge couplings and gauginos.

4.1. The model: SU(3)c × SU(2)L × U(1)B−L × U(1)R

In this section we present the particle content of the model, its superpotential and discuss the

symmetry breaking. We consider the simplest model based on the gauge group SU(3)c ×SU(2)L ×
U(1)R × U(1)B−L. We will call this the mBLR model below. As has been shown in [97] it can

emerge as the low-energy limit of a certain class of SO(10) GUTs broken along the “minimal”

left-right symmetric chain [236; 237]

SO(10) → SU(3)c × SU(2)L × SU(2)R × U(1)B−L (4.1)

→ SU(3)c × SU(2)L × U(1)R × U(1)B−L.

The main virtue of this setting is that an MSSM-like gauge coupling unification is achieved with

a sliding U(1)R ×U(1)B−L breaking scale, i.e. this last stage can stretch down even to the electro-

weak scale. Different from the previous works [97; 98], we assume that the first two breaking steps

down to U(1)R×U(1)B−L happen both at (or sufficiently close to) the GUT scale. This assumption

is used only for simplifying our setup, it does not lead to any interesting changes in phenomenology.

4.1.1. Particle content, superpotential and soft terms

The transformation properties of all matter and Higgs superfields of the model are summarized

in table 4.1. Apart from the MSSM fields, in the matter sector we have ν̂c and Ŝ. The former are

necessary in the extended gauge group for anomaly cancellation,3 while the fields Ŝ are included to

explain neutrino masses by either an inverse [123] or a linear [21; 22] seesaw mechanism. Our Higgs

sector, including the new fields χ̂R and ˆ̄χR, is the minimal one for the breaking of U(1)B−L×U(1)R

to U(1)EM .

3ν̂c is automatically part of the theory due to its SO(10) origin.
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Superfield SU(3)c × SU(2)L × U(1)R × U(1)B−L Generations

Q̂ (3,2, 0,+1
6 ) 3

d̂c (3,1,+1
2 ,−1

6) 3

ûc (3,1,−1
2 ,−1

6) 3

L̂ (1,2, 0,−1
2 ) 3

êc (1,1,+1
2 ,+

1
2) 3

ν̂c (1,1,−1
2 ,+

1
2) 3

Ŝ (1,1, 0, 0) 3

Ĥu (1,2,+1
2 , 0) 1

Ĥd (1,2,−1
2 , 0) 1

χ̂R (1,1,+1
2 ,−1

2) 1

ˆ̄χR (1,1,−1
2 ,+

1
2) 1

Table 4.1: The Matter and Higgs sector field content of the U(1)R × U(1)B−L model. Generation
indices have been suppressed. The Ŝ superfields are included to generate neutrino masses via the
inverse seesaw mechanism. Under matter parity, the matter fields are odd while the Higgses are even.
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The fields χR and χ̄R can be viewed as the (electric charge neutral) remnants of SU(2)R doublets,

which remain light in the spectrum when the SU(2)R gauge factor is broken by the vev of a B − L

neutral triplet down to the U(1)R [97]. The presence of χ̂R and ˆ̄χR makes it necessary to introduce

an extra ZM
2 matter parity, since otherwise R-parity is broken in a potentially disastrous way, once

these scalars acquire vacuum expectation values. This ZM
2 is not a particular feature of our setup;

it is always needed in models where U(1)B−L is broken with doublets [238]. 4

Models with a sliding U(1)R × U(1)B−L scale and (B − L)-even Higgses can be constructed

as well. These would simply require that the fields χ̂R (and its partner) are replaced by fields

which transform as (1, 1, 1/2,±1). These can be understood as the neutral components of SU(2)R

triplets, remaining light in the spectrum when SU(2)R is broken to U(1)R. Such a construction

has the advantage that R-parity is automatically conserved, different from the model we study here,

which needs the introduction of matter parity to guarantee the stability of the LSP. However, the

disadvantage of these models is that they necessarily lead to a type-I seesaw instead of an inverse

seesaw. Note that such a low-scale type-I seesaw would overshoot experimental bounds on neutrino

masses, unless the neutrino Yukawa couplings are assumed to be tiny, O(10−6) or smaller. 5

For the particle content of table 4.1 the relevant R-parity and ZM
2 conserving superpotential is

given by

W =WMSSM +WS . (4.2)

Here,

WMSSM = YuûcQ̂Ĥu − Ydd̂cQ̂Ĥd − YeêcL̂Ĥd + µĤuĤd (4.3)

WS = Yν ν̂cL̂Ĥu + Ysν̂cχ̂RŜ − µR ˆ̄χRχ̂R + µSŜŜ.

where Ye, Yd and Yu are the usual MSSM Yukawa couplings for the charged leptons and the quarks.

In addition there are the neutrino Yukawa couplings Yν and Ys; the latter mixes the νc fields with the

S fields giving rise to heavy SM-singlet pseudo-Dirac mass eigenstates. The term µR is completely

analogous to the MSSM µ term. Note that the term µS is included to generate non-zero neutrino

mass with an inverse seesaw mechanism. However, as always is done in inverse seesaw, we assume

that µS is much smaller than all other dimensionful parameters of the model. Apart from neutrino

masses themselves it will therefore not affect any of the mass matrices (or decays) of our interest.

Note that, besides the role it plays in neutrino physics, the Ys coupling is relevant also for the

Higgs phenomenology at the loop level as it enters the mixing of χR and χ̄R Higgs fields with the

SU(2)L Higgs doublets as well as the RGEs for χR, see below.

4In the normalization of [238] doublets have U(1)B−L = 1, i.e are “odd” under B-L.
5For discussion of R-parity in LR-models see [239; 240; 241].
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Following the notation and conventions of [242] the soft SUSY breaking Lagrangian reads

Vsoft =
∑

ij

m2
ijφ

∗
iφj +

(∑

a

Maλaλa + Tuũ
∗
RQ̃Hu − Tdd̃

∗
RQ̃Hd + Tν ν̃

∗
RL̃Hu

−Teẽ∗RL̃Hd +BµHuHd −BµR
χ̄RχR + Tsν̃

∗
RχRS̃ +BµS

S̃S̃ + h.c.
)
. (4.4)

The first sum contains the scalar masses squared and the second sum runs over all gauginos for the

different gauge groups (called λBL, λR, λ
i
L and λαG in the following) and the second one contains

the scalar masses squared. While BµS
is in principle a free parameter, a naive order of magnitude

expectation for it is BµS
∼ µSmSUSY . Thus, one expects that BµS

is much smaller than all other

soft terms and can be safely neglected, see discussion of sneutrinos below.

To reduce the number of free parameters, in our numerical studies we will consider a scenario

motivated by minimal supergravity. This means that we assume a GUT unification of all soft-breaking

sfermion masses as well as a unification of all gaugino mass parameters

m2
0δij = m2

Dδij = m2
Uδij = m2

Qδij = m2
Eδij = m2

Lδij = m2
νcδij (4.5)

M1/2 =MBL =MR =M2 =M3

Also, for the trilinear soft-breaking coupling, the ordinary CMSSM conditions are assumed

Ti = A0Yi, i = e, d, u, ν, s . (4.6)

The GUT scale is chosen as the unification scale of gBL, gR and gL, while we allow g3 to be

slightly different, exactly as in the MSSM. A complete unification is assumed to happen due to GUT

threshold corrections. For the remaining soft parameters in the Higgs sector, m2
Hd

, m2
Hu

, m2
χR

,

m2
χ̄R

and µ,Bµ, µR and BµR
, we have implemented two different options. These are discussed in

subsection 4.1.2.

The presence of two Abelian groups gives rise to gauge kinetic mixing

− χabF̂
B−L,µνF̂R

µν . (4.7)

This is allowed by gauge and Lorentz invariance [243], as F̂B−L,µν and F̂R,µν are gauge invariant,

see e.g. [244]. Even if U(1)R and U(1)B−L are orthogonal in SO(10) the kinetic mixing term will be

induced during the RGE running below the SU(2)R breaking scale because the light fields remaining

below the GUT scale can’t be arranged in complete SO(10) multiplets: while all matter fields form

three generations of 16-plets, χ̂R and ˆ̄χR induce off-diagonal elements already in the 1-loop matrix
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of the anomalous dimensions defined by γRBL = 1
16π2TrQRQB−L. The matrix reads

γ =
1

16π2
N




15
2 −1

2

−1
2

9
2



N. (4.8)

N = diag(1,
√

3
2) contains the GUT normalization of the two Abelian gauge groups. Our implemen-

tation follows the description of [165], where it is shown that terms of the form as in eq. (4.7) can

be absorbed in the covariant derivative by a re-definition of the gauge fields. Therefore, we are going

to work in the following with covariant derivatives of the form

Dµ = ∂µ − iQT
ΦGAµ , (4.9)

where QT
Φ is a vector containing the charges of the field Φ with respect to the two Abelian gauge

groups and G is the gauge coupling matrix

G =




gR gRBL

gBLR gBL



. (4.10)

Aµ contains the gauge bosons Aµ = (AR
µ , A

BL
µ )T . Since the off-diagonal elements in eq. (4.8) are

negative and roughly one order smaller than the diagonal ones, it can be expected that the off-

diagonal gauge couplings at the SUSY scale are positive but also much smaller than the diagonal

ones. This is in some contrast to models in which kinetic mixing arises due to the presence of

U(1)Y × U(1)B−L [245]. In addition, a mixing term of the form

MBLRλBLλR (4.11)

between the two gaugino λBL and λR will be present [246]. Since we have chosen the SU(2)R

breaking scale to be very close to the GUT scale we demand as additional boundary conditions that

the new parameters arising from kinetic mixing vanish at the GUT scale, i.e.

gRBL = gBLR = 0 , MBLR = 0 . (4.12)

For more details on U(1) mixing and its physical impact we refer the interested reader also to recent

papers [247; 248; 245; 249]. Our focus will be on the additional terms in the scalar mass matrices

due to the presence of non-diagonal couplings.
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4.1.2. Tadpole equations and boundary conditions

The U(1)R×U(1)B−L gauge symmetry is spontaneously broken to the hypercharge U(1)Y by the

vevs vχR
and vχ̄R

of the scalar components of the χ̂R and ˆ̄χR superfields while the SU(2)L⊗U(1)Y →
U(1)Q is governed by the vevs vd and vu of the neutral scalar components of the SU(2)L Higgs

doublets Hd and Hu up to gauge kinetic mixing effects. One can write

χR =
1√
2
(σR + iϕR + vχR

) , χ̄R =
1√
2
(σ̄R + iϕ̄R + vχ̄R

) , (4.13)

H0
d =

1√
2
(σd + iϕd + vd) , H0

u =
1√
2
(σu + iϕu + vu) , (4.14)

where the generic symbols σ and ϕ denote the CP-even and CP-odd components of the relevant

fields, respectively.

The minimum conditions for the four different vevs can be written at tree-level as

td = −Bµvu + vd

(
m2

Hd
+ |µ|2 + 1

8
ALR,3(v

2
d − v2u) +

1

8
ALR,2(v

2
χ̄R

− v2χR
)

)
(4.15)

tu = −Bµvd + vu

(
m2

Hu
+ |µ|2 − 1

8
ALR,3(v

2
d − v2u)−

1

8
ALR,2(v

2
χ̄R

− v2χR
)

)
(4.16)

tχ̄R
= −BµR

vχR
+ vχ̄R

(
m2

χ̄R
+ |µR|2 +

1

8
ALR,1(v

2
χ̄R

− v2χR
) +

1

8
ALR,2(v

2
d − v2u)

)
(4.17)

tχR
= −BµR

vχ̄R
+ vχR

(
m2

χR
+ |µR|2 −

1

8
ALR,1(v

2
χ̄R

− v2χR
)− 1

8
ALR,2(v

2
d − v2u)

)
(4.18)

where we defined

ALR,1 = g2BL + g2R + g2BLR + g2RBL − 2gRgBLR − 2gBLgRBL

ALR,2 = g2R + g2RBL − gRgBLR − gBLgRBL

ALR,3 = g2L + g2R + g2RBL . (4.19)

For the vacuum expectation values we use the following parameterization:

v2R = v2χR
+ v2χ̄R

, v2 = v2d + v2u (4.20)

tan βR =
vχR

vχ̄R

, tan β =
vu
vd
.

The tadpole equations can analytically be solved for either (i) (µ,Bµ, µR, BµR
) or (ii) (µ,Bµ,

m2
χR

, m2
χ̄R

) or (iii) (m2
Hd

, m2
Hu

, m2
χR

, m2
χ̄R

). Option (i) can be considered the minimal version.

We call this option CmBLR (constrained mBLR), since it allows to define boundary conditions for

all scalar soft masses, m2
Hd

= m2
Hu

= m2
0 and m2

χR
= m2

χ̄R
= m0 at mGUT , reducing the number

of free parameters by four. This assumption, however, leads to some important constraints on the
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parameter space, as we will discuss next. Options (ii) and (iii) are more flexible. Option (ii) is similar

to the CMSSM with non-universal soft masses (NUHM) [250; 251; 252], albeit the non-universality

is only in the B − L sector. We will call this the χRmBLR (non-universal χR masses mBLR), and

most of our numerical results are based on this option. We mention option (iii) for completeness,

but we have not used it in our numerical studies.

As will be shown in subsection 4.2.1, the mass of the Z ′-boson in the mBLR model is approxi-

mately given by

m2
Z′ ≃ 1

4
ALR,1v

2
R (4.21)

We can use this expression and eqs (4.15)-(4.18) to obtain an approximate relation between mZ′

and µR, m
2
χR

, m2
χ̄R

and tan βR. This leads to

m2
Z′ ≃ −2(|µR|2 +m2

χ̄R
) +

g2R
4
v2 cos(2β)

tan β2R + 1

tan β2R − 1
+ ∆m2

χR

2 tan β2R
tan β2R − 1

(4.22)

where ∆m2
χR

= m2
χ̄R

−m2
χR

. We can roughly estimate∆m2
χR

, if we make a CMSSM-like assumption

for the boundary conditions, m2
χ̄R

= m2
χR

= m2
0 at the GUT scale. The running value of ∆m2

χR
can

then be found by a one-step integration of the RGEs at 1-loop level as:

∆m2
χR

≃ 1

4π2
Tr(YsY

†
s )(3m

2
0 +A2

0) log

(
mGUT

MSUSY

)
(4.23)

with Ts ≃ A0Ys. As eq.(4.23) shows, with these assumptions ∆m2
χR

> 0 and the condition that

mZ′ of eq.(4.22) has to fulfill the experimental lower bound will define an excluded area in the 3-

dimensional parameter space [Tr(YsY
†
s ), tan βR,m

2
RGE ], where m

2
RGE = (3m2

0 +A2
0). If we assume

in addition that Ys is small enough to remain perturbative anywhere between the weak and the GUT

scale, a lower bound on m2
RGE as a function of tan βR − 1 will result in the CmBLR.

This can be understood in more details as follows. In the CmBLR ∆m2
χR

≥ 0, as shown by eq.

(4.23) and the last term in eq. (4.22) is positive only if tan βR > 1. Since cos(2β) < 0 the second

term in eq. (4.22) is positive only if tan βR < 1. If ∆m2
χR

>∼ |g
2
R
4 v

2 cos(2β)|, only solutions with

tan βR > 1 can be found. Since finally |µR|2 must be |µR|2 > 0 and m2
χ̄R

> 0 in the CmBLR we

get the constraints on the parameter space shown in fig. 4.1. Here we show for two choices of vR

contour lines of µR in the plane (tan βR,m0). Just above the lines for µR = −200 GeV |µR|2 = 0,

i.e. larger values of tan βR do not lead to consistent solutions of the tadpole equations (for fixed

m0 and A0). This restricts the model to values of tan βR very close to 1, as is clearly demonstrated

in the figure. Note that for low values of m0 the constraints on the viable region of tan βR actually

becomes stronger. 6

6tan βR ≃ 1 is also needed for a spectrum without tachyons since the additional D-terms can give large negative
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Figure 4.1: Constraints on the CmBLR parameter space from the condition of correct symmetry
breaking, to the left: vR = 5 TeV, to the right vR = 8 TeV. In both plots M1/2 = 1000 GeV,
tan β = 10 and A0 = 0. Just above the lines for µR = −200 GeV |µR|2 = 0, i.e. larger values
of tan βR do not lead to consistent solutions of the tadpole equations (for fixed m0 and A0). For
detailed explanation see text.

No such constraint on m0 and A0 exists in the χRmBLR, since here ∆m2
χR

is a free parameter.

However, if (∆m2
χR
/m2

χR
) ≪ 1, values of tan βR very close to 1 are preferred by eq. (4.22) in both,

the CmBLR and the χRmBLR.

4.2. Masses

In this section we give the most important mass matrices of the model at tree-level. In the

numerical calculations we take also the 1-loop corrections [188] into account, see appendix for more

details. The numerical implementation of the model has been done using SPheno [36; 166], for which

the necessary subroutines and input files were generated using the package SARAH [35; 186; 187].

The model files used are included in the public version 3.1.0 of SARAH.

contributions to the sfermion masses, see below.
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4.2.1. Gauge bosons

In the basis (W 0, BB−L, BR) the mass matrix for the neutral gauge bosons reads at tree-level

M2
V V =

1

4




g2Lv
2 −gLgRBLv

2 −gLgRv2

−gLgRBLv
2 g2RBLv

2 + g̃2BLv
2
R gRgRBLv

2 − g̃Rg̃BLv
2
R

−gLgRv2 gRgRBLv
2 − g̃Rg̃BLv

2
R g2Rv

2 + g̃2Rv
2
R




(4.24)

where

g̃BL = (gBL − gRBL) , g̃R = (gR − gBLR) . (4.25)

From eq. (4.24) the masses of the photon, the Z and the Z ′ can be calculated analytically

mγ = 0 , m2
Z,Z′ =

1

8


Av2 +Bv2R ∓ v2R

√
−4C

(
v2

v2R

)
+

(
A

(
v2

v2R

)
+B

)2

 (4.26)

with

A = g2L + g2R + g2RBL

B = g2BL + g2R + g2BLR + g2RBL − 2gBLRgR − 2gRBLgBL

C = g2L(gR − gBLR)
2 + g2BL(g

2
L + g2R)− 2gBL(g

2
L + gBLRgR)gRBL + (g2BLR + g2L)g

2
RBL .

(4.27)

Expanding eq. 4.26 in powers of v2/v2R, we find up to first order

m2
Z =

Cv2

4B
, m2

Z′ =
(AB − C)v2 +B2v2R

4B
. (4.28)

In the limit gBLR = 0 and gRBL = 0 we then get

m2
Z =

(g2BLg
2
L + g2BLg

2
R + g2Lg

2
R)v

2

4(g2BL + g2R)
, m2

Z′ =
g4Rv

2

4(g2BL + g2R)
+

1

4
(g2BL + g2R)v

2
R . (4.29)

ATLAS has recently published updated lower limits on Z ′ searches [253]. Our Z ′ corresponds to the

Zχ in the notation of [254], i.e. [253] gives a lower limit of Z ′ >∼ 1.8 TeV, which corresponds to

roughly vR >∼ 5 TeV for our choice of couplings7, see, however, the discussion in subsection 4.3.4.

7The condition that the gauge couplings reproduce correctly the standard model hypercharge, plus the assumption
of unification lead to values of roughly gBL ∼ 0.57, gR ∼ 0.45, gBLR ∼ 0.014 and gRBL ∼ 0.012 at the SUSY scale.
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Mixing between Z and Z ′ states lead to a shift in the ρ-parameter [255], measured very accurately

at LEP [256]. Expanding eq. 4.26 up to second order, we estimate the shift to be of order

∆ρ =
v2/v2R

v2/v2R +B2/(C − 2AB)
. (4.30)

For our choice of couplings gL, gR and gB−L (fixed by the experimental inputs and gauge coupling

unification) this leads to a lower limit of roughly vR >∼ 3.3 TeV, similar to but less stringent than the

direct search bound.

4.2.2. Higgs bosons

4.2.2.1. Pseudoscalar Higgs bosons

At the tree level we find that in the (ϕd, ϕu, ϕ̄R, ϕR) basis the pseudoscalar sector has a block-

diagonal form and reads in Landau gauge

M2
AA =




M2
AA,L 0

0 M2
AA,R




(4.31)

with

M2
AA,L = Bµ




tan β 1

1 cot β




, M2
AA,R = BµR




tan βR 1

1 cot βR



. (4.32)

From these four states two are Goldstone bosons which become the longitudinal parts of the massive

neutral vector bosons Z and a Z ′. In the physical spectrum there are two pseudoscalars A0 and A0
R

with masses

m2
A = Bµ(tan β + 1/ tan β) , m2

AR
= BµR

(tan βR + 1/ tan βR) . (4.33)
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4.2.2.2. Scalar Higgs bosons

The tree-level CP-even Higgs mass matrix in the (σd, σu, σ̄R, σR) basis reads

M2
hh =




m2
LL m2

LR

m2,T
LR m2

RR




, (4.34)

where

m2
LL =




(g2Z + 1
4g

2
RBL)v

2c2β +m2
As

2
β −1

2

(
m2

A + (g2Z + 1
4g

2
RBL)v

2
)
s2β

−1
2

(
m2

A + (g2Z + 1
4g

2
RBL)v

2
)
s2β (g2Z + 1

4g
2
RBL)v

2s2β +m2
Ac

2
β




, (4.35)

m2
LR =

1

4




(g̃RgR − g̃BLgRBL)vvRcβcβR
−(g̃RgR − g̃BLgRBL)vvRcβsβR

−(g̃RgR − g̃BLgRBL)vvRsβcβR
(g̃RgR − g̃BLgRBL)vvRsβsβR




, (4.36)

m2
RR =




g̃2ZR
v2Rc

2
βR

+m2
AR
s2βR

−1
2

(
m2

AR
+ g̃2ZR

v2R

)
s2βR

−1
2

(
m2

AR
+ g̃2ZR

v2R

)
s2βR

g̃2ZR
v2Rs

2
βR

+m2
AR
c2βR




, (4.37)

sx = sin(x), cx = cos(x) (x = β, βR, 2β, 2βR), g
2
Z = (g2L+g

2
R)/4, g̃

2
ZR

= (g̃2BL+ g̃
2
R)/4. The matrix

m2
LL contains the standard MSSM doublet mass matrix. To see this explicitly one has to integrate

out the additional Higgs fields in the vR → ∞ limit which yields a shift in the gauge couplings such

that the MSSM limit is achieved. m2
RR corresponds to the U(1)R × U(1)B−L Higgs bosons and

m2
LR provides the essential mixing between the two sectors.

Note that it is straightforward to show that the determinant of the mass matrix eq. (4.34) goes

to zero, whenever one of the parameters ((tan β − 1),mA, (tan βR − 1),mAR
) goes to zero. One

can also calculate analytically that in the limit of vR → ∞ the lightest eigenvalue of eq. (4.34)

obeys the MSSM tree-level limit for h0. For finite vR corrections to m2
LL appear, of the order of

g2Rv
3/vR, which lead to a shift in the lightest eigenvalue. Thus the MSSM tree-level upper bound

of mtree
h0 ≤ mZ0 for the lightest Higgs can be violated.
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4.2.2.3. Numerical examples

The numerical results given below have been calculated in SPheno [36; 166] for which the

necessary subroutines and input files were generated by the relevant extension of SARAH [257]. Hence,

the complete one-loop corrections in the extended Higgs sector have been included [4]. We will

concentrate the discussion on the lightest two mass eigenstates, since here the changes with respect

to the MSSM are expected to be most important for the choice of mA and mAR
used below. We

always check that we are at the minimum of the potential, by solving the (1-loop improved) tadpole

equations for the soft Higgs masses.

Throughout the numerical analysis we have adopted a CMSSM-like configuration specified by

M1/2 = 600 GeV, m0 = 120 GeV, A0 = 0 and tan β = 10. The stop-sector soft masses in (4.4)

were chosen as mQ̃3
= mŨ3

= 2 TeV, Tu33 = 3 TeV and the top quark mass has been fixed to

mt = 172.9 GeV. In addition we have assumed vR = 5 TeV, µ = 800 GeV, mA = 800 GeV,

µχ = −500 GeV, mAR
= 2 TeV and tan βR = 1.1 unless specified otherwise 8. For the sake of

completeness 9 we have taken gBL = 0.46 and gR = 0.48.

Some further remarks concerning the parameters of the extended Higgs sector are in order here.

The experimental constraints on the Z ′ mass yield a lower bound on vR of about 2.5 TeV 10 for

the assumed gauge couplings. This VEV, however, also enters the sfermion mass matrices via the

D-term contributions. Focusing, e.g., at the charged sleptons the relevant mass matrix reads

M2
l̃
=




M2
L̃
+ 1

8M
2
DL +m2

f
1√
2
(vdTl − µYlvu)

1√
2
(vdTl − µYlvu) M2

Ẽ
+ 1

8M
2
DR +m2

f



, (4.38)

where

M2
DL = g2BL(v

2
χR

−v2χ̄R
)+g2L(v

2
u−v2d) and M2

DR = (g2R−g2BL)(v
2
χR

−v2χ̄R
)+g2R(v

2
u−v2d) (4.39)

are just the D-terms, M2
L̃
andM2

Ẽ
are the soft SUSY masses for the L-type and R-type sleptons and

all flavour indices have been suppressed in the above formula.

8 At the time of the publication CMS and ATLAS data showed a small excess at 140 GeV (see subsection 2.1.3) For
this choice of parameters mh0 in the MSSM limit is about 125 GeV (1-loop), which is needed to explain a Higgs mass
of 140 GeV. For a Higgs mass of around 125 GeV, as indicated by recent LHC data, we have less stringent constraints
on the soft parameters. For mQ̃3

= 1.1 TeV, mŨ3
= 0.96 TeV and Tu33 = 1.1 TeV corresponding to the RGE solutions

for these CMSSM one finds mh0 = 111 GeV at 1-loop.
9It is perhaps worth mentioning that from the effective theory point of view the specific values of gBL and gR do not

matter as long as they yield the correct MSSM hypercharge coupling. Indeed, we have verified that different choices
lead to results very similar to those quoted in the text.

10At the time of the publication the lower limit on Z′ was around 1 TeV. For an update and a more detailed discussion
see subsection 4.3.4.
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Figure 4.2: The tree level and one-loop masses of the two lightest Higgs bosons h1,2 (left) and R2
Li

(right) as a function of vR; at tree level (TL) in dashed and at one loop (1L) in solid lines. The values
of all the other parameters are given in the text. The shaded area is excluded by the Z ′ searches.

Since the (dominant) v2R-parts of the two D-terms have opposite signs, the breaking of the extra

gauge group must be nearly “D-flat”, i.e., tan βR ≃ 1 as otherwise one of the sleptons would become

tachyonic11. For completeness we also note that the cases of tan β = 1 and tan βR = 1 lead to

saddle points of the potential but not to minima which is a well known fact within the MSSM. In a

complete analogy with the MSSM one can also show that for tan βR → 1 one of the Higgs states

gets massless at the tree level. Thus, since tan βR has to be close to one, we generally expect two

light Higgs bosons in the spectrum, which holds even at the one-loop level.

In Figure 4.2 we show the masses of the two lightest Higgs bosons together with

R2
Li ≡ R2

i1 +R2
i2 (4.40)

as a function of vR where i = 1, 2 labels the light Higgs scalars in the model. Note that the quantity

R2
Li, which reaches one in the MSSM limit, is a rough measure of how much the corresponding

Higgs with index i resembles an MSSM Higgs boson. Roughly speaking, the smaller this quantities

is, the smaller is the i-th Higgs coupling to the Z- and W -bosons, implying a reduced production

cross sections at LEP, Tevatron and the LHC.

As claimed above there are two light CP-even states h1,2 which essentially correspond to an

admixture of the “standard” MSSM-like doublet component h0 and its counterpart h0R spanning

over the χR − χ̄R sector; this can also be seen by noticing that R2
L1 +R2

L2 ≃ 1 as displayed on the

right hand side of Figure 4.2. We stress that the state which mainly resembles the MSSM h0 (i.e.,

the one with a large R2
Li) has already a tree-level mass of around 110 GeV or larger and reaches

11Let us note that this is indeed the case in all supersymmetric models featuring a spontaneously broken extended
gauge symmetry well above the TeV scale (like, e.g., SUSY GUTs) and as such this requirement should be viewed as
a phenomenological constraint rather than a fine-tuning.
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Figure 4.3: One-loop masses of the two lightest Higgs bosons (left column) and R2
Li (right column)

as a function of tanβR (upper row) and mAR
(lower row). The values of all the other parameters

are given in the text.

up to 140 GeV once loop corrections are included12. The lighter state with a mass below 100 GeV

hardly couples to the Z-boson and, thus, the LEP constraints from the Higgs searches do not apply

for it. To this end, we have used the HiggsBounds package [258; 259] to check explicitly that all

the configurations of our concern here are experimentally allowed. Note also that the large variation

in R2
Li as seen on the right panel of the Figure 4.2 and, in particular, its high sensitivity to radiative

corrections is expected because the parameters have been deliberately chosen close to a level-crossing

region.

This can be also seen in Figure 4.3 where we display the mh1,2 dependence on tanβR and mAR
.

All results shown in this figure are at the one-loop level. The upper bound on tanβR is given by

the requirement that for a given value of vR all sfermions masses are consistent with existing data

(which, however, depends also on the sfermion mass parameters). The observed dependence on

tanβR is, indeed, rather strong. Note also that very light h1 can be obtained for13 tanβR <∼ 1.05.

12Actually, even larger values can be obtained when varying the parameters, e.g. mAR
.

13The exact value as well as the others given below depend on the other parameters.
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As in this regime it is mainly a combination of χ̄R and χR (see the right panel) the usual bounds

do not apply. However, the second lightest Higgs boson (similar to the MSSM h0) can decay into a

pair of these states with sizable branching ratio which in turn can change the Higgs phenomenology

drastically [4]. For 1.2 <∼ tanβR <∼ 1.3 the lightest state becomes mainly the MSSM h0 with a mass

close to 130 GeV which is a consequence of the stop-sector parameter choice. In this figure one also

sees that there is still quite some mixing between the two lightest states even for mAR
= 5 TeV;

this implies a change in the phenomenology with respect to that of the MSSM (for a given set of

the MSSM parameters).

We checked that in this model, in general, the loops due to third generation sfermions (in

particular the stops) give the largest contribution. In reference [260] it has been shown that in

inverse seesaw models also the sneutrino loops can give large contributions. Indeed, we find that

there can be huge contributions if the neutrino Yukawa couplings are O(1) or larger as can be seen

in Figure 4.4. The neutrino Yukawa couplings are parametrized as

Yν = f




0 0 0

a a −a

0 1 1




, (4.41)

with

a =
(
∆m2

⊙/∆m
2
A

) 1

4 ∼ 0.4 , (4.42)

and the structure has been chosen such that one correctly accommodates the neutrino data. However,
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we find that the bound BR(µ→ eγ) <∼ 2.4 ·10−12 [181] 14 severely constrains this option as, for large

f , one gets a large contribution to µ→ eγ due to the chargino-sneutrino and W -neutrino loops.

There are, of course, several ways to tune the parameters such that this bound is avoided. For

example, one can add a non-minimal flavour structure into the slepton sector [262] or tune the

structure of the neutrino Yukawa couplings so that very specific values for θ13, the reactor mixing

angle, are obtained [130; 142]. This implies that, in principle, larger values for the neutrino Yukawa

couplings are possible, hence rendering the corresponding loops more important.

Finally we note, that in the plots in this subsection we have not shown the regions excluded by

LEP or the LHC searches, since we were interested only in showing the parameter dependencies of

our numerical results. In the study points of the next subsection, however, we have taken care that

our points survive all known experimental constraints.

4.2.3. Neutrinos

The mBLR model contains beside the usual three left-handed neutrinos six additional states

which are singlets with respect to the SM group. The corresponding mass matrix is in the basis

(νL, ν
c, S) given by

mν =




0 1√
2
vuY

T
ν 0

1√
2
vuYν 0 1√

2
vχR

Ys

0 1√
2
vχR

Y T
s µS




. (4.43)

This matrix is diagonalized by Uν :

Uν,∗mνU
ν,† = mdia

ν . (4.44)

Eigenvalues for the three light (and mostly left-handed) neutrinos can be found in the seesaw ap-

proximation as:

meff
ν = − v2u

v2R
Y T
ν (Y T

s )−1µSY
−1
s Yν . (4.45)

Neutrino data implies that either Yν and/or µS is small and in inverse seesaw the smallness of

neutrino mass is attributed to the smallness of the latter 15.

The smallness of µS implies that the six heavy states form three “quasi-Dirac” pairs. For vanishing

14At the time the paper was published the experimental limit was BR(µ → eγ) <∼ 2.4 · 10−12 [181]. Note, that
meanwhile the bound has been improved to BR(µ → eγ) <∼ 5.7 · 10−13 [261].

15 The bounds on rare lepton decays imply that the off-diagonal terms of Ys and Yν have to be small compared to
their diagonal entries, unless their diagonal values are small too.
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off-diagonal entries in Ys and Yν a good estimate of the masses of the heavy states is:

mνh,ii ≃ ±
√

|Yν,ii|2v2u + |Ys,ii|2v2χR
. (4.46)

4.2.4. Sparticles

4.2.4.1. Neutralinos

The mass matrix of the neutralinos reads in the basis (λBL, λ
0
L, h̃

0
d, h̃

0
u, λR, ˜̄χR, χ̃R):

Mχ̃0 =




MBL 0 −1
2gRBLvd

1
2gRBLvu

MBLR
2

1
2vχ̄R

g̃BL −1
2vχR

g̃BL

0 M2
1
2gLvd −1

2gLvu 0 0 0

−1
2gRBLvd

1
2gLvd 0 −µ −1

2gRvd 0 0

1
2gRBLvu −1

2gLvu −µ 0 1
2gRvu 0 0

MBLR
2 0 −1

2gRvd
1
2gRvu MR −1

2vχ̄R
g̃R

1
2vχR

g̃R

1
2vχ̄R

g̃BL 0 0 0 −1
2vχ̄R

g̃R 0 −µR

−1
2vχR

g̃BL 0 0 0 1
2vχR

g̃R −µR 0




.

(4.47)

The eigenvalues of this matrix are not completely arbitrary. Since U(1)B−L × U(1)R is broken in

such a way as to produce correctly the SM group U(1)Y in the limit of v << vR the matrix contains

one state which corresponds to the MSSM bino, B̃, which is a superposition of λBL and λR. In

addition the matrix contains an orthogonal state, which we will call B̃⊥ in the following.

For CMSSM like boundary conditions,MBL =M2 =MR =M1/2, the bino is usually the lightest

of the three gaugino like states, with the W̃ being approximately twice as heavy. The B̃⊥ is very

often mixed with one of the right higgsinos, and, since MBL at low energies is much smaller than vR

this mixing is often important. In addition, there is the standard quasi-Dirac pair of “left” higgsinos,

plus two more states which are mostly right higgsinos. Of the latter one is usually rather heavy, while

the other can be light, if µR is small.

In fig. 4.5 the neutralino masses and R2
⊥i for CmBLR are plotted against vR for some arbitrary

choice of other parameters. As discussed, there are in total seven eigenstates. Of special interest

is the B̃⊥, so in the plot on the right we show the percentage of B̃⊥ (R2
⊥i) in the corresponding
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Figure 4.5: Neutralino masses (left) and R2
⊥i (right) versus vR for otherwise fixed choice of param-

eters: m0 = 1000 GeV, M1/2 = 1000 GeV, tan β = 10, A0 = −600, tan βR = 1.04. This plot uses
the CmBLR version of the model.

mass eigenstate. Here R2
⊥i = 1 means that the i-th neutralino is a pure B̃⊥. As one can see in

fig. 4.6 the masses and mixing of the three new states depend strongly on vR. For small vR all three

states mix to each other. Increasing vR leads to a decoupling of the lighter higgsino-right from the

B̃⊥ which decreases in mass since µR becomes smaller for large vR while the masses of the two

remaining states get large. Since the MSSM Neutralinos mix very little with the new states, there

are four eigenvalues which show almost no dependence on the parameters vR and µR.

In fig. 4.6 the neutralino masses and R2
⊥i are plotted against vR for the case of χRmBLR. In

this calculation, µR and mAR
can take fixed values while vR is varied freely. Two of the three new

Neutralino states are a mixture of the higgsino-right and B̃⊥ and therefore depend on vR. Since

the lighter higgsino-right hardly mix to the B̃⊥ it has a constant mass at mh̃R
≃ |µR| = 1700 GeV

in this example. The lighter of the two new states that show dependence on vR is mostly a B̃⊥,

whereas the one with larger mass is mostly a higgsino-right. The smaller vR the smaller the mixing

between these two states and thus the larger the coupling of the mostly B̃⊥-state to the MSSM

particles. This will be important when we discuss LHC phenomenology in subsection 4.3.4.

The dependence of the neutralino masses and R2
⊥i on µR is shown in fig. 4.7. Since the higgsino-

right and the B̃⊥ mix, all three states show a dependence on µR. The state which hardly mixes to

the B̃⊥ decreases in mass for small |µR|. So we can easily have a higgsino-right as LSP choosing

µR close to zero. The state which is mostly the B̃⊥ gets a smaller mass for large |µR|, while the one
which is mostly a higgsino-right increases in mass.

4.2.4.2. Sleptons and sneutrinos

In models in which lepton number is broken, the scalar neutrinos split into a real and an imaginary

part with slightly different masses [263]. Since we assume that the smallness of neutrino masses is
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Figure 4.6: Neutralino masses (left) and R2
⊥i (right) versus vR for otherwise fixed choice of param-

eters: m0 = 630 GeV, M1/2 = 1000 GeV, tan β = 10, A0 = 0, tan βR = 1.05, µR = −1700 GeV,
mAR

= 4800 GeV. This plot uses the χRmBLR version of the model.
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due to the smallness of the parameter µS (and, therefore, BµS
is supposed to be small too), this

splitting between sneutrino mass eigenstates is too small to be of any relevance, except neutrino

masses themselves.

Neglecting µS and BµS
the sneutrino mass matrix is given by

M2
ν̃ =




m2
LL,ν̃

1√
2
vu(T

†
ν − Y †

ν cot βµ) 1
2vuvχR

Y †
ν Ys

1√
2
vu(Tν − Yν cot βµ

∗) m2
RR,ν̃

1√
2
vχR

(Ts − Ys cot βRµ
∗
R)

1
2vuvχR

Y †
s Yν

1√
2
vχR

(T †
s − Y †

s cot βRµR) m2
S +

v2χR
2 Y †

s Ys




(4.48)

where

m2
LL,ν̃ = m2

L +
v2u
2
Y †
ν Yν −

1

8

(
(g2BL + g2BLR − gBLgRBL)(v

2
χ̄R

− v2χR
) + (g2L + g2R + gBLgRBL)(v

2
d − v2u)

)
1

m2
RR,ν̃ = m2

ν +
v2u
2
YνY

†
ν +

v2χR

2
Y †
s Ys+

1

8

(
(g2BL + g2R + g2BLR + g2RBL − 2gBLgRBL − 2gRgBLR)(v

2
χ̄R

− v2χR
)+

(g2R + g2RBL − gBLgRBL − gRgBLR)(v
2
d − v2u)

)
1 (4.49)

For charged sleptons one gets:

M2
l̃
=




m2
LL,l̃

1√
2
vd(T

†
l − Y †

l tan βµ)

1√
2
vd(Tl − Yl tan βµ

∗) m2
RR,l̃




(4.50)

where

m2
LL,l̃

= m2
L +

v2d
2
Y †
l Yl −

1

8

(
(g2BL + g2BLR − gBLgRBL − gRgBLR)(v

2
χ̄R

− v2χR
)

− (g2L − gBLgRBL − gRgBLR)(v
2
d − v2u)

)
1

m2
RR,l̃

= m2
E +

v2d
2
YlY

†
l +

1

8

(
(g2BL − g2R + g2BLR − g2RBL)(v

2
χ̄R

− v2χR
)

− (g2R + g2RBL + gBLgRBL + gRgBLR)(v
2
d − v2u)

)
1 (4.51)
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In fig. 4.8 sneutrino and slepton masses are plotted against vR, tan βR and µR. The figures on

the left show a zoom into the region of the lightest states, whereas the figures on the right show

a larger range of masses for a better understanding of the overall behavior. To see which particle

is the LSP, while varying vR, tan βR and µR, we included in all plots on the left the mass of the

lightest neutralino state. This state is always a Bino, except for the plot against µR. Here the LSP

becomes a higgsino-right for |µR| < 250 GeV. The plots show that the masses depend strongly on

the choice of vR and tan βR. In the case of charged sleptons the dependence on vR and tan βR

comes only from additional D-terms at the tree level. This is different for sneutrinos. Here we can

have an interplay between new D-terms and terms coming from the coupling Ys which both depend

on vR and tan βR. The additional D-terms force left sparticle to become light for tan βR < 1 while

for tan βR > 1 right sparticle masses decrease. Up to vR = 6 TeV ν̃1 is a right handed sneutrino

and therefore the mass increases for increasing vR. For vR > 6 TeV the mass of ν̃1 drops down

again since here it is mainly a left handed sneutrino. Thus, increasing vR leads to a level-crossing

in the mass spectrum of left and right handed sneutrinos. The same holds for the sleptons. In the

plot against vR the mass of the right sneutrino decreases much faster for vR < 6 TeV than the mass

of the right sleptons. This is due to the off-diagonal terms proportional to Ys, which contain also

µR in the sneutrino mass matrix. These terms mix the scalar component of Ŝ to ν̃R. Thus for low

values of vR in this example the LSP is neutral, which is allowed, whereas for larger values of vR

(with left sleptons being light) there are parts of the parameter space, where the lightest slepton is

charged, which is phenomenologically forbidden. Whether in the left sector charged or neutral states

are lighter, depends heavily on the choice of parameters.

Varying tan βR the right slepton masses decrease faster than the right sneutrino masses for

tan βR > 0.95 due the additional sneutrino mixing. Since the sneutrino and slepton masses depend

strongly on the choice of vR, tan βR and µR one obtains limits on combination on these parameters.

On the one hand, one has to avoid tachyonic states and on the other hand one has to take care not

to get charged sleptons as LSP. The combination of both conditions forces us to choose tan βR close

to one and gives us an upper limit on vR and |µR| as function of | tan βR − 1|.

4.3. Constraints, sample spectra and decays

In this section we discuss several interesting phenomenological aspects which potentially allow

the BLR model to be discriminated from the MSSM at the LHC and exemplify the most important

features for a few study points. We include a discussion of the direct production of new states and

characteristic changes in the cascade decays of supersymmetric particles.

For brevity we will call these benchmark points BLRSP1- BLRSP5, the corresponding input

parameters are listed in table 4.2. All of these points have been calculated with the χRmBLR version

of the model. However, note that for BLRSP5 the input is chosen to be consistent with the CmBLR
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Figure 4.8: Lightest slepton (and neutralino) masses as function of vR, tan βR and µR for a fixed
but arbitrary choice of other parameters: m0 = 220 GeV, M1/2 = 630 GeV, tan β = 10, A0 = 0,
tan βR = 0.95, vR = 6000, µR = −850 GeV, mAR

= 2200 GeV, Ys,ii = 0.3. Plots on the left
show a zoom into the light mass region, such that mass differences between the lightest sneutrino
and the lightest charged slepton are resolved, figures to the right show the overall dependence, for a
discussion see text.
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variant.

A few comments on the input parameters and the resulting mass spectra are in order, before we

discuss the phenomenology in detail. As shown below, the bounds on rare lepton flavour violating

decays require Yν and Ys to be essentially flavour-diagonal, unless these couplings are very small.

Therefore we have chosen Yν and Ys diagonal as starting point implying that all points satisfy trivially

the LFV constraints. A correct explanation for the neutrino angles then requires flavour violating

entries in the parameter µS , which we do not give in table 4.2, since they are irrelevant for collider

phenomenology.

The input values of table 4.2 lead to the mass spectrum shown in tables 4.3 and 4.4. We give the

masses and in brackets the particle character. In case of mixed states the two largest components, for

example (W̃ , h̃L), are given where the first entry accounts for the larger contribution. If the ordering

in the composition changes like in the case of mũ5,6 we use squared brackets. Therefore we have

(c̃L, ũL) for mũ5
and (ũL, c̃L) for mũ6

. In all cases input parameters have been chosen such, that

the squark and gluino masses are outside the region currently excluded by pure CMSSM searches at

ATLAS [227] and CMS [228]. Since (a) we expect the missing momentum signal to be smaller in

these points than in a true CMSSM spectrum and (b) our squark spectra are less degenerate than

the CMSSM case, we believe this is a conservative choice. Two of the points have a sneutrino LSP

(BLRSP1 and BLRSP3), while three points have a neutralino LSP (for BLRSP2 and BLRSP5 mostly

a bino, for BLRSP4 a state which is mostly a h̃R).

Note that the ordering of sfermion mass eigenstates does in many cases not follow the standard

CMSSM patterns: mτ̃1 ≤ mµ̃R
≃ mẽR < mµ̃L

≃ mẽL ≤ mτ̃2 and mt̃1
≤ mc̃R ≃ mũR

< mc̃L ≃
mũL

≤ mt̃2
(similar for sdowns). These patterns are distorted in the study points due to the

unconventional D-terms of the model and this feature gets enhanced for larger | tan βR − 1| and/or
larger values of vR. We note also that for sneutrinos and charged sleptons many states are quite

degenerate. For example µ̃R and ẽR have practically the same mass in all points. While these

degeneracies are always true in CMSSM spectra, in our case this is not necessarily so, but simply

reflects the fact that both Yν and Ys have been chosen generation independent in all points, except

BLRSP1. As this point shows, even a rather moderate generation dependent value of Ys can lead

to large mass splittings in the sneutrino sector. A generation dependent value of Yν would not only

split sneutrino masses but also charged slepton masses.

4.3.1. Higgs physics, direct production

In all study points of table 4.2 there is one Higgs boson with mass between 120 and 125 GeV. In

addition, there is a second state with masses varying between 19 and 140 GeV. In BLRSP1, BLRSP3

and BLRSP5 the mass eigenstate h2 is SM-like, with R2
L2 > 0.9. In BLRSP2 it is h1, which has a

large content of Hd and Hu and BLRSP4 is a case where h1 and h2 have large mixing. Since we

have often a mass eigenstate below the LEP limit of 115 GeV for a standard model Higgs boson,
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BLRSP1 BLRSP2 BLRSP3 BLRSP4 BLRSP5

CMSSM

m0 [GeV] 470 1000 120 165 500

M1/2 [GeV] 700 1000 780 700 850

tan β 20 10 10 10 10

A0 0 -3000 -300 0 -600

Extended gauge sector

vR [GeV] 4700 6000 6000 5400 5000

tan βR 1.05 1.025 0.85 1.06 1.023

µR [GeV] -1650 -780 -1270 260 (-905)

mAR
[GeV] 4800 7600 800 2350 (1482)

Yukawas

Yν,11 0.04 0.1 0.1 0.1 0.1

Yν,22 0.04 0.1 0.1 0.1 0.1

Yν,33 0.04 0.1 0.1 0.1 0.1

Ys,11 0.04 0.042 0.3 0.3 0.3

Ys,22 0.05 0.042 0.3 0.3 0.3

Ys,33 0.05 0.042 0.3 0.3 0.3

Table 4.2: Parameters of the various study points. In BLRSP1-BLRSP4 µR and mAR
are input

whereas in BLRSP5 the constrained version of the model has been used and, thus, these two param-
eters are output. For a discussion of these points see text.
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BLRSP1 BLRSP2 BLRSP3 BLRSP4 BLRSP5

Sneutrinos and Sleptons

mν̃1 [GeV] 102.3 (ν̃R) 797.0 (ν̃R) 91.6 (ν̃R, ν̃L) 542.3 (ν̃R, ν̃L) 753.4 (ν̃R, ν̃L)

mν̃2 [GeV] 102.3 (ν̃R) 797.0 (ν̃R) 92.6 (ν̃R, ν̃L) 542.3 (ν̃R, ν̃L) 753.9 (ν̃R, ν̃L)

mν̃3 [GeV] 203.0 (ν̃R) 797.0 (ν̃R) 92.6 (ν̃R, ν̃L) 542.3 (ν̃R, ν̃L) 753.9 (ν̃R, ν̃L)

mν̃4 [GeV] 573.8 (ν̃R) 1120.1 (ν̃R, ν̃L) 253.4 (ν̃L, ν̃R) 585.4 (ν̃L, ν̃R) 785.5 (ν̃L, ν̃R)

mν̃5,6 [GeV] 604.4 (ν̃R) 1120.3 (ν̃R, ν̃L) 258.2 (ν̃L, ν̃R) 586.7 (ν̃L, ν̃R) 789.0 (ν̃L, ν̃R)

mν̃7 [GeV] 725.2 (ν̃L) 1220.0 (ν̃L, ν̃R) 1374.0 (ν̃L, ν̃R) 953.4 (ν̃R) 950.1 (ν̃R)

mν̃8,9 [GeV] 734.1 (ν̃L) 1236.6 (ν̃L, ν̃R) 1374.0 (ν̃R) 953.4 (ν̃R) 950.1 (ν̃R)

mẽ1 [GeV] 484.1 (τ̃R) 1013.9 (τ̃R) 254.7 (τ̃L, τ̃R) 263.0 (τ̃R) 580.4 (τ̃R)

mẽ2,3 [GeV] 512.7 (µ̃R)/(ẽR) 1055.3 (µ̃R)/(ẽR) 265.6 (µ̃L)/(ẽL) 270.5 (µ̃R)/(ẽR) 592.3 (µ̃R)/(ẽR)

mẽ4 [GeV] 732.1 (τ̃L) 1222.4 (τ̃L) 447.7 (τ̃R , τ̃L) 591.6 (τ̃L) 788.0 (τ̃L)

mẽ5,6 [GeV] 738.8 (µ̃L)/(ẽL) 1237.9 (µ̃L)/(ẽL) 450.6 (µ̃R)/(ẽR) 592.2 (µ̃L)/(ẽL) 790.9 (µ̃L)/(ẽL)

Squarks

mũ1
[GeV] 1144.0 (t̃R, t̃L) 1185.4 (t̃R, t̃L) 1247.0 (t̃R, t̃L) 1111.3 (t̃R, t̃L) 1316.0 (t̃R , t̃L)

mũ2
[GeV] 1392.1 (t̃L, t̃R) 1851.9 (t̃L, t̃R) 1526.9 (t̃L, t̃R) 1361.4 (t̃L, t̃R) 1643.2 (t̃L, t̃R)

mũ3,4
[GeV] 1456.0 (c̃R)/(ũR) 2154.7 (c̃R)/(ũR) 1565.9 (c̃R)/(ũR) 1392.4 (c̃R)/(ũR) 1728.0 (c̃R)/(ũR)

mũ5,6
[GeV] 1509.0 [c̃L, ũL] 2227.3 [c̃L, ũL] 1634.0 [c̃L, ũL] 1448.8 [c̃L, ũL] 1795.8 [c̃L, ũL]

md̃1
[GeV] 1359.2 (b̃L, b̃R) 1819.2 (b̃L) 1409.8 (b̃R, b̃L) 1326.3 (b̃L) 1611.8 (b̃L)

md̃2
[GeV] 1464.0 (b̃R, b̃L) 2148.1 (b̃R) 1462.3 (s̃R) 1420.1 (b̃R) 1724.5 (b̃R)

md̃3
[GeV] 1489.8 (s̃R) 2175.9 (s̃R) 1462.3 (d̃R) 1426.2 (s̃R) 1734.8 (s̃R)

md̃4
[GeV] 1489.8 (d̃R) 2175.9 (d̃R) 1496.2 (b̃L, b̃R) 1426.2 (d̃R) 1734.8 (d̃R)

md̃5,6
[GeV] 1509.0 [s̃L, d̃L] 2228.9 [s̃L, d̃L] 1635.9 [s̃L, d̃L] 1450.9 [s̃L, d̃L] 1795.8 [s̃L, d̃L]

Neutralinos

mχ0

1

[GeV] 282.2 (B̃) 416.7 (B̃) 312.9 (B̃) 258.5 (h̃R) 346.6 (B̃)

mχ0
2

[GeV] 552.3 (W̃ , h̃L) 780.0 (h̃R) 615.3 (W̃ , h̃L) 279.7 (B̃) 679.5 (W̃ , h̃L)

mχ0
3

[GeV] 828.9 (h̃L) 817.5 (W̃ ) 1086.6 (h̃L) 549.0 (W̃ , h̃L) 902.7 (h̃R)

mχ0

4

[GeV] 838.9 (h̃L, W̃ ) 1865.5 (h̃L) 1092.8 (h̃L, W̃ ) 844.9 (h̃L) 1133.1 (h̃L)

mχ0

5

[GeV] 1230.4 (B̃⊥, h̃R) 1865.7 (h̃L) 1232.2 (h̃R, B̃⊥) 856.8 (h̃L, W̃ ) 1139.4 (h̃L, W̃ )

mχ0
6

[GeV] 1650.9 (h̃R) 2017.6 (B̃⊥, h̃R) 1811.3 (B̃⊥, h̃R) 1639.0 (B̃⊥, h̃R) 1489.8 (B̃⊥, h̃R)

mχ0
7

[GeV] 2608.3 (h̃R, B̃⊥) 2392.3 (h̃R, B̃⊥) 2741.4 (h̃R, B̃⊥) 2174.6 (h̃R, B̃⊥) 2056.5 (h̃R, B̃⊥)

Table 4.3: Susy spectra of our study points, for discussion see text. (ν̃R) is a nearly maximal mixture
of the right sneutrinos and the S-fields.
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BLRSP1 BLRSP2 BLRSP3 BLRSP4 BLRSP5

Light higgses (1-loop/2-loop)

mh1
[GeV] 59.1/59.6 119.2/125.4 92.7/93.1 100.8/102.6 18.8/18.8

mh2
[GeV] 119.0/124.1 139.7/140.4 114.5/120.1 121.0/124.8 115.7/121.8

R2
L1 0.05/0.04 0.90/0.83 0.07/0.04 0.33/0.22 0.001/0.001

R2
L2 0.95/0.96 0.10/0.17 0.93/0.96 0.67/0.78 0.999/0.999

Heavy scalars/pseudoscalars

mh3
[GeV] 971.5 2176.5 1268.2 948.2 1345.6

mh4
[GeV] 5074.9 7883.3 2268.2 3024.7 2227.2

mA1
[GeV] 972.8 2177.5 796.3 949.2 1346.8

mA2
[GeV] 4789.4 7581.1 1269.3 2345.1 1477.8

Table 4.4: Higgs spectra of our study points, for discussion see text.
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we have checked the consistency of these eigenstates with data using HiggsBounds 3.4.0beta

[258; 259]. All points are allowed by accelerator constraints, but sometimes very close to existing

bounds, especially BLRSP4 and also BLRSP2. As an indication for the theoretical uncertainties in

the mass calculation we give the masses using the complete 1-loop formulas and the ones adding the

dominant 2-loop corrections to the MSSM sector [264; 265; 266; 267; 268; 34] 16.

In BLRSP1 and BLRSP5 h1 is so light that the decay h2 → h1h1 is kinematically allowed.

However, the mixing between both sectors is so small that for BLRSP1 the corresponding branching

ratio is about 1 per-cent whereas for BLRSP5 it is a few per-mile. The smallness of this decay is a

direct consequence of the bounds imposed by LEP and the decay h2 → h1h1 can never be dominant

in the BLR model. The h2 can also decay into a combination of heavy and light neutrinos with a

branching ratio of a few per-cent, as for example in case of BLRSP1 leading to the final states

h2 → νiνk → νil
±W∓ (4.52)

h2 → νiνk → νiνjZ (4.53)

with i, j = 1, 2, 3 and k = 4, . . . , 9. These final states can also be obtained via intermediate states

containing an off-shell vector boson, e.g. WW ∗ and ZZ∗. However, their existence implies that ratio

of quark versus lepton final states will not correspond to the branching ratios of the vector bosons.

Note, however, that for hadronic W-boson decays the invariant mass of jj+lepton system would

show a peak at the heavy neutrino mass, which allows to identify this signature, in principle. Apart

from these decays, the h2 can also decay to two scalar neutrinos and, if kinematically allowed, this

decay can become dominant, leading to a (nearly) invisible Higgs boson.

For a 125 GeV Higgs boson the excess [191; 192], see also [269], indicates a slightly larger than

expected branching ratio into the two-photon final state. In [8] it was shown that the NMSSM can,

in principle, explain such an enhanced di-photon rate, due to a possible mixing of the singlet and

the Higgs, which reduces the coupling of the Higgs to bottom quarks, thus reducing the total width,

without affecting the production cross section. In the case of the BLR model, such a construction

is not possible, since our singlets are charged under U(1)R and the mixing between SM and BLR

sectors is controlled by tan βR. Since we have to choose tan βR close to one, the singlets mix to the

up and down components of the Higgs equally. Therefore a reduction of h→ bb̄ causes a reduction

of the coupling for gluon fusion as well. Thus, a sizeable enhancement of Br(h → γγ) by reducing

simply the total width is not possible in the BLR model. Currently the discrepancy of the data with

expectations is only at the level of about 1 σ c.l. and, as already mentioned before, only ATLAS

confirmed the enhanced decay rate into photons in the latest published results. However, should

future data show indeed an enhanced rate for the γγ final state, this would be hard to explain in the

16 Note, that χR and χ̄R do not couple at tree-level to quarks. Therefore the 2-loop contributions from the extended
higgs sector to the higgs mass are expected to be small and neglected in the presented calculation.
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BLR model.

In the four points (BLRSP1, BLRSP3-BLRSP5) h1 has approximately the same branching ratios

for the decays into SM-fermions as a SM Higgs boson of the same mass. However, the corresponding

widths are suppressed by the mixing with the usual MSSM sector which reduces the width by a factor

between 102 and 104. At the LHC the main production of this particle is via SUSY cascade decays,

e.g. it appears in the decays of ν̃4,5,6 (BLRSP1, BLRSP3), χ̃0
3 (BLRSP4) or in the decays of the

heavy neutrinos which are produced via the Z ′ (BLRSP1, BLRSP4) as discussed in subsection .

However, in case of BLRSP5 LHC will miss h1 as it only appears in the decays of the heavy Higgs

bosons which have masses in the TeV range.

Study point BLRSP2 differs from the others as here h1 is the MSSM-like Higgs boson and h2

has a mass of 140 GeV which could explain the slight excess in this region observed by ATLAS and

CMS in the early data [270; 271]. In this region of the parameter space the Higgs at 125 GeV is

made as in the MSSM, implying a rather heavy SUSY spectrum. This is due to the fact that a

140 GeV Higgs with reduced couplings can only be the hBLR, i.e. this points exist to the right of

the level-crossing region shown in fig. 4.2. Due to the choice of a rather small Ys in this point the

heavy neutrinos masses are below the mass of h2. This leads to non-standard decays into the heavy

neutrinos which dominantly decay to a lepton and a W-boson.

4.3.2. Z ′ physics

As already mentioned in sect. 4.2.1, our Z ′ corresponds essentially to the Zχ in the notation

of [254]. In previous studies usually two assumptions have been made in the construction of mass

bounds: (i) the Z ′ decays only into the known SM particles [272] and (ii) the effects of gauge kinetic

mixing are neglected. Both assumptions are not truly valid in the BLR model. For a recent study of

Z ′ bounds without these assumptions see [273]. As shown in table 4.5 we find in all our points that

the heavy neutrinos appear as final states beside the SM-fermions. Moreover, in all but BLRSP5

also supersymmetric particles appear as decay products, in particular sneutrinos and sleptons. On

the other hand, gauge kinetic effects are in this model less important and were only important if one

could measure the branching with a precision of 1 per-cent or better.

The Z ′ couples to leptons and quarks as follows

Z ′
µf̄γ

µ(cfLPL + cfRPR)f (4.54)

The different coefficients are given in table 4.6.

Note, that in the couplings to the u-quarks a partial cancellation occurs in contrast to the ones

to d-quarks, which get enhanced. Moreover, the same feature appears in the vertex q̃-q-B̃⊥ which

leads to some interesting consequences discussed in subsection 4.3.4.

We find that the decays into the heavy neutrino states are always possible and have a sizable
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final state BLRSP1 BLRSP2 BLRSP3 BLRSP4 BLRSP5

BR(dd) 0.31 0.35 0.35 0.37 0.43

BR(uu) 0.06 0.07 0.07 0.07 0.08

BR(ll) 0.12 0.14 0.14 0.14 0.16

BR(νlνl) 0.10 0.11 0.12 0.12 0.12

BR(νhνh) 0.27 0.30 0.13 0.11 0.13

BR(ν̃ν̃) 0.05 — 0.05 0.03 —

BR(l̃l̃) — — 0.05 0.03 —

BR(χ̃+

2 χ̃
−

2 ) — — — 0.02 —

BR(χ̃0
4χ̃

0
5) — — — 0.02 —

Table 4.5: Branching ratios of the dominant Z ′ decay modes. Here we have summed over the
generations in case of the charged fermions and sfermions. For the neutrinos we have splitted this
sum into a sum over the light (heavy) states denoted by νl (νh).

cL cR

d − i
6

(
−3gLZ

13 + gBLZ
23 + gBLRZ

33
)

− i
6

(
(gBL − 3gRBL)Z

23 + (gBLR − 3gR)Z
33
)

u − i
6

(
3gLZ

13 + gBLZ
23 + gBLRZ

33
)

− i
6

(
(gBL + 3gRBL)Z

23 + (gBLR + 3gR)Z
33
)

l i
2

(
gLZ

13 + gBLZ
23 + gBLRZ

33
)

i
2

(
(gBL + gRBL)Z

23 + (gBLR + gR)Z
33
)

ν

i
2

[∑3

x=1
Zj3+x,∗
ν Zi3+x

ν

(
(−gBL + gRBL)Z

23

+(gR − gBLR)Z
33
)
+

∑3

x=1
Zjx,∗
ν Zix

ν

(
gBLZ

23 − gLZ
13 + gBLRZ

33
) ]

− i
2

[∑3

x=1
Zi3+x,∗
ν Zj3+x

ν

(
(−gBL + gRBL)Z

23

+(gR − gBLR)Z
33
)
+

∑3

x=1
Zix,∗
ν Zjx

ν

(
gBLZ

23 − gLZ
13 + gBLRZ

33
) ]

Table 4.6: Coefficients cfL and cfR for the coupling between ZR and two leptons or quarks. Here,
Z is the rotation matrix diagonalizing the neutral gauge boson mass matrix and Zν is the neutrino
mixing matrix. For the explicit expression of Zµ we refer to the output of SARAH.
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branching ratio provided Tr(|Ys|) <∼ 1. In table 4.5 we summarize the most important final states

of the Z ′ for the different scenarios. As can be seen the heavy neutrino final states have always a

sizable branching ratios with up to about 30 per-cent when summing over the generations. But even

for rather heavy neutrinos as in BLRSP5 own finds for this channel a 15 per-cent branching ratio.

In several cases also channels into SUSY particles are open, in particular in scenarios with sneutrino

LSPs. In case of supersymmetric particles the final states containing sleptons or sneutrinos have the

largest branching ratios. Channels into neutralinos or charginos are suppressed. They proceed either

via the mixing with the Z which is rather small or via the projection of the higgsino-right onto the

corresponding neutralino state.

The appearance of additional final states leads to a reduction of the event numbers in the most

sensitive search channels, i.e. reducing cross section times branching ratio, and, thus, the bounds

obtained by the LHC collaborations [253; 274; 275] are less constraining in the BLR model. This

is depicted in fig. 4.9 where we show the production cross section σ(pp → µ+µ−) around the Z ′

resonance. 17 In case that the width of the Z ′ is calculated using only SM final states the cross

section is increased roughly by a factor 1.6 in comparison to the case where also right handed

neutrinos and SUSY particle contribute to the width of Z ′. With this choice of parameters, the main

effect is due to R-neutrinos. We attribute the remaining difference to the official ATLAS result to

slightly different values in the couplings and slightly different branching ratios of the final states. Our

results agree also with the ones of ref. [254]. We conclude that, although in our benchmark points

we take always mZ′ > 1.8 TeV, a significantly lower mass is possible consistent with data.

4.3.3. Heavy neutrinos

As discussed above, the heavy neutrino states can be produced via the Z ′ with a considerable

branching ratio of about 30 per-cent when summing over all heavy neutrinos. Moreover, see below,

they can also be produced in the cascade decays of supersymmetric particles. These heavy neutrinos

mix with the light neutrino states implying a reduction of the couplings of the light neutrinos to the

Z-boson and, thus, also a reduction of the invisible width of the Z-boson. Taking the data from

ref. [180] this can be translated into the following condition on the 3× 3 sub-block Uν
ij , i, j ≤ 3, of

the neutrino mixing matrix:

∣∣∣∣∣∣
1−

3∑

ij=1,i≤j

∣∣∣∣∣
3∑

k=1

Uν
ikU

ν,∗
jk

∣∣∣∣∣

2
∣∣∣∣∣∣
< 0.009 (4.55)

at the 3-σ level. We have checked that all our benchmark points fulfill this condition.

17For the calculation of the cross section we used WHIZARD [276; 277] and implemented the model using the SUSY

Toolbox [257].
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Figure 4.9: Cross section of pp → Z ′ → µ+µ− near the Z ′ peak as function of mZ′ taking into
account a K-factor of 1.3 [278]. For the black, dotted line the Z ′ width has been calculated allowing
only SM final states, while the blue solid includes also right-handed neutrinos and SUSY states.
The red line shows the ATLAS exclusion limit [253]. We have used as input BLRSP1 and varied
vR = [4.1, 5.1] TeV. Best experimental available limits are used. For details we refer to the output
of SARAH.

The main decay modes of the heavy neutrinos are18

νj → W±l∓ (4.56)

νj → Zνi (4.57)

νj → hkνi (4.58)

where j ≥ 4, i ≤ 3, k = 1, 2 and l = e, µ, τ , provided they are kinemtically allowed. If there is

no kinematical suppression we find in general the branching ratios scale like BR(νj → W±l∓) :

BR(νj → Zνi) : BR(νj → hkνi) ≃ 0.5 : 0.25 : 0.25 where we have summed over the light Higgs

bosons, the light neutrinos and leptons, respectively. We stress that these states are quasi-Dirac

neutrinos and, thus, for six heavy neutrinos at LHC the existence of up to three new particles could

be established. Note, that the final states containing aW -boson allow for a direct mass measurement.

Beside the above decay modes, also decays into SUSY particle are possible if kinematics allow

for it. For example we find that for BLRSP4 the decay into ν̃1,2,3χ̃
0
1 are possible and have branching

ratios of about 3 per-cent. In scenarios like BLRSP3, BLRSP4 and BLRSP5 the main production of

the heavy neutrinos is via the Z ′ and, thus, a high luminosity will be required to observe such final

states.

18 For related discussions see e.g. [279; 280; 281] and references therein.
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4.3.4. SUSY cascade decays

In this subsection we point out several features which distinguish the BLR model from the usual

MSSM. For the sake of preparing the ground, let us first summarize the main features of the MSSM

relevant for the LHC, focusing for the time being on scenarios where the gluino is heavier than the

squarks: (i) The gluino decays dominantly into squarks and quarks. (ii) L-squarks and L-sleptons

decay dominantly into the chargino and the neutralino which are mainly SU(2)L-gauginos. Apart

from kinematical effects the branching ratio for decays into the charged wino divided by the branching

ratio into the neutral wino is about 2:1. (iii) R-squarks and R-sleptons decay dominantly into the

bino-like neutralino with a branching ratio often quite close to 100 per-cent. (iv) In case of third

generation sfermions also decays into higgsinos are important.

In the BLR model one has two main new features: (i) there are additional neutralinos and (ii) the

sneutrino sector is enlarged as well. The latter implies that sneutrino LSPs are possible consistent

with all astrophysical constraints and direct dark matter searches [282; 283; 284; 285; 286; 287; 288].

This feature is for example realized in study points BLRSP1 and BLRSP319.

Let us start the discussion with BLRSP1. In this point the four lighter neutralinos are the usual

MSSM neutralinos with the standard hierarchy. The fifth state corresponds to the additional U(1)-

gaugino, which we call B̃⊥, whereas the two additional states are the additional higgsinos. Note that

the lightest neutralino is not stable anymore but decays into final states containing all nine neutrinos

as well as the three lightest sneutrinos. Of the latter ones the second lightest is so long lived that it

will lead to a displaced vertex in a typical collider detector. The third sneutrino decays dominantly via

three-body decays into l+l−ν̃i and νkνlν̃i with i = 1, 2 and k, l = 1, 2, 3. As discussed in subsection

4.3.3 the heavy neutrinos decay dominantly into W -bosons and charged leptons, thus the decays of

the lightest neutralino are not invisible.

B̃⊥ appears for example in the decays of d̃R and s̃R with branching ratios BR(qχ̃0
1) ≃ 0.8 and

BR(qχ̃0
5) ≃ 0.2. For completeness we remark that the decays of ũR and c̃R into χ̃0

5 is suppressed as

the corresponding coupling is suppressed as are the couplings of Z ′ to u-type quarks in this model.

χ̃0
5 decays dominantly into sleptons and sneutrinos. Combining all the above together one gets a

much richer structure for the decays of the R-squarks, e.g. the following decay chains:

q̃R → qχ̃0
1 → qνkν̃1 → qνjZν̃1 (4.59)

q̃R → qχ̃0
1 → qνkν̃1 → ql±W∓ν̃1 (4.60)

q̃R → qχ̃0
1 → qνkν̃3 → ql±W∓l̃′+l′−ν1 (4.61)

q̃R → qχ̃0
5 → ql± l̃∓i → ql±l∓χ̃0

1 → ql±l∓νkν̃1 → ql±l∓l′±W∓ν̃1 (4.62)

19We note for completeness, that the relic abundance is actually somewhat too large in this point but can easily be
adjusted by changing for example in BLRSP1 tan βR from 1.05 to 1.0475 without changing the collider features of
BLRSP1.
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with k ∈ {4, 5, 6, 7, 8, 9} and j ∈ {1, 2, 3}. Of course, several other combinations are possible as

well.

From equations (4.59) to (4.62) one sees immediately that the standard signature of R-squarks,

namely jet and missing energy, is only realized in a few cases in this study point, e.g. if in eq. (4.59)

the Z decays into neutrinos. Interestingly, the chain via χ̃0
5 into sleptons leads to a characteristic

edge in the invariant mass of the lepton which can be used to determine the corresponding masses

once combined with information from other decay chains. Also in the study points BLRSP2 and

BLRSP5 d̃R and s̃R decay into heavy neutralinos, which contain sizable content of the extra U(1)

gaugino, with a sizable branching ratio. However, there the situation is somewhat less involved as in

these study points the lightest bino-like neutralino is the LSP.

Another interesting feature is, that χ̃0
5 decays also into the heavier sneutrinos which themselves

decay into the LSP plus h1. Similarly h1 can be produced in the decays of the heavy neutrinos

implying that this state can be produced with sizable rate in SUSY cascade decays. However, as the

corresponding final states are quite complicated a dedicated Monte Carlo study will be necessary to

decide if this is indeed a discovery channel for h1.

From the point of view of SUSY cascade decays BLRSP2 looks essentially like a standard MSSM

point. Inspection of the spectrum shows that χ̃0
2 is essentially a higgsino corresponding to the

extended U(1) sector but it shows hardly up in the cascade decays. Its main production channel

is via an s-channel Z ′ but even in this case the corresponding cross section is so low that it will

not be detected at the LHC even with an integrated luminosity of 300 fb−1. Another interesting

feature shows up in the decays of χ̃0
3 which is mainly the neutral wino and gets copiously produced

in the decays of the L-squarks: it decays with about 77 (15) per-cent into h1 (h2), implying that the

cascade decays are an important source of Higgs bosons.

In case of BLRSP3 one has sneutrino LSPs like in BLRSP1 but with a different hierarchy in the

spectrum, as the three lightest sleptons are lighter then the lightest neutralino. Therefore the χ̃0
1 has

also sizable decay rates into charged sleptons which sum to about 30 per-cent. The sleptons decay

then further into W−ν̃1,2,3 and ν2,3 via 3-body decays into f f̄-pairs. The latter, however, are rather

soft due to the small mass difference. In addition we have the decay channel into a light neutrino

and one of the heavier sneutrinos which themselves decay into a lighter sneutrino and either one of

the Higgs boson or the Z-boson. Putting again all these decays together one obtains for the χ̃0
1



4.3 Constraints, sample spectra and decays 119

decays

χ̃0
1 → l± l̃∓ → l±W∓ν̃1 (4.63)

χ̃0
1 → l± l̃∓ → l±W∓ν̃2,3 → l±W∓f f̄ ν̃1 (4.64)

χ̃0
1 → νj ν̃2,3 → ν1,2,3f f̄ ν̃1 (4.65)

χ̃0
1 → νj ν̃1 (4.66)

χ̃0
1 → νj ν̃k → νjh1,2ν̃1 (4.67)

χ̃0
1 → νj ν̃k → νjh1,2f f̄ ν̃1 (4.68)

with j = 1, 2, 3 and k = 4, 5, 6. This implies that the decays of the R-squarks show again a more

complicated structure compared to the usual CMSSM expectations. Channels (4.67) and (4.68)

give h1 in about 15 per-cent of the final states of χ̃0
1. Moreover, χ̃0

2 and χ̃+
1 decay dominantly into

sleptons and sneutrinos. Here a new feature is found for χ̃+
1 , as also the following chains

χ̃+
1 → l+ν̃5,6 → l+Zν̃1 (4.69)

χ̃+
1 → l+ν̃5,6 → l+h1,2ν̃1 (4.70)

gives rise to sharp edge structures. However, as the main final states of Z and h1,2 are two jets, the

feasibility still needs to be investigated.

In BLRSP4 we have chosen µR = 260 GeV in order to construct an LSP which is essentially a

h̃R. Here, the R-sleptons are lighter than χ̃0
2, which is essentially bino-like in this point, giving rise

to the following decay chain of the down-type R-squarks

d̃R → dχ̃0
2 → dl± l̃∓ → dl±l∓χ̃0

1 (4.71)

Nearly all cascade decays end in a χ̃0
2 or one of the lighter sleptons. Due to the fact, that in this

particular case the additional sneutrino states are hardly produced, it might be difficult to distinguish

it from the NMSSM, at least as long as the Z ′ is not discovered. The heavier L-sleptons do not

show up in the cascade decays of squarks and gluinos but can be produced via the Z ′ as discussed

in subsection .

BLRSP5 is similar to BLRSP1 but compatible with pure GUT conditions, e.g. µR and mAR
are

not input in this case put derived quantities. To fulfill the tadpole equations we have to choose

Ys = 0.3 and tan βR = 1.03 if we want a relatively low m0 = 500 GeV while M1/2 = 850 GeV.

The choice of Ys leads automatically to large masses for the heavy neutrinos such that the lightest

Higgs can not decay into those states. As in BLRSP1 the down-type R-squarks decay not only into

χ̃0
1 but also into χ̃0

6 with a branching ratio of about 13 per-cent. For completeness, we note that

here χ̃0
3 ≃ h̃R. However this state gets hardly produced in any of the SUSY decays or via the Z ′.
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Therefore, it is likely that LHC will miss it and also at a linear collider such as ILC or CLIC it will be

difficult to study, due to the small production cross section.

4.4. Conclusions

In this chapter we have studied the minimal supersymmetric U(1)B−L ×U(1)R extension of the

standard model. The model is minimal in the sense that the extended gauge symmetry is broken

with the minimal number of Higgs fields. In the matter sector the model contains (three copies of)

a superfield ν̂c, to cancel anomalies. Adding three singlet superfields Ŝ allows to generate small

neutrino masses with an inverse seesaw mechanism.

In particular, we have shown that, already at the tree-level, the CP-even Higgs boson resembling

the lightest neutral Higgs h0 of the MSSM, can have a mass well above mZ . At the one loop level,

masses of 140 GeV and even above can easily be reached. In addition to such an h0-like Higgs,

one can also have a second light state which, however, hardly couples to the SM vector bosons as

it predominantly spans over the SM-neutral components. We have found regions where the h0-like

Higgs can decay into two such states which, however, alters the standard search techniques at the

LHC. Finally, we would like to stress that the general features discussed here also apply to other

extensions of the SM gauge group, e.g., to full-featured left-right symmetric models, provided the

MSSM Higgs doublets are charged with respect to the extended gauge symmetry.

The phenomenology of the model differs from the MSSM in a number of interesting aspects. We

have focused on the Higgs phenomenology and discussed changes in SUSY spectra and decays with

respect to the MSSM. The model is less constrained then the CMSSM from the possible measurement

of a Higgs with a mass of the order of 125 GeV. If the hints found in LHC data [191; 192] is indeed

correct our model predicts two relatively light states should exist, with the second h0 corresponding

(mostly) to the lightest of the “right” Higgses, added to break the extended gauge group.

It is interesting, as we have discussed, that very often a right sneutrino is found to be the LSP.

This will affect all constraints on CMSSM parameter space derived from constraints on the dark

matter abundance. In fact, if the right sneutrino is indeed the LSP in our model, no constraint on

any CMSSM parameters can be derived from DM constraints.

The model has new D-terms in all scalar mass matrices, which can lead to sizeable changes in

the SUSY spectra, of potential phenomenological interest. We have discussed a few benchmark

points, covering a number of features which could allow to distinguish the model from the CMSSM.

Obviously this includes the discovery of a Z ′ at the LHC where we have shown that the current

bounds from LHC data depend on the details of the particle spectrum. Also the cascade decays

of supersymmetric particles can be significantly more involved than in the usual CMSSM as the

additional neutralinos, neutrinos and sneutrinos lead to enhancement of the multiplicities in the

final states. This implies that the existing limits on the CMSSM parameter space get modified as
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standard final states have reduced branching ratios and at the same time additional final states

are present. In case that the mBLR model is indeed realized these new cascade decays will offer

additional kinematical information on the particle spectrum. Possible scenarios to distinguish the

model presented in this section from the MSSM are a Z ′ within the kinematical reach of the LHC,

the observation of three light non-degenerate higgs states and the right sneutrino to be the LSP.



5
Conclusions

In the first part of this thesis we calculate supersymmetric mass spectra with CMSSM boundary

conditions and a type-I, type-II and type-III seesaw mechanism, respectively, added to explain current

neutrino data. All results are based on [1] and [2]. Using published, estimated errors on SUSY mass

observables for LHC and ILC analysis, we perform a theoretical χ2 analysis to identify parameter

regions where pure CMSSM and CMSSM plus seesaw might be distinguishable with LHC and/or ILC

data. In case of seesaw type-I the most important observables are determined to be the (left) smuon

and selectron masses and the splitting between them, respectively. Splitting in the (left) smuon and

selectrons is tiny in most of CMSSM parameter space, but can be quite sizeable for large values

of the seesaw scale, mSS. Thus, for very roughly mSS ≥ 1014 GeV hints for type-I seesaw might

appear in SUSY mass measurements for a combined LHC and ILC analysis. Taking into account

recent exclusion limits on SUSY masses from LHC accuracies, needed to distinguish a CMSSM and

a CMSSM plus type-I scenario, can not be achieved anymore. If SUSY particles are within the reach

of the ILC, CMSSM can be distinguished from CMSSM plus type-II or type-III seesaw for nearly all

relevant values of the seesaw scale. In the case when only the much less accurate LHC measurements

are used, we find that indications for the seesaw can be found in favourable parts of the parameter

space. The lower the real value of the seesaw scale mSS is, the easier it becomes to distinguish

CMSSM from CMSSM plus seesaw. Nevertheless, with recent LHC data it is very unlikely to detect

deformations in a CMSSM spectra coming from a seesaw type-II and type-II, respectively.

Motivated by the discovery of the new boson at around 125 GeV at the LHC we study in the

second part of this thesis the minimal supersymmetric U(1)B−L × U(1)R extension of the standard

model. All results are based on [3] and [4]. In the MSSM the lightest neutral Higgs h0 must be,

at the tree level, lighter than the Z boson and that the loop corrections shift this stringent upper

bound up to about 130 GeV. Extending the MSSM gauge group in a suitable way, the new Higgs

sector dynamics can push the tree-level mass of h0 well above the tree-level MSSM limit if it couples

to the new gauge sector. We found that at the loop level h0 masses in the 140 GeV ballpark can be
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reached easily. Therefore a Higgs mass at around 125 GeV could be easily explained by this model.

The second light state in the Higgs sector hardly couples to the SM vector bosons but we have found

regions where the h0-like Higgs can decay into two such states. Due to the extended gauge sector

U(1) new D-terms in all scalar mass matrices are present. This can lead to significant changes in

the the SUSY spectra, of potential phenomenological interest. The discussed benchmark points,

present a number of features which could provide the possibility to distinguish the model from the

CMSSM. The discovery of a Z ′ would give strong hints for an extra U(1) present at low scales.

Additional neutralinos, neutrinos and sneutrinos contribute to cascade decays of supersymmetric

particles and enhance the multiplicity in the final states. Therefore limits on the CMSSM parameter

space change since CMSSM final states have reduced branching ratios and new final states, coming

from the extended multiplets, are present. In this work we have focused on the Higgs phenomenology

and discussed changes in SUSY spectra and decays with respect to the MSSM. However, also DM

phenomenology may change drastically. Due to the extended neutrino sector also sneutrinos are

found to be the LSP. With such a dark matter candidate constraints on the CMSSM space coming

from limits on the dark matter abundance are changed. If the right sneutrino is the LSP no constraint

on any CMSSM parameters can be derived from DM constraints.
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Appendix

A.1. Mass matrices

Here we list the tree-level mass matrices of the model not given in the main text.

Mass matrix for Down-Squarks, Basis:
(
d̃L, d̃R

)

m2
d̃
=




m2
LL

1√
2

(
vdT

†
d − vuµY

†
d

)

1√
2

(
vdTd − vuYdµ

∗
)

m2
RR




(A.1)

m2
LL = m2

q +
v2d
2
Y †
d Yd −

1

24

((
g2BL + g2BLR − gBLRgR − gBLgRBL

)(
v2χR

− v2χ̄R

)

+
(
3g2L + gBLgRBL + gBLRgR

)(
v2d − v2u

))
1 (A.2)

m2
RR = m2

d +
v2d
2
YdY

†
d

+
1

24

((
g2BL + g2BLR − 4(gBLRgR + gBLgRBL) + 3(g2R + g2RBL)

)(
v2χR

− v2χ̄R

)

+
(
gBLgRBL + gBLRgR − 3(g2R + g2RBL)

)(
v2d − v2u

))
1 (A.3)

Mass matrix for Up-Squarks, Basis: (ũL, ũR)

m2
ũ =




m2
LL

1√
2

(
− vdµY

†
u + vuT

†
u

)

1√
2

(
− vdYuµ

∗ + vuTu

)
m2

RR




(A.4)
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m2
LL = m2

q +
v2u
2
Y †
uYu −

1

24

((
g2BL + g2BLR − gBLRgR − gBLgRBL

)(
v2χR

− v2χ̄R

)

+
(
3g2L − gBLgRBL − gBLRgR

)(
v2u − v2d

))
1 (A.5)

m2
RR = m2

u +
v2u
2
YuY

†
u

+
1

24

((
g2BL + g2BLR + 2(gBLRgR + gBLgRBL)− 3(g2R + g2RBL)

)(
v2χR

− v2χ̄R

)

+
(
gBLgRBL + gBLRgR + 3(g2R + g2RBL)

)(
v2d − v2u

))
1 (A.6)

Mass of the Charged Higgs boson: One obtains the same expression as in the MSSM:

m2
H+ = Bµ (tan β + cot β) +m2

W (A.7)

Mass matrix for Charginos, Basis:
(
W̃−, H̃−

d

)
,
(
W̃+, H̃+

u

)

mχ̃− =




M2
1√
2
gLvu

1√
2
gLvd µ




(A.8)

A.2. Calculation of the mass spectrum

We are going to present now the basic steps to calculate the mass spectrum. As starting point

we use electroweak precision data to get the gauge and Yukawa couplings: the SM-like Yukawa

couplings are calculated from the fermion masses and the one-loop relations of ref. [188] which have

been adjusted to our model. Similarly, also the standard model gauge couplings are calculated by

the same procedure presented in ref. [188], but again, including all new contributions of the mode

under consideration. Since the entire RGE running is performed in the basis SU(3)C × SU(2)L ×
U(1)R×U(1)B−L, the value of the GUT normalized gBL and gR are matched to the GUT normalized

hypercharge coupling gY by

gR =cRY gY , (A.9)

gBL =
5gBLRgRBLgR −

√
6gRBLg

2
Y +

√
(3g2BLR − 2

√
6gBLRgR + 2g2R)(5(g

2
R + g2RBL − 3g2Y )g

2
Y

5g2R − 3g2Y
.

(A.10)

This is nothing else then an inversion of the well known relation between the gauge couplings for

U(1)R ×U(1)B−L → U(1)Y including the off-diagonal gauge couplings given in eq. (A.11). We are
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using the SO(10) GUT normalization of
√

3
5 for U(1)Y and

√
3
2 for U(1)B−L. To get the correct

values of cRY as well as gRBL and gBLR an iterative procedure is used: cRY is calculated as ratio of

the gY and gBL when running down from the GUT scale and applying

gY =

√
5(gBLgR − gBLRgRBL)2

3(g2BL + gBLR) + 2(g2R + g2RBL)− 2
√
6(gRgBLR + gBLgRBL)

(A.11)

When the gauge and Yukawa couplings are derived, the RGEs are then evaluated up to the

GUT scale where the corresponding boundary conditions of eqs. (4.5), (4.6) and (4.12) are applied.

Afterwards a RGE running of the full set of parameters to the SUSY scale is performed. We use

always 2-loop RGEs which include the full effect of kinetic mixing [164; 165].

The running parameters are then used to calculate the tree level mass spectrum. However, it is

well known that the one-loop corrections can be very important for particular particles and have to

be taken into account. The best known example is the light MSSM Higgs boson which get shifted

by up to 50% per-cent in case of heavy stops. Similar effects can be expected in the extended Higgs

sector especially since these can be very light at tree-level. Similarly, the gauginos arising in an

extended gauge sector can be potentially light and receive important corrections at one-loop [245].

To take these and all other possible effects into account we use a complete one-loop correction of

the entire mass spectrum. Our procedure to calculate the one-loop masses is based on the method

proposed in Ref.[188]: first, all running DR parameters are calculated at the SUSY scale and the

SUSY masses at tree-level are derived. The EW vevs vd and vu are afterwards re-calculated using

the one-loop corrected Z mass and demanding

m2
Z + δm2

Z =
(g2BLg

2
L + g2BLg

2
R + g2Lg

2
R)v

2

4(g2BL + g2R)
(v2d + v2u) (A.12)

in addition with the running value of tan β. Note that δm2
Z as well as all other self-energies include

the corrections originated by all particles present in the mBLR. These calculations are performed in

DR scheme and ’t Hooft gauge. Also the complete dependence on the external momenta are taken

into account. The re-calculated vevs are afterwards used to solve the tree-level tadpole equations

again and to re-calculate the tree-level mass spectrum as well as all vertices entering the one-loop

corrections. Using these vertices and masses, the one-loop corrections δti to the tadpole equations

are derived and we use as renormalization condition

ti − δti = 0 . (A.13)

These one-loop corrected tadpole equations are solved with respect to the same parameter as at tree

level resulting in new parameters µ(1), B
(1)
µ , µ

(1)
R , B

(1)
µR respectively µ(1), B

(1)
µ , m

2,(1)
χR , m

2,(1)
χ̄R

. The

final step is to calculate all self-energies for different particles and to use those to get the one-loop
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corrected mass spectrum 1.

1. Real scalars: for a real scalar φ, the one-loop corrections are included by calculating the real

part of the poles of the corresponding propagator matrices [188]

Det
[
p2i1−m2

φ,1L(p
2)
]
= 0, (A.14)

where

m2
φ,1L(p

2) = m̃2
φ,T −Πφ(p

2). (A.15)

Equation (A.14) has to be solved for each eigenvalue p2 = m2
i which can be achieved in an

iterative procedure. This has to be done also for charged scalars as well as the fermions. Note,

m̃2
T is the tree-level mass matrix but for the parameters fixed by the tadpole equations the

one-loop corrected values X(1) are used.

2. Complex scalars: for a complex scalar η field we use at one-loop level

m2,η
1L (p

2
i ) = m̃2,η

T −Πη(p
2
i ), (A.16)

While in case of sfermions m̃2,η
T agrees exactly with the tree-level mass matrix, for charged

Higgs bosons µ(1) and B
(1)
µ or m

(1)
Hd

andm
(1)
Hd

has to be used depending on the set of parameters

the tadpole equations are solved for.

3. Majorana fermions: the one-loop mass matrix of a Majorana χ fermion is related to the

tree-level mass matrix by

Mχ
1L(p

2
i ) = Mχ

T − 1

2

[
Σ0
S(p

2
i ) + Σ0,T

S (p2i ) +
(
Σ0,T
L (p2i ) + Σ0

R(p
2
i )
)
Mχ

T

+M χ̃0

T

(
Σ0,T
R (p2i ) + Σ0

L(p
2
i )
) ]
, (A.17)

where we have denoted the wave-function corrections by Σ0
R, Σ0

L and the direct one-loop

contribution to the mass by Σ0
S.

4. Dirac fermions: for a Dirac fermion Ψ one has to add the self-energies as

MΨ
1L(p

2
i ) =MΨ

T − Σ+
S (p

2
i )− Σ+

R(p
2
i )M

Ψ
T −MΨ

T Σ+
L (p

2
i ). (A.18)

Note, this procedure agrees with the method implemented in SPheno 3.1.10 to calculate the loop

masses in the MSSM as well as with the code produced by SARAH 3.0.39 or later. However, there

1Note, that for all calculations simple DR scheme is used and we assume that all new divergencies coming from the
extended gauge sector vanish.
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are small differences to earlier versions of SPheno as well as other spectrum calculators: the MSSM

equivalent of condition eq (A.12) is often solved in an iterative way using the one-loop corrected

parameters from the tadpole equations to calculate δm2
Z until m2

Z + δm2
Z has converged. In this

context also µ(1) and B
(1)
µ are used in the vertices entering the one-loop corrections. However,

these steps mix tree- and one-loop level and break therefore gauge invariance: when we tried this

approach the relation between Goldstone and gauge bosons mass is violated. However, the numerical

differences in case of the MSSM turned out to be rather small.

As example we give the necessary formulae to calculate the one-loop corrections to the tadpole

equations and the scalar Higgs masses in appendix A.3.

A.3. 1-loop corrections of the Higgs sector

As discussed in section A.2 we have calculated the entire mass spectrum at one-loop. For that

purpose it is necessary to calculate all possible 1-loop diagrams for the one- and two-point functions.

As example we here give the corresponding expressions for the one-loop corrections of the tadpoles

as well as the self-energy for the scalar Higgs fields. For all other self-energies we refer to the output

of SARAH. The results are expressed via Passarino Veltman integrals [188]. The basic integrals are

A0(m) = 16π2Q4−n

∫
dnq

i (2π)n
1

q2 −m2 + iε
, (A.19)

B0(p,m1,m2) = 16π2Q4−n

∫
dnq

i (2π)n
1[

q2 −m2
1 + iε

][
(q − p)2 −m2

2 + iε

] , (A.20)

with the renormalization scale Q. All the other, necessary functions can be expressed by A0 and B0.

For instance,

B1(p,m1,m2) =
1

2p2

[
A0(m2)−A0(m1) + (p2 +m2

1 −m2
2)B0(p,m1,m2)

]
, (A.21)

and

F0(p,m1,m2) =A0(m1)− 2A0(m2)− (2p2 + 2m2
1 −m2

2)B0(p,m1,m2) , (A.22)

G0(p,m1,m2) =(p2 −m2
1 −m2

2)B0(p,m1,m2)−A0(m1)−A0(m2) (A.23)

The numerical evalution of all loop-integrals is performed by SPheno. With this conventions we can

write the one-loop tadpoles as

δt(1)σi
= +

3

2
A0

(
m2

Z

)
Γσi,Z,Z +

3

2
A0

(
m2

ZR

)
Γσi,ZR,ZR

+ 3A0

(
m2

W−

)
Γσi,W+,W−
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+ 16A0

(
m2

ν1

)
Γσi,ν1,ν1m

2
ν1 −

2∑

a=1

A0

(
m2

H−
a

)
Γσi,H

+
a ,H−

a

+ 4

2∑

a=1

A0

(
m2

χ̃−
a

)
ΓL
σi,χ̃

+
a ,χ̃−

a
m2

χ̃−
a
+ 12

3∑

a=1

A0

(
m2

da

)
ΓL
σi,d̄a,da

m2
da

+ 4
3∑

a=1

A0

(
m2

ea

)
ΓL
σi,ēa,eam

2
ea + 12

3∑

a=1

A0

(
m2

ua

)
ΓL
σi,ūa,ua

m2
ua

− 1

2

4∑

a=1

A0

(
m2

A0,a

)
Γσi,A0,a,A0,a −

1

2

4∑

a=1

A0

(
m2

ha

)
Γσi,ha,ha − 3

6∑

a=1

A0

(
m2

d̃a

)
Γσi,d̃∗a,d̃a

−
6∑

a=1

A0

(
m2

ẽa

)
Γσi,ẽ∗a,ẽa − 3

6∑

a=1

A0

(
m2

ũa

)
Γσi,ũ∗

a,ũa

+ 2

7∑

a=1

A0

(
m2

χ̃0
a

)
ΓL
σi,χ̃0

a,χ̃
0
a
m2

χ̃0
a
−

9∑

a=1

A0

(
m2

ν̃a

)
Γσi,ν̃∗a ,ν̃a

+ 2

9∑

a=1

A0

(
m2

νa

)
Γσi,νa,νam

2
νa (A.24)

with σi = (σd, σu, σR, σ̄R)
T
i . Γxyz denotes the vertex of the three particles x, y z, while Γwxyz will

be used for four-point interactions. For chiral couplings we use ΓL as coefficient of the left and

ΓR as coefficient of the right polarization operator. For instance, Γσd,Z,Z is the coupling of a pure

down-type Higgs to a Z boson while ΓL
σR,χ̃0

2
,χ̃0

2

corresponds to the left-chiral part of the interaction of

a R-Higgs to a neutralino of the second generation. The expressions for all vertices can be obtained

with SARAH.

Using these conventions the self-energy for the scalar Higgs fields reads

Πσi,σj (p
2) =

7

4
B0

(
p2,m2

Z ,m
2
Z

)
Γ∗
σj ,Z,ZΓσi,Z,Z

+
7

2
B0

(
p2,m2

Z ,m
2
ZR

)
Γ∗
σj ,ZR,ZΓσi,ZR,Z +

7

4
B0

(
p2,m2

ZR
,m2

ZR

)
Γ∗
σj ,ZR,ZR

Γσi,ZR,ZR

+
7

2
B0

(
p2,m2

W− ,m
2
W−

)
Γ∗
σj ,W+,W−Γσi,W+,W− + 2A0

(
m2

Z

)
Γσi,σi,Z,Z + 2A0

(
m2

ZR

)
Γσi,σi,ZR,ZR

+ 4A0

(
m2

W−

)
Γσi,σi,W+,W− −

2∑

a=1

A0

(
m2

H−
a

)
Γσi,σi,H

+
a ,H−

a

+

2∑

a=1

2∑

b=1

B0

(
p2,m2

H−
a
,m2

H−

b

)
Γ∗
σj ,H

+
a ,H−

b
Γσi,H

+
a ,H−

b

− 2

2∑

a=1

mχ̃+
a

2∑

b=1

B0

(
p2,m2

χ̃−
a
,m2

χ̃−

b

)
mχ̃−

b

(
ΓL∗
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σj ,ēa,eb

ΓL
σi,ēa,eb
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a,ũb
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(A.25)

A.4. RGEs

The calculation of the renormalization group equations performed by SARAH is based on the

generic expression of [164]. In addition, the results of [165] are used to include the effect of kinetic

mixing.

The β functions for the parameters of a general superpotential written as

W (φ) =
1

2
µijφiφj +

1

6
Y ijkφiφjφk (A.26)

can be easily obtained from the results shown for the anomalous dimensions by using the relations

[289; 290]

βijkY = Y p(ijγp
k) , (A.27)

βijµ = µp(iγp
j) . (A.28)

For the results of the other parameters as well as for the two-loop results, which we skip here because

of their length, one can use the function CalcRGEs[] of SARAH.

A.4.1. Anomalous dimensions

γ
(1)
q̂ =

1

12

(
12
(
Y †
d Yd + Y †

uYu

)
−
(
18g2L + 32g2s + g2BL + g2BLR

)
1
)

(A.29)

γ
(1)

l̂
= −3

4

(
2g2L + g2BL + g2BLR

)
1+ Y †

e Ye + Y †
v Yv (A.30)

γ
(1)

Ĥd
=

1

2

(
2Tr
(
YeY

†
e

)
− 3g2L + 6Tr

(
YdY

†
d

)
− g2R − g2RBL

)
(A.31)
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γ
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Ĥu
=

1

2

(
2Tr
(
YvY

†
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)
− 3g2L + 6Tr

(
YuY

†
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)
− g2R − g2RBL
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(A.32)

γ
(1)
χ̂R

=
1

4

(
− 2g2R − 2g2RBL + 2

√
6gBLgRBL + 2

√
6gBLRgR − 3g2BL − 3g2BLR + 4Tr
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YsY

†
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(A.33)

γ
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ˆ̄χR

=
1

4
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− 2
(
g2R + g2RBL
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+ 2

√
6gBLgRBL + 2
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(A.34)

γ
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= Y †

s Ys (A.35)
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√
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(A.36)
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(A.37)
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(A.38)
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(A.39)

A.4.2. Gauge Couplings

β(1)gBL
=

1

4

(
27g3BL − 2
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(
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√
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√
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(A.40)

β(1)gR =
1
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√
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√
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)
(A.41)
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(A.42)
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)
(A.43)

β(1)gL
= g3L (A.44)

β(1)gs = −3g3s (A.45)
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A.4.3. Gaugino Mass Parameters

β
(1)
MBL

=
1

2
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β
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= 2g2LM2 (A.49)

β
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= −6g2sM3 (A.50)
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