LHCb Topological Trigger Reoptimization

Philip Iten¹, Tatiana Likhomanenko^{2,3}, Egor Khairullin², Andrey Ustyuzhanin^{2,3}, Mike Williams¹

¹ Massachusetts Institute of Technology, US ² Yandex School of Data Analysis, RU ³ NRC "Kurchatov Institute", RU

What is Topological Trigger?

- Generic trigger for decays of beauty and charm hadrons
- It designed to be inclusive trigger line to efficiently select any B decay with at least 2 charged daughters
- Look for 2, 3, 4 track combinations in a wide mass range
- Designed to efficiently select decays with missing particles
- Use fast-track fit to improve signal efficiency and minbias rejection

Goal: improve topological trigger efficiency for Run-2

Run-2 HLT Scheme

What tells us an event contains interesting physics?

 A combination of displacement from PV and high PT

Run-2 strategy:

- HLT-1 track is looking for either one super high PT or high displacement track
- HLT-1 2-body SVR classifier is looking for two tracks making a vertex
- HLT-2 improved topo classifier uses full reconstructed event to look for 2, 3, 4 and more tracks making a vertex

NOTE: tracking thresholds are quite different in Run-1 and Run-2

N-body Tracks

- Two, three or four tracks are combined to form a SVR
- Each secondary vertex in Monte Carlo data is preselected in such way, that all tracks must be matched to particles from the signal decay (true match preselection)

Ommision of Daughters

The trigger is designed to allow for the omission of one or more daughters when forming the trigger candidate.

Ommision of Daughters

Machine Learning Specific Problem: data structure

- Signal samples are simulated 13-TeV B decays of various topologies
- Background sample is generic Pythia 13-TeV proton-proton collisions
- Most events have many secondary vertices SVRs (not all events have an SVR)

If at least one SVR in event passed all stages, whole event passes trigger

Machine Learning Specific Problem: FOM

- FOM is the over all efficiency, calculated for passed events, not SVRs
- Output rate must be limited
- Restriction is imposed on background events efficiency FPR = 0,2% (corresponds to 2 kHz)

HLT2: threshold unstability

HLT2: efficiency vs output rate

Online Processing: BBDT vs Post-prunning

Bonsai BDT (BBDT):

- Used in Run-1 for online processing
- Features hashing before training by yourself
- Convert decision trees to n-dimentional table making it essentially infinitely fast
- Predict operation takes one reading from this table

But:

- We are limited in the table size (or count of bins for each feature)
- Discretization reduces efficiency

MatrixNet (MN) post-prunning:

- Another strategy for online processing
- Features also hashing with amount count of bins for each variable
- Post-prunning of the decision trees to speedup prediction operation (less count of trees)
- Online predict event by all trees

BBDT vs Post-prunning Efficiencies

BBDT vs Post-prunning Efficiencies: ROCs

Current Status: Run-1 vs Run-2

Ratio of Run-2 over Run-1 for HLT2/HLT1 efficiencies

mode	2.5 kHz	4. kHz
$B^0 o K^*[K^+\pi^-]\mu^+\mu^-$	1.64	1.72
$B^+ o\pi^+K^-K^+$	1.59	1.65
$B_s^0 o D_s^-[K^+K^-\pi^-]\mu^+ u_\mu$	1.14	1.47
$B_s^0 ightarrow \psi(1S)[\mu^+\mu^-]K^+K^-\pi^+\pi^-$	1.62	1.71
$B_s^0 o D_s^-[K^+K^-\pi^-]\pi^+$	1.46	1.52
$B^0 \to D^+[K^-\pi^+\pi^+]D^-[K^+\pi^-\pi^-]$	1.40	1.86

Note that the denominator is reconstructible with PT(B) > 2 GeV, $\tau(B) > 0.2$ ps.

Summary

- New HLT scheme in Run-2: sophisticated HLT1 (classifier) and HLT2-Topo
- Overall (HLT2/HLT1) efficiency improvement: 15-60% for 2.5 kHz (50-80% for 4 kHz) vs Run-1
- Timing comparison of MatrixNet BBDT vs post-pruning is in progress
- Looking forward to data taking!

Thank you for attention!

Backup

HLT1-track and HLT1 2-body SVR preselections

1 track:

- Tracks preselections:
 - PT > 500 MeV;
 - $IP_{\chi^2} > 4$;
 - track_{χ²}/ndof < 3;
- \bullet BDT uses PT, IP_{χ^2}
- Output rate 100 kHz

2-body SVR:

- Tracks preselections:
 - PT > 500 MeV;
 - $IP_{\chi^2} > 4$;
 - $track_{\chi^2}/ndof < 2.5$;
- SVR preselections:
 - PT > 2 GeV;
 - vertex_{χ²} < 10;
 - 1 < MCOR GeV;
 - $2 < \eta < 5$ (PV to SVR)
- Don't use MCOR in BDT (from a systematics perspective)
- BDT variables: sum PT, $vertex_{\chi^2}$, FD_{χ^2} , $N({\rm tracks\ with\ }IP_{\chi^2}<16\)$
- Output rate 50 kHz

HLT1-track: decision boundary

HLT1-track: MN vs NN vs logistic

HLT1-SV

HLT2 preselections

- The same preselections as for 2-body SVR
- Changed track PT > 200 MeV
- Added MCOR < 10 GeV
- Added $N(\text{tracks with } \textit{IP}_{\chi^2} < 16) < 2$
- Used any min PT
- BDT variables: n, MCOR, sum PT, $vertex_{\chi^2}$, η , FD_{χ^2} , min PT, IP_{χ^2} , $N(\text{tracks with }IP_{\chi^2}<16$), N(tracks)
- Output rate 2-4 kHz

HLT2: n-bodies comparison

HLT2: n-bodies comparison for other modes

HLT2: models comparison

HLT2: models comparison for other modes

HLT2: efficiency vs output rate for other modes

BBDT vs Post-prunning efficiencies for other modes

