
Open access to the Proceedings of

the 15th USENIX Symposium on Networked

Systems Design and Implementation

is sponsored by USENIX.

LHD: Improving Cache Hit Rate
by Maximizing Hit Density

Nathan Beckmann, Carnegie Mellon University; Haoxian Chen, University of Pennsylvania;

Asaf Cidon, Stanford University/Barracuda Networks

https://www.usenix.org/conference/nsdi18/presentation/beckmann

This paper is included in the Proceedings of the

15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-939133-01-4

LHD: Improving Cache Hit Rate by Maximizing Hit Density

Nathan Beckmann Haoxian Chen Asaf Cidon

Carnegie Mellon University University of Pennsylvania Stanford University/Barracuda Networks

beckmann@cs.cmu.edu hxchen@seas.upenn.edu asaf@cidon.com

Abstract

Cloud application performance is heavily reliant on the

hit rate of datacenter key-value caches. Key-value caches

typically use least recently used (LRU) as their eviction

policy, but LRU’s hit rate is far from optimal under real

workloads. Prior research has proposed many eviction

policies that improve on LRU, but these policies make

restrictive assumptions that hurt their hit rate, and they

can be difficult to implement efficiently.

We introduce least hit density (LHD), a novel eviction

policy for key-value caches. LHD predicts each object’s

expected hits-per-space-consumed (hit density), filtering

objects that contribute little to the cache’s hit rate. Unlike

prior eviction policies, LHD does not rely on heuristics,

but rather rigorously models objects’ behavior using con-

ditional probability to adapt its behavior in real time.

To make LHD practical, we design and implement

RankCache, an efficient key-value cache based on mem-

cached. We evaluate RankCache and LHD on com-

mercial memcached and enterprise storage traces, where

LHD consistently achieves better hit rates than prior poli-

cies. LHD requires much less space than prior policies

to match their hit rate, on average 8× less than LRU and

2–3× less than recently proposed policies. Moreover,

RankCache requires no synchronization in the common

case, improving request throughput at 16 threads by 8×
over LRU and by 2× over CLOCK.

1 Introduction

The hit rate of distributed, in-memory key-value caches

is a key determinant of the end-to-end performance of

cloud applications. Web application servers typically

send requests to the cache cluster over the network,

with latencies of about 100 µs, before querying a much

slower database, with latencies of about 10 ms. Small

increases in cache hit rate have an outsize impact on ap-

plication performance. For example, increasing hit rate

by just 1% from 98% to 99% halves the number of re-

quests to the database. With the latency numbers used

above, this decreases the mean service time from 210 µs

to 110 µs (nearly 2×) and, importantly for cloud applica-

tions, halves the tail of long-latency requests [21].

To increase cache hit rate, cloud providers typically

scale the number of servers and thus total cache ca-

Memcachiersrc1_0 src1_1 usr_1 proj_1 proj_2
0

1

2

3

4

Re
la

tiv
e

Si
ze

 a
t

Eq
ua

l H
it

Ra
tio

LHD Hyperbolic GDSF AdaptSize LRU

Figure 1: Relative cache size needed to match LHD’s hit rate

on different traces. LHD requires roughly one-fourth of LRU’s

capacity, and roughly half of that of prior eviction policies.

pacity [37]. For example, Facebook dedicates tens of

thousands of continuously running servers to caching.

However, adding servers is not tenable in the long run,

since hit rate increases logarithmically as a function of

cache capacity [3, 13, 20]. Prohibitively large amounts

of memory are needed to significantly impact hit rates.

This paper argues that improving the eviction policy is

much more effective, and that there is significant room

to improve cache hit rates. Popular key-value caches

(e.g., memcached, Redis) use least recently used (LRU)

or variants of LRU as their eviction policy. However, LRU

is far from optimal for key-value cache workloads be-

cause: (i) LRU’s performance suffers when the workload

has variable object sizes, and (ii) common access pat-

terns expose pathologies in LRU, leading to poor hit rate.

These shortcomings of LRU are well documented, and

prior work has proposed many eviction policies that im-

prove on LRU [4, 14, 16, 25, 35, 38, 40]. However, these

policies are not widely adopted because they typically

require extensive parameter tuning, which makes their

performance unreliable, and globally synchronized state,

which hurts their request throughput. Indeed, to achieve

acceptable throughput, some systems use eviction poli-

cies such as CLOCK or FIFO that sacrifice hit rate to re-

duce synchronization [22, 33, 34].

More fundamentally, prior policies make assumptions

that do not hold for many workloads, hurting their hit

rate. For example, most policies prefer recently used ob-

jects, all else equal. This is reasonable—such objects

are often valuable—, but workloads often violate this as-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 389

sumption. Prior policies handle the resulting pathologies

by adding new mechanisms. For example, ARC [35] adds

a second LRU list for newly admitted objects, and Adapt-

Size [9] adds a probabilistic filter for large objects.

We take a different approach. Rather than augment-

ing or recombining traditional heuristics, we seek a new

mechanism that just “does the right thing”. The key mo-

tivating question for this paper is: What would we want

to know about objects to make good caching decisions,

independent of workload?

Our answer is a metric we call hit density, which mea-

sures how much an object is expected to contribute to the

cache’s hit rate. We infer each object’s hit density from

what we know about it (e.g., its age or size) and then

evict the object with least hit density (LHD). Finally, we

present an efficient and straightforward implementation

of LHD on memcached called RankCache.

1.1 Contributions

We introduce hit density, an intuitive, workload-agnostic

metric for ranking objects during eviction. We arrive at

hit density from first principles, without any assumptions

about how workloads tend to reference objects.

Least hit density (LHD) is an eviction policy based on

hit density. LHD monitors objects online and uses con-

ditional probability to predict their likely behavior. LHD

draws on many different object features (e.g., age, fre-

quency, application id, and size), and easily supports

others. Dynamic ranking enables LHD to adapt its evic-

tion strategy to different application workloads over time

without any hand tuning. For example, on a certain

workload, LHD may initially approximate LRU, then

switch to most recently used (MRU), least frequently

used (LFU), or a combination thereof.

RankCache is a key-value cache based on memcached

that efficiently implements LHD (and other policies).

RankCache supports arbitrary ranking functions, making

policies like LHD practical. RankCache approximates

a true global ranking while requiring no synchroniza-

tion in the common case, and adds little implementation

complexity over existing LRU caches. RankCache thus

avoids the unattractive tradeoff in prior systems between

hit rate and request throughput, showing it is possible to

achieve the best of both worlds.

1.2 Summary of Results

We evaluate LHD on a weeklong commercial mem-

cached trace from Memcachier [36] and storage traces

from Microsoft Research [48]. LHD significantly im-

proves hit rate prior policies—e.g., reducing misses by

half vs. LRU and one-quarter vs. recent policies—and

also avoids pathologies such as performance cliffs that

afflict prior policies. Fig. 1 shows the cache size (i.e.,

number of caching servers) required to achieve the same

hit rate as LHD at 256 MB on Memcachier and 64 GB on

Microsoft traces. LHD requires much less space than

prior eviction policies, saving the cost of thousands of

servers in a modern datacenter. On average, LHD needs

8× less space than LRU, 2.4× less than GDSF [4], 2.5×
less than Hyperbolic [11], and 2.9× less than Adapt-

Size [9]. Finally, at 16 threads, RankCache achieves 16×
higher throughput than list-based LRU and, at 90% hit

rate, 2× higher throughput than CLOCK.

2 Background and Motivation

We identify two main opportunities to improve hit rate

beyond existing eviction policies. First, prior policies

make implicit assumptions about workload behavior that

hurt their hit rate when they do not hold. Second, prior

policies rely on implementation primitives that unneces-

sarily limit their design. We avoid these pitfalls by go-

ing back to first principles to design LHD, and then build

RankCache to realize it practically.

2.1 Implicit assumptions in eviction policies

Eviction policies show up in many contexts, e.g., OS

page management, database buffer management, web

proxies, and processors. LRU is widely used because it

is intuitive, simple to implement, performs reasonably

well, and has some worst-case guarantees [12, 47].

However, LRU also has common pathologies that hurt

its performance. LRU uses only recency, or how long

it has been since an object was last referenced, to de-

cide which object to evict. In other words, LRU as-

sumes that recently used objects are always more valu-

able. But common access patterns like scans (e.g.,

AB. . . ZAB. . . Z . . .) violate this assumption. As a result,

LRU caches are often polluted by infrequently accessed

objects that stream through the cache without reuse.

Prior eviction policies improve on LRU in many dif-

ferent ways. Nearly all policies augment recency with

additional mechanisms that fix its worst pathologies. For

example, ARC [35] uses two LRU lists to distinguish

newly admitted objects and limit pollution from infre-

quently accessed objects. Similarly, AdaptSize [9] adds

a probabilistic filter in front of an LRU list to limit pol-

lution from large objects. Several recent policies split

accesses across multiple LRU lists to eliminate perfor-

mance cliffs [6, 18, 51] or to allocate space across objects

of different sizes [10, 17, 18, 37, 41, 43, 49].

All of these policies use LRU lists as a core mecha-

nism, and hence retain recency as built-in assumption.

Moreover, their added mechanisms can introduce new

assumptions and pathologies. For example, ARC as-

sumes that frequently accessed objects are more valu-

able by placing them in a separate LRU list from newly

admitted objects and preferring to evict newly admitted

objects. This is often an improvement on LRU, but can

behave pathologically.

390 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Other policies abandon lists and rank objects using a

heuristic function. GDSF [4] is a representative exam-

ple. When an object is referenced, GDSF assigns its rank

using its frequency (reference count) and global value L:

GDSF Rank =
Frequency

Size
+ L (1)

On a miss, GDSF evicts the cached object with the lowest

rank and then updates L to this victim’s rank. As a result,

L increases over time so that recently used objects have

higher rank. GDSF thus orders objects according to some

combination of recency, frequency, and size. While it is

intuitive that each of these factors should play some role,

it is not obvious why GDSF combines them in this par-

ticular formula. Workloads vary widely (Sec. 3.5), so no

factor will be most effective in general. Eq. 1 makes im-

plicit assumptions about how important each factor will

be, and these assumptions will not hold across all work-

loads. Indeed, subsequent work [16, 27] added weighting

parameters to Eq. 1 to tune GDSF for different workloads.

Hence, while prior eviction policies have significantly

improved hit rates, they still make implicit assumptions

that lead to sub-optimal decisions. Of course, all online

policies must make some workload assumptions (e.g.,

adversarial workloads could change their behavior arbi-

trarily [47]), but these should be minimized. We believe

the solution is not to add yet more mechanisms, as do-

ing so quickly becomes unwieldy and requires yet more

assumptions to choose among mechanisms. Instead, our

goal is to find a new mechanism that leads to good evic-

tion decisions across a wide range of workloads.

2.2 Implementation of eviction policies

Key-value caches, such as memcached [23] and Re-

dis [1], are deployed on clusters of commodity servers,

typically based on DRAM for low latency access. Since

DRAM caches have a much lower latency than the back-

end database, the main determinant of end-to-end request

latency is cache hit rate [19, 37].

Request throughput: However, key-value caches must

also maintain high request throughput, and the eviction

policy can significantly impact throughput. Table 1 sum-

marizes the eviction policies used by several popular and

recently proposed key-value caches.

Most key-value caches use LRU because it is simple

and efficient, requiring O(1) operations for admission,

update, and eviction. Since naïve LRU lists require global

synchronization, most key-value caches in fact use ap-

proximations of LRU, like CLOCK and FIFO, that elim-

inate synchronization except during evictions [22, 33,

34]. Policies that use more complex ranking (e.g., GDSF)

pay a price in throughput to maintain an ordered ranking

(e.g., O(logN) operations for a min-heap) and to syn-

chronize other global state (e.g., L in Eq. 1).

Key-Value Cache Allocation Eviction Policy

memcached [23] Slab LRU
Redis [1] jemalloc LRU
Memshare [19] Log LRU
Hyperbolic [11] jemalloc GD
Cliffhanger [18] Slab LRU
GD-Wheel [32] Slab GD
MICA [34] Log ≈LRU
MemC3 [22] Slab ≈LRU

Table 1: Allocation and eviction strategies of key-value caches.

GD-Wheel and Hyperbolic’s policy is based on GreedyD-

ual [53]. We discuss a variant of this policy (GDSF) in Sec. 2.1.

For this reason, most prior policies restrict themselves

to well-understood primitives, like LRU lists, that have

standard, high-performance implementations. Unfortu-

nately, these implementation primitives restrict the de-

sign of eviction policies, preventing policies from retain-

ing the most valuable objects. List-based policies are

limited to deciding how the lists are connected and and

which objects to admit to which list. Similarly, to main-

tain data structure invariants, policies that use min-heaps

(e.g., GDSF) can change ranks only when an object is

referenced, limiting their dynamism.

We ignore such implementation restrictions when de-

signing LHD (Sec. 3), and consider how to implement the

resulting policy efficiently in later sections (Secs. 4 & 5).

Memory management: With objects of highly variable

size, another challenge is memory fragmentation. Key-

value caches use several memory allocation techniques

(Table 1). This paper focuses on the most common one,

slab allocation. In slab allocation, memory is divided

into fixed 1 MB slabs. Each slab can store objects of

a particular size range. For example, a slab can store

objects between 0–64 B, 65–128 B, or 129–256 B, etc.

Each object size range is called a slab class.

The advantages of slab allocation are its performance

and bounded fragmentation. New objects always replace

another object of the same slab class, requiring only a

single eviction to make space. Since objects are al-

ways inserted into their appropriate slab classes, there

is no external fragmentation, and internal fragmentation

is bounded. The disadvantage is that the eviction policy

is implemented on each slab class separately, which can

hurt overall hit rate when, e.g., the workload shifts from

larger to smaller objects.

Other key-value caches take different approaches.

However, non-copying allocators [1] suffer from frag-

mentation [42], and log-structured memory [19, 34, 42]

requires a garbage collector that increases memory band-

width and CPU consumption [19]. RankCache uses slab-

based allocation due to its performance and bounded

fragmentation, but this is not fundamental, and LHD

could be implemented on other memory allocators.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 391

3 Replacement by Least Hit Density (LHD)

We propose a new replacement policy, LHD, that dy-

namically predicts each object’s expected hits per space

consumed, or hit density, and evicts the object with the

lowest. By filtering out objects that contribute little to

the cache’s hit rate, LHD gradually increases the av-

erage hit rate. Critically, LHD avoids ad hoc heuris-

tics, and instead ranks objects by rigorously modeling

their behavior using conditional probability. This section

presents LHD and shows its potential in an idealized set-

ting. The following sections will present RankCache, a

high-performance implementation of LHD.

3.1 Predicting an object’s hit density

Our key insight is that policies must account for both

(i) the probability an object will hit in its lifetime; and

(ii) the resources it will consume. LHD uses the follow-

ing function to rank objects:

Hit density =
Hit probability

Object size × Expected time in cache
(2)

Eq. 2 measures an object’s contribution to the cache’s hit

rate (in units of hits per byte-access). We first provide

an example that illustrates how this metric adapts to real-

world applications, and then show how we derived it.

3.2 LHD on an example application

To demonstrate LHD’s advantages, consider an exam-

ple application that scans repeatedly over a few objects,

and accesses many other objects with Zipf-like popular-

ity distribution. This could be, for example, the common

media for a web page (scanning) plus user-specific con-

tent (Zipf). Suppose the cache can fit the common me-

dia and some of the most popular user objects. In this

case, each scanned object is accessed frequently (once

per page load for all users), whereas each Zipf-like object

is accessed much less frequently (only for the same user).

The cache should ideally therefore keep the scanned ob-

jects and evict the Zipf-like objects when necessary.

Fig. 2a illustrates this application’s access pattern,

namely the distribution of time (measured in accesses)

between references to the same object. Scanned objects

produce a characteristic peak around a single reference

time, as all are accessed together at once. Zipf-like ob-

jects yield a long tail of reference times. Note that in

this example 70% of references are to the Zipf-like ob-

jects and 30% to scanned objects, but the long tail of

popularity in Zipf-like objects leads to a low reference

probability in Fig. 2a.

Fig. 2b illustrates LHD’s behavior on this example ap-

plication, showing the distribution of hits and evictions

vs. an object’s age. Age is the number of accesses since

an object was last referenced. For example, if an object

enters the cache at access T , hits at accesses T + 4 and

T + 6, and is evicted at access T + 12, then it has two

hits at age 4 and 2 and is evicted at age 6 (each reference

resets age to zero). Fig. 2b shows that LHD keeps the

scanned objects and popular Zipf references, as desired.

LHD does not know whether an object is a scanned

object or a Zipf-like object until ages pass the scanning

peak. It must conservatively protect all objects until this

age, and all references at ages less than the peak therefore

result in hits. LHD begins to evict objects immediately

after the peak, since it is only at this point it knows that

any remaining objects must be Zipf-like objects, and it

can safely evict them.

Finally, Fig. 2c shows how LHD achieves these out-

comes. It plots the predicted hit density for objects of

different ages. The hit density is high up until the scan-

ning peak, because LHD predicts that objects are poten-

tially one of the scanned objects, and might hit quickly.

It drops after the scanning peak because it learns they are

Zipf objects and therefore unlikely to hit quickly.

Discussion: Given that LHD evicts the object with the

lowest predicted hit density, what is its emergent behav-

ior on this example? The object ages with the lowest pre-

dicted hit density are those that have aged past the scan-

ning peak. These are guaranteed to be Zipf-like objects,

and their hit density decreases with age, since their im-

plied popularity decreases the longer they have not been

referenced. LHD thus evicts older objects; i.e., LRU.

However, if no objects older than the scanning peak

are available, LHD will prefer to evict the youngest ob-

jects, since these have the lowest hit density. This is

Time (in accesses)

Re
fe

re
nc

e
Pr

ob
ab

ilit
y

Zipf
Scan

(a) Summary of access pattern.

Age (accesses since reference)

Pr
ob

ab
ilit

y

Hits
Evictions

(b) Distribution of hits and evictions.

Age (accesses since reference)

Hi
t D

en
sit

y MRU

LRU

(c) Predicted hit density.

Figure 2: How LHD performs on an application that scans over 30% of objects and Zipf over the remaining 70%.

392 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the most recently used (MRU) eviction policy, or anti-

LRU. MRU is the correct policy to adopt in this example

because (i) without more information, LHD cannot dis-

tinguish between scanning and Zipf-like objects in this

age range, and (ii) MRU guarantees that some fraction

of the scanning objects will survive long enough to hit.

Because scanning objects are by far the most frequently

accessed objects (Fig. 2a), keeping as many scanned ob-

jects as possible maximizes the cache’s hit rate, even if

that means evicting some popular Zipf-like objects.

Overall, then, LHD prefers to evict objects older than

the scanning peak and evicts LRU among these objects,

and otherwise evicts MRU among younger objects. This

policy caches as many of the scanning objects as possi-

ble, and is the best strictly age-based policy for this ap-

plication. LHD adopts this policy automatically based on

the cache’s observed behavior, without any pre-tuning re-

quired. By adoping MRU for young objects, LHD avoids

the potential performance cliff that recency suffers on

scanning patterns. We see this behavior on several traces

(Sec. 3.5), where LHD significantly outperforms prior

policies, nearly all of which assume recency.

3.3 Analysis and derivation

To see how we derived hit density, consider the cache

in Fig. 3. Cache space is shown vertically, and time in-

creases from left to right. (Throughout this paper, time

is measured in accesses, not wall-clock time.) The fig-

ure shows how cache space is used over time: each

block represents an object, with each reference or evic-

tion starting a new block. Each block thus represents a

single object lifetime, i.e., the idle time an object spends

in the cache between hits or eviction. Additionally, each

block is colored green or red, indicating whether it ends

in a hit or eviction, respectively.

A A

… A B B A C B A B D A B C D A B C B …

A

A

B B B
C

B

D D B B

C C

…

Reference pattern: Hit! Eviction!

X

B

Y

B

A

S
p

a
ce

 ⇒

Figure 3: Illustration of a cache over time. Each block depicts

a single object’s lifetime. Lifetimes that end in hits are shown

in green, evictions in red. Block size illustrates resources con-

sumed by an object; hit density is inversely proportional to

block size.

Fig. 3 illustrates the challenge replacement policies

face: they want to maximize hits given limited resources.

In other words, they want to fit as many green blocks into

the figure as possible. Each object takes up resources

proportional to both its size (block height) and the time

it spends in the cache (block width). Hence, the replace-

ment policy wants to keep small objects that hit quickly.

This illustration leads directly to hit density. Integrat-

ing uniformly across the entire figure, each green block

contributes 1 hit spread across its entire block. That is,

resources in the green blocks contribute hits at a rate of:

1 hit/(size × lifetime). Likewise, lifetimes that end in

eviction (or space lost to fragmentation) contribute zero

hits. Thus, if there are N hits and M evictions, and if

object i has size Si bytes and spends Li accesses in the

cache, then the cache’s overall hit density is:

∑
Lifetimes

Hits
︷ ︸︸ ︷

1 + 1 + ...+ 1 +

Evictions
︷ ︸︸ ︷

0 + 0 + ...+ 0
∑

Lifetimes S1 × L1 + ...+ SN × LN
︸ ︷︷ ︸

Hit resources

+ S1 × L1 + ...+ SM × LM
︸ ︷︷ ︸

Eviction resources

The cache’s overall hit density is directly proportional to

its hit rate, so maximizing hit density also maximizes the

hit rate. Furthermore, it follows from basic arithmetic

that replacing an object with one of higher density will

increase the cache’s overall hit density.1

LHD’s challenge is to predict an object’s hit density,

without knowing whether it will result in a hit or eviction,

nor how long it will spend in the cache.

Modeling object behavior: To rank objects, LHD must

compute their hit probability and the expected time they

will spend in the cache. (We assume that an object’s size

is known and does not change.) LHD infers these quanti-

ties in real-time using probability distributions. Specifi-

cally, LHD uses distributions of hit and eviction age.

The simplest way to infer hit density is from an ob-

ject’s age. Let the random variables H and L give hit

and lifetime age; that is, P[H = a] is the probability that

an object hits at age a, and P[L = a] is the probability

that an object is hit or evicted at age a. Now consider an

object of age a. Since the object has reached age a, we

know it cannot hit or be evicted at any age earlier than a.

Its hit probability conditioned on age a is:

Hit probability = P[hit|age a] =
P[H > a]

P[L > a]
(3)

Similarly, its expected remaining lifetime2 is:

Lifetime = E[L− a|age a] =

∑
∞

x=1
x · P[L = a+x]

P[L > a]
(4)

Altogether, the object’s hit density at age a is:

Hit densityage(a) =

∑
∞

x=1
P[H = a+ x]

Size · (
∑

∞

x=1
x · P[L = a+x])

(5)

1Specifically, if a/b > c/d, then (a+ c)/(b+ d) > c/d.
2We consider the remaining lifetime to avoid the sunk-cost fallacy.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 393

3.4 Using classification to improve predictions

One nice property of LHD is that it intuitively and rigor-

ously incorporates additional information about objects.

Since LHD is based on conditional probability, we can

simply condition the hit and eviction age distributions

on the additional information. For example, to incorpo-

rate reference frequency, we count how many times each

object has been referenced and gather separate hit and

eviction age distributions for each reference count. That

is, if an object that has been referenced twice is evicted,

LHD updates only the eviction age distribution of objects

that have been referenced twice, and leaves the other dis-

tributions unchanged. LHD then predicts an object’s hit

density using the appropriate distribution during ranking.

To generalize, we say that an object belongs to an

equivalence class c; e.g., c could be all objects that have

been referenced twice. LHD predict this object’s hit den-

sity as:

Hit density(a, c) =

∑

∞

x=1
P[H = a+ x|c]

Size ·
(
∑

∞

x=1
x · P[L = a+x|c]

) (6)

where P[H = a|c] and P[L = a|c] are the conditional hit

and lifetime age distributions for class c.

3.5 Idealized evaluation

To demonstrate LHD’s potential, we simulate an ideal-

ized implementation of LHD that globally ranks objects.

Our figure of merit is the cache’s miss ratio, i.e., the frac-

tion of requests resulting in misses. To see how miss ra-

tio affects larger system tradeoffs, we consider the cache

size needed to achieve equal miss ratios.

Methodology: Unfortunately, we are unaware of a pub-

lic trace of large-scale key-value caches. Instead, we

evaluate two sets of traces: (i) a weeklong, commercial

trace provided by Memcachier [36] containing requests

from hundreds of applications, and (ii) block traces from

Microsoft Research [48]. Neither trace is ideal, but to-

gether we believe they represent a wide range of relevant

behaviors. Memcachier provides caching-as-a-service

and serves objects from a few bytes to 1 MB (median:

100 B); this variability is a common feature of key-value

caches [5, 22]. However, many of its customers mas-

sively overprovision resources, forcing us to consider

scaled-down cache sizes to replicate miss ratios seen

in larger deployments [37]. Fortunately, scaled-down

caches are known to be good models of behavior at larger

sizes [6, 30, 51]. Meanwhile, the Microsoft Research

traces let us study larger objects (median: 32 KB) and

cache sizes. However, its object sizes are much less vari-

able, and block trace workloads may differ from key-

value workloads.

We evaluate 512 M requests from each trace, ignoring

the first 128 M to warm up the cache. For the shorter

traces, we replay the trace if it terminates to equalize

trace length across results. All included traces are much

longer than LHD’s reconfiguration interval (see Sec. 5).

Since it is too expensive to compute Eq. 2 for every

object on each eviction, evictions instead sample 64 ran-

dom objects, as described in Sec. 4.1. LHD monitors hit

and eviction distributions online and, to escape local op-

tima, devotes a small amount of space (1%) to “explorer”

objects that are not evicted until a very large age.

What is the best LHD configuration?: LHD uses an ob-

ject’s age to predict its hit density. We also consider

two additional object features to improve LHD’s predic-

tions: an object’s last hit age and its app id. LHDAPP

classifies objects by hashing their app id into one of N
classes (mapping several apps into each class limits over-

heads). We only use LHDAPP on the Memcachier trace,

since the block traces lack app ids. LHDLAST HIT clas-

sifies objects by the age of their last hit, analogous to

LRU-K [38], broken into N classes spaced at powers

of 2 up to the maximum age. (E.g., with max age =

64 K and N = 4, classes are given by last hit age in

0 < 16K < 32K < 64K < ∞).

We swept configurations over the Memcachier and

Microsoft traces and found that both app and last-hit

classification reduce misses. Furthermore, these im-

provements come with relatively few classes, after which

classification yields diminishing returns. Based on these

results, we configure LHD to classify by last hit age (16

classes) and application id (16 classes). We refer to this

configuration as LHD+ for the remainder of the paper.

How does LHD+ compare with other policies?: Fig. 4

shows the miss ratio across many cache sizes for LHD+,

LRU, and three prior policies: GDSF [4, 16], Adapt-

Size [9], and Hyperbolic [11]. GDSF and Hyperbolic

use different ranking functions based on object recency,

frequency, and size (e.g., Eq. 1). AdaptSize probabilis-

tically admits objects to an LRU cache to avoid pollut-

ing the cache with large objects (Sec. 6). LHD+ achieves

the best miss ratio across all cache sizes, outperforms

LRU by a large margin, and outperforms Hyperbolic,

GDSF, and AdaptSize, which perform differently across

different traces. No prior policy is consistently close to

LHD+’s hit ratio.

Moreover, Fig. 4 shows that LHD+ needs less space

than these other policies to achieve the same miss ra-

tio, sometimes substantially less. For example, on Mem-

cachier, a 512 MB LHD+ cache matches the hit rate of

a 768 MB Hyperbolic cache, a 1 GB GDSF, or a 1 GB

AdaptSize cache, and LRU does not match the perfor-

mance even with 2 GB. In other words, LRU requires

more than 4× as many servers to match LHD+’s hit rate.

Averaged across all sizes, LHD+ incurs 45% fewer

misses than LRU, 27% fewer than Hyperbolic and GDSF

and 23% fewer than AdaptSize. Moreover, at the largest

394 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

LHD Hyperbolic GDSF AdaptSize LRU

256 512 1024 2048
Size (MB)

0

5

10

15

20

25

30

M
iss

 R
at

io
 (%

)

(a) Memcachier

16 32 64 128
Size (GB)

0

20

40

60

80

100

(b) MSR src1_0

32 64 128 192
Size (GB)

0

20

40

60

80

100

(c) MSR src1_1

32 64 128 256 512
Size (GB)

0

10

20

30

40

50

M
iss

 R
at

io
 (%

)

(d) MSR usr_1

32 64 128 256 512
Size (GB)

0

20

40

60

80

100

(e) MSR proj_1

32 64 128 256 512
Size (GB)

0

20

40

60

80

100

(f) MSR proj_2

Figure 4: Miss ratio for LHD+ vs. prior policies over 512 M requests and cache sizes from 2 MB to 2 GB on Memcachier trace and

from 128 MB to 512 GB on MSR traces. LHD+ consistently outperforms prior policies on all traces.

100 101 102

Age (M requests)

0

20

40

60

80

100

Ev
ict

io
n

%
 (C

um
ul

at
iv

e)

100 101 102

Age (M requests)
100 101 102

Age (M requests)

1st Quartile 2nd Quartile 3rd Quartile 4th Quartile

(a) LRU. (b) AdaptSize. (c) LHD.

Figure 5: When policies evict objects, broken into quartiles by

object size. LRU evicts all objects at roughly the same age, re-

gardless of their size, wasting space on big objects. AdaptSize

bypasses most large objects, losing some hits on these objects,

while also ignoring object size after admission, still wasting

space. LHD dynamically ranks objects to evict larger objects

sooner, allocating space across all objects to maximize hits.

sizes, LHD+ incurs very few non-compulsory misses,

showing it close to exhausting all possible hits.

Where do LHD+’s benefits come from?: LHD+’s dy-

namic ranking gives it the flexibility to evict the least

valuable objects, without the restrictions or built-in as-

sumptions of prior policies. To illustrate this, Fig. 5 com-

pares when LRU, AdaptSize, and LHD evict objects on

the Memcachier trace at 512 MB. Each line in the figure

shows the cumulative distribution of eviction age for ob-

jects of different sizes; e.g., the solid line in each figure

shows when the smallest quartile of objects are evicted.

LRU ignores object size and evicts all objects at

roughly the same age. Because of this, LRU wastes

space on large objects and must evict objects when they

are relatively young (age≈30 M), hurting its hit ratio.

AdaptSize improves on LRU by bypassing most large ob-

jects so that admitted objects survive longer (age≈75 M).

This lets AdaptSize get more hits than LRU, at the cost

of forgoing some hits to the bypassed objects. How-

ever, since AdaptSize evicts LRU after admission, it still

wastes space on large, admitted objects.

LHD+ is not limited in this way. It can admit all ob-

jects and evict larger objects sooner. This earns LHD+

more hits on large objects than AdaptSize, since they are

not bypassed, and lets small objects survive longer than

AdaptSize (age≈200 M), getting even more hits.

Finally, although many applications are recency-

friendly, several applications in the Memcachier trace as

well as most of the Microsoft Research traces show that

this is not true in general. As a result, policies that in-

clude recency (i.e., nearly all policies, including GDSF,

Hyperbolic, and AdaptSize), suffer from pathologies like

performance cliffs [6, 18]. For example, LRU, GDSF, and

Hyperbolic suffer a cliff in src1_0 at 96 MB and proj_2
at 128 MB. LHD avoids these cliffs and achieves the high-

est performance of all policies (see Sec. 6).

4 RankCache Design

LHD improves hit rates, but implementability and re-

quest throughput also matter in practice. We design

RankCache to efficiently support arbitrary ranking func-

tions, including hit density (Eq. 5). The challenge is

that, with arbitrary ranking functions, the rank-order of

objects can change constantly. A naïve implementation

would scan all cached objects to find the best victim for

each eviction, but this is far too expensive. Alternatively,

for some restricted ranking functions, prior work has

used priority queues (i.e., min-heaps), but these queues

require expensive global synchronization to keep the data

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 395

structure consistent [9].

RankCache solves these problems by approximating

a global ranking, avoiding any synchronization in the

common case. RankCache does not require synchroniza-

tion even for evictions, unlike prior high-performance

caching systems [22, 34], letting it achieve high request

throughput with non-negligible miss rates.

4.1 Lifetime of an eviction in LHD

Ranks in LHD constantly change, and this dynamism is

critical for LHD, since it is how LHD adapts its policy

to the access pattern. However, it would be very expen-

sive to compute Eq. 5 for all objects on every cache miss.

Instead, two key techniques make LHD practical: (i) pre-

computation and (ii) sampling. Fig. 6 shows the steps of

an eviction in RankCache, discussed below.

A

B

C

D

E

F

G

Miss!

Sample

objects

A

C
F

E

Lookup ranks

(pre-computed)

Evict E

R
a

n
k

 ⇒

Figure 6: Steps for an eviction in RankCache. First, randomly

sample objects, then lookup their precomputed rank and evict

the object with the worst rank.

Selecting a victim: RankCache randomly samples

cached objects and evicts the object with the worst rank

(i.e., lowest hit density) in the sample. With a large

enough sample, the evicted object will have eviction

priority close to the global maximum, approximating

a perfect ranking. Sampling is an old idea in pro-

cessor caches [44, 46], has been previously proposed

for web proxies [39], and is used in some key-value

caches [1, 11, 19]. Sampling is effective because the

quality of a random sample depends on its size, not the

size of the underlying population (i.e., number of cached

objects). Sampling therefore lets RankCache implement

dynamic ranking functions in constant time with respect

to the number of cached objects.

Sampling eliminates synchronization: Sampling makes

cache management concurrent. Both linked lists and pri-

ority queues have to serialize GET and SET operations

to maintain a consistent data structure. For example, in

memcached, where LRU is implemented by a linked list,

every cache hit promotes the hit object to the head of the

list. On every eviction, the system first evicts the object

from the tail of the list, and then inserts the new object at

the head of the list. These operations serialize all GETs

and SETs in memcached.

To avoid this problem, systems commonly sacrifice

hit ratio: by default, memcached only promotes objects

if they are older than one minute; other systems use

CLOCK [22] or FIFO [33], which do not require global

updates on a cache hit. However, these policies still seri-

alize all evictions.

Sampling, on the other hand, allows each item to up-

date its metadata (e.g., reference timestamp) indepen-

dently on a cache hit, and evictions can happen concur-

rently as well except when two threads select the same

victim. To handle these rare races, RankCache uses

memcached’s built-in versioning and optimistic concur-

rency: evicting threads sample and compare objects in

parallel, then lock the victim and check if its version has

changed since sampling. If it has, then the eviction pro-

cess is restarted. Thus, although sampling takes more

operations per eviction, it increases concurrency, let-

ting RankCache achieve higher request throughput than

CLOCK/FIFO under high load.

Few samples are needed: Fig. 7 shows the effect of sam-

pling on miss ratio going from associativity (i.e., sample

size) of one to 128. With only one sample, the cache

randomly replaces objects, and all policies perform the

same. As associativity increases, the policies quickly

diverge. We include a sampling-based variant of LRU,

where an object’s rank equals its age. LRU, Hyperbolic,

and LHD+ all quickly reach diminishing returns, around

associativity of 32. At this point, true LRU and sampling-

based LRU achieve identical hit ratios.

1 2 4 8 16 32 64 128
Associativity (# samples)

0

10

20

30

M
iss

 R
at

io
 (%

)

LHD Hyperbolic GDSF LRU w/ Sampling

Figure 7: Miss ratios at different associativities.

Since sampling happens at each eviction, lower asso-

ciativity is highly desirable from a throughput and la-

tency perspective. Therefore, RankCache uses an asso-

ciativity of 64.

We observe that GDSF is much more sensitive to asso-

ciativity, since each replacement in GDSF updates global

state (L, see Sec. 2.1). In fact, GDSF still has not con-

verged at 128 samples. GDSF’s sensitivity to associa-

tivity makes it unattractive for key-value caches, since

it needs expensive data structures to accurately track its

state (Fig. 10). Hyperbolic [11] uses a different ranking

function without global state to avoid this problem.

Precomputation: RankCache precomputes object ranks

so that, given an object, its rank can be quickly found

by indexing a table. In the earlier example, RankCache

would precompute Fig. 2c so that ranks can be looked up

396 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

directly from an object’s age. With LHD, RankCache pe-

riodically (e.g., every one million accesses) recomputes

its ranks to remain responsive to changes in application

behavior. This approach is effective since application be-

havior is stable over short time periods, changing much

more slowly than the ranks themselves fluctuate. More-

over, Eq. 5 can be computed efficiently in linear time [8],

and RankCache configures the maximum age to keep

overheads low (Sec. 5).

4.2 Approximating global rankings with slabs

RankCache uses slab allocation to manage memory be-

cause it ensures that our system achieves predictable

O(1) insertion and eviction performance, it does not re-

quire a garbage collector, and it has no external fragmen-

tation. However, in slab allocation, each slab class evicts

objects independently. Therefore, another design chal-

lenge is to approximate a global ranking when each slab

allocation implements its own eviction policy.

Similar to memcached, when new objects enter the

cache, RankCache evicts the lowest ranked object from

the same slab class. RankCache approximates a global

ranking of all objects by periodically rebalancing slabs

among slab classes. It is well-known that LRU effectively

evicts objects once they reach a characteristic age that de-

pends on the cache size and access pattern [15]. This fact

has been used to balance slabs across slab classes to ap-

proximate global LRU by equalizing eviction age across

slab classes [37]. RankCache generalizes this insight,

such that caches essentially evict objects once they reach

a characteristic rank, rather than age, that depends on the

cache size and access pattern.

Algorithm: In order to measure the average eviction

rank, RankCache records the cumulative rank of evicted

objects and the number of evictions. It then periodically

moves a slab from the slab class that has the highest av-

erage victim rank to that with the lowest victim rank.

However, we found that some slab classes rarely evict

objects. Without up-to-date information about their av-

erage victim rank, RankCache was unable to rebalance

slabs away from them to other slab classes. We solved

this problem by performing one “fake eviction” (i.e.,

sampling and ranking) for each slab class during rebal-

ancing. By also averaging victim ranks across several

decisions, this mechanism gives RankCache enough in-

formation to effectively approximate a global ranking.

RankCache decides whether it needs to rebalance

slabs every 500 K accesses. We find that this is suffi-

cient to converge to the global ranking on our traces, and

more frequent rebalancing is undesirable because it has

a cost: when a 1 MB slab is moved between slab classes,

1 MB of objects are evicted from the original slab class.

Evaluation: Fig. 8 shows the effect of rebalancing slabs

in RankCache. It graphs the distribution of victim rank

5 4 3 2 1 0
Victim Ranks 1e 9

0

20

40

60

80

100

In
te

rv
al

 E
vi

ct
io

ns
 (%

)

RankCache + LHD
RankCache + LHD + Rebalancing
Simulation + LHD

0 1 2 3 4 5
Victim Ranks 1e6

RankCache + LRU
RankCache + LRU + Rebalancing
Simulation + LRU

Figure 8: Distribution of victim rank for slab allocation poli-

cies with and without rebalancing vs. true global policy. LHD+

is on the left, LRU on the right.

for several different implementations, with each slab

class shown in a different color. The right-hand fig-

ure shows RankCache with sampling-based LRU, and the

left shows RankCache with LHD+. An idealized, global

policy has victim rank tightly distributed around a sin-

gle peak—this demonstrates the accuracy of our charac-

teristic eviction rank model. Without rebalancing, each

slab evicts objects around a different victim rank, and is

far from the global policy. With rebalancing, the victim

ranks are much more tightly distributed, and we find this

is sufficient to approximate the global policy.

5 RankCache Implementation

We implemented RankCache, including its LHD ranking

function, on top of memcached [23]. RankCache is back-

wards compatible with the memcached protocol and is a

fairly lightweight change to memcached v1.4.33.

The key insight behind RankCache’s efficient imple-

mentation is that, by design, RankCache is an approxi-

mate scheme (Sec. 4). We can therefore tolerate loosely

synchronized events and approximate aging information.

Moreover, RankCache does not modify memcached’s

memory allocator, so it leverages existing functional-

ity for events that require careful synchronization (e.g.,

moving slabs).

Aging: RankCache tracks time through the total number

of accesses to the cache. Ages are coarsened in large

increments of COARSENESS accesses, up to a MAX_AGE.

COARSENESS and MAX_AGE are chosen to stay within

a specified error tolerance (see appendix); in practice,

coarsening introduces no detectable change in miss ratio

or throughput for reasonable error tolerances (e.g., 1%).

Conceptually, there is a global timestamp, but for

performance we implement distributed, fuzzy counters.

Each server thread maintains a thread-local access count,

and atomic-increments the global timestamp periodically

when its local counter reaches COARSENESS.

RankCache must track the age of objects to compute

their rank, which it does by adding a 4 B timestamp to

the object metadata. During ranking, RankCache com-

putes an object’s coarsened age by subtracting the object

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 397

timestamp from the global timestamp.

Ranking: RankCache adds tables to store the ranks of

different objects. It stores ranks up to MAX_AGE per

class, each rank a 4 B floating-point value. With 256

classes (Sec. 3), this is 6.4 MB total overhead. Ranks

require no synchronization, since they are read-only be-

tween reconfigurations, and have a single writer (see be-

low). We tolerate races as they are infrequently updated.

Monitoring behavior: RankCache monitors the distri-

bution of hit and eviction age by maintaining histograms

of hits and evictions. RankCache increments the appro-

priate counter upon each access, depending on whether

it was a hit or eviction and the object’s coarsened age.

To reduce synchronization, these are also implemented

as distributed, fuzzy counters, and are collected by the

updating thread (see below). Counters are 4 B values;

with 256 classes, hit and eviction counters together re-

quire 12.6 MB per thread.

Sampling: Upon each eviction, RankCache samples ob-

jects from within the same slab class by randomly gen-

erating indices and then computing the offset into the

appropriate slab. Because objects are stored at regular

offsets within each slab, this is inexpensive.

Efficient evictions: For workloads with non-negligible

miss ratios, evictions are the rate-limiting step in

RankCache. To make evictions efficient, RankCache

uses two optimizations. First, rather than adding an ob-

ject to a slab class’s free list and then immediately claim-

ing it, RankCache directly allocates the object within the

same thread after it has been freed. This avoids unneces-

sary synchronization.

Second, RankCache places object metadata in a sepa-

rate, contiguous memory region, called the tags. Tags are

stored in the same order as objects in the slab class, mak-

ing it easy to find an object from its metadata. Since slabs

themselves are stored non-contiguously in memory, each

object keeps a back pointer into the tags to find its meta-

data. Tags significantly improve spatial locality during

evictions. Since sampling is random by design, without

separate tags, RankCache suffers 64 (associativity) cache

misses per eviction. Compact tags allow RankCache to

sample 64 candidates with just 4 cache misses, a 16×
improvement in locality.

Background tasks: Both updating ranks and rebalanc-

ing slabs are off the critical path of requests. They run

as low-priority background threads and complete in a

few milliseconds. Periodically (default: every 1 M ac-

cesses), RankCache aggregates histograms from each

thread and recomputes ranks. First, RankCache aver-

ages histograms with prior values, using an exponential

decay factor (default: 0.9). Then it computes LHD for

each class in linear time, requiring two passes over the

ages using an algorithm similar to [8]. Also periodically

(every 500 K accesses), RankCache rebalances one slab

from the slab with the highest eviction rank to the one

with the lowest, as described in Sec. 4.2.

Across several orders of magnitude, the reconfigura-

tion interval and exponential decay factor have minimal

impact on hit rate. On the Memcachier trace, LHD+’s

non-compulsory miss rate changes by 1% going from re-

configuring every 10 K to 10 M accesses, and the expo-

nential decay factor shows even smaller impact when it

is set between 0.1 and 0.99.

5.1 RankCache matches simulation

Going left-to-right, Fig. 9 compares the miss ratio over

512 M accesses on Memcachier at 1 GB for (i) stock

memcached using true LRU within each slab class;

RankCache using sampling-based LRU as its rank-

ing function (ii) with and (iii) without rebalancing;

RankCache using LHD+ (iv) with and (v) without rebal-

ancing; and (vi) an idealized simulation of LHD+ with

global ranking.

Memcach
ed

+ Samplin
g

+ Rebalancin
g

− Rebalancin
g

 + Rebalancin
g

Ideal LHD+
0

5

10

15

20

25

30
M

is
s

R
a
ti

o
 (

%
)

Memcached

RankCache

Ideal

Figure 9: RankCache vs. unmodified memcached and ideal-

ized simulation. Rebalancing is necessary to improve miss ra-

tio, and effectively approximates a global ranking.

As the figure shows, RankCache with slab rebalancing

closely matches the miss ratio of the idealized simula-

tion, but without slab rebalancing it barely outperforms

LRU. This is because LHD+ operating independently on

each slab cannot effectively take into account object size,

and hence on an LRU-friendly pattern performs similarly

to LRU. The small degradation in hit ratio vs. idealized

simulation is due to forced, random evictions during slab

rebalancing.

5.2 RankCache with LHD+ achieves both high
hit ratio and high performance

Methodology: To evaluate RankCache’s performance,

we stress request serving within RankCache itself by

conducting experiments within a single server and by-

passing the network. Each server thread pulls requests

off a thread-local request list. We force all objects to

have the same size to maximally stress synchronization

in each policy. Prior work has explored techniques to op-

timize the network in key-value stores [22, 33, 34]; these

topics are not our contribution.

398 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We compare RankCache against list-based LRU, GDSF

using a priority queue (min-heap), and CLOCK. These

cover the main implementation primitives used in key-

value caches (Sec. 2). We also compare against random

evictions to show peak request throughput when the evic-

tion policy does no work and maintains no state. (Ran-

dom pays for its throughput by suffering many misses.)

Scalability: Fig. 10 plots the aggregate request through-

put vs. number of server threads on a randomly gener-

ated trace with Zipfian object popularities. We present

throughput at 90% and 100% hit ratio; the former repre-

sents a realistic deployment, the latter peak performance.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Random

RankCache+tags

RankCache

CLOCK

Linked List (LRU)

Priority Queue (GDSF)

0 2 4 6 8 10 12 14 16
#Threads

0

5

10

15

20

25

30

35

T
h
ro

u
g
h
p
u
t

(M
 R

e
q
u
e
st

s/
s)

(a) 90% Hit ratio.

0 2 4 6 8 10 12 14 16
#Threads

0

5

10

15

20

25

30

35

40

T
h
ro

u
g
h
p
u
t

(M
 R

e
q
u
e
st

s/
s)

(b) 100% Hit ratio.

Figure 10: RankCache’s request throughput vs. server threads.

RankCache’s performance approaches that of random, and out-

performs CLOCK with non-negligible miss ratio.

RankCache scales nearly as well as random because

sampling avoids nearly all synchronization, whereas LRU

and GDSF barely scale because they serialize all opera-

tions. Similarly, CLOCK performs well at 100% hit ratio,

but serializes evictions and underperforms RankCache

with 10% miss ratio. Finally, using separate tags in

RankCache lowers throughput with a 100% hit ratio, but

improves performance even with a 10% miss ratio.

Trading off throughput and hit ratio: Fig. 11a plots

request throughput vs. cache size for these policies on

the Memcachier trace. RankCache achieves the high-

est request throughput of all policies except random, and

tags increase throughput at every cache size. RankCache

increases throughput because (i) it eliminates nearly all

synchronization and (ii) LHD+ achieves higher hit ratio

than other policies, avoiding time-consuming evictions.

Fig. 11b helps explain these results by plotting request

throughput vs. hit ratio for the different systems. These

numbers are gathered by sweeping cache size for each

policy on a uniform random trace, equalizing hit ratio

across policies at each cache size. Experimental results

are shown as points, and we fit a curve to each dataset by

assuming that:

Total service time = # GETs×GET time+# SETs×SET time

As Fig. 11b shows, this simple model is a good fit, and

thus GET and SET time are independent of cache size.
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Random

RankCache+tags

RankCache

CLOCK

Linked List (LRU)

Priority Queue (GDSF)

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

Cache Size (MB)

0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(M
 R

e
q
u
e
st

s/
s)

(a) vs. cache size.

55 60 65 70 75 80 85 90 95 100

Hit Rate (%)

0

5

10

15

20

25

30

35

40

T
h
ro

u
g
h
p
u
t

(M
 R

e
q
u
e
st

s/
s)

(b) vs. hit ratio.

Figure 11: Request throughput on Memcachier trace at 16

server threads. RankCache with LHD achieves the highest

request throughput of all implementations, because it reduces

synchronization and achieves a higher hit ratio than other poli-

cies. Tags are beneficial except at very high hit ratios.

Fig. 11b shows how important hit ratio is, as small

improvements in hit ratio yield large gains in request

throughput. This effect is especially apparent on CLOCK

because it synchronizes on evictions, but not on hits.

Unfortunately, CLOCK achieves the lowest hit ratio of

all policies, and its throughput suffers as a result. In

constrast, LHD+ pushes performance higher by improv-

ing hit ratio, and RankCache removes synchronization to

achieve the best scaling of all implementations.

Response latency: Fig. 12 shows the average response

time of GETs and SETs with different policies running

at 1 and 16 server threads, obtained using the same pro-

cedure as Fig. 11b. The 16-thread results show that, in

a parallel setting, RankCache achieves the lowest per-

operation latency of all policies (excluding random), and

in particular using separate tags greatly reduces eviction

time. While list- or heap-based policies are faster in a

sequential setting, RankCache’s lack of synchronization

dominates with concurrent requests. Because CLOCK

synchronizes on evictions, its evictions are slow at 16

threads, explaining its sensitivity to hit ratio in Fig. 11b.

RankCache reduces GET time by 5× vs. list and prio-

queue, and SET time by 5× over CLOCK.

Hits Evictions0

2

4

6

Ti
m

e
(µ

s)

Hits Evictions0

5

10

15

Random
RankCache+tags

RankCache
CLOCK

Linked List
Priority Queue

Figure 12: Request processing time for hits and evictions at a

single thread (left) and 16 threads (right).

In a real-world deployment, RankCache’s combina-

tion of high hit ratio and low response latency would

yield greatly reduced mean and tail latencies and thus

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 399

to significantly improved end-to-end response latency.

6 Related Work

Prior work in probabilistic eviction policies: EVA, a re-

cent eviction policy for processor caches [7, 8], intro-

duced the idea of using conditional probability to balance

hits vs. resources consumed. There are several signifi-

cant differences between LHD and EVA that allow LHD

to perform well on key-value workloads.

First, LHD and EVA use different ranking functions.

EVA ranks objects by their net contribution measured in

hits, not by hit density. This matters, because EVA’s rank-

ing function does not converge in key-value cache work-

loads and performs markedly worse than LHD. Second,

unlike processor caches, LHD has to deal with variable

object sizes. Object size is one of the most important

characteristics in a key-value eviction policy. RankCache

must also rebalance memory across slab classes to im-

plement a global ranking. Third, LHD classifies objects

more aggressively than is possible with the implemen-

tation constraints of hardware policies, and classifies by

last hit age instead of frequency, which significantly im-

proves hit ratio.

Key-value caches: Several systems have tried to improve

upon memcached’s poor hit ratio under objects of vary-

ing sizes. Cliffhanger [18] uses shadow queues to incre-

mentally assign memory to slab classes that would gain

the highest hit ratio benefit. Similarly, Dynacache [17],

Moirai [49], Mimir [43] and Blaze [10] determine the ap-

propriate resource allocation for objects of different sizes

by keeping track of LRU’s stack distances. Twitter [41]

and Facebook [37] periodically move memory from slabs

with a high hit ratio to those with a low hit ratio. Other

systems have taken a different approach to memory allo-

cation than memcached. Memshare [19] and MICA [34]

utilize log-structured memory allocation. In the case of

all the systems mentioned above, the memory allocation

is intertwined with their eviction policy (LRU).

Similar to RankCache, Hyperbolic caching [11] also

uses sampling to implement dynamic ranking functions.

However, as we have demonstrated, Hyperbolic suffers

from higher miss ratios, since it is a recency-based policy

that is susceptible to performance cliffs, and Hyperbolic

did not explore concurrent implementations of sampling

as we have done in RankCache.

Replacement policies: Prior work improves upon LRU

by incorporating more information about objects to

make better decisions. For example, many policies fa-

vor objects that have been referenced frequently in the

past, since intuitively these are likely to be referenced

again soon. Prominent examples include LRU-K [38],

SLRU [29], 2Q [28], LRFU [31], LIRS [26], and ARC [35].

There is also extensive prior work on replacement poli-

cies for objects of varying sizes. LRU-MIN [2], HY-

BRID [52], GreedyDual-Size (GDS) [14], GreedyDual-

Size-Frequency (GDSF) [4, 16], LNC-R-W3 [45], Adapt-

Size [9], and Hyperbolic [11] all take into account the

size of the object.

AdaptSize [9] emphasizes object admission vs. evic-

tion, but this distinction is only important for list-based

policies, so long as objects are small relative to the

cache’s size. Ranking functions (e.g., GDSF and LHD)

can evict low-value objects immediately, so it makes lit-

tle difference if they are admitted or not (Fig. 5).

Several recent policies explicitly avoid cliffs seen in

LRU and other policies [6, 11, 18]. Cliffs arise when

policies’ built-in assumptions are violated and the policy

behaves pathologically, so that hit ratios do not improve

until all objects fit in the cache. LHD also avoids cliffs,

but does so by avoiding pathological behavior in the first

place. Cliff-avoiding policies achieve hit ratios along the

cliff’s convex hull, and no better [6]; LHD matches or

exceeds this performance on our traces.

Tuning eviction policies: Many prior policies require

application-specific tuning. For example, SLRU divides

the cache into S partitions. However, the optimal choice

of S, as well as how much memory to allocate to each

partition, varies widely depending on the application [24,

50]. Most other policies use weights that must be tuned

to the access pattern (e.g., [2, 11, 27, 38, 45, 52]). For

example, GD∗ adds an exponential parameter to Eq. 1

to capture burstiness [27], and LNC-R-W3 has separate

weights for frequency and size [45]. In contrast to LHD,

these policies are highly sensitive to their parameters.

(We have implemented LNC-R-W3, but found it performs

worse than LRU without extensive tuning at each size,

and so do not present its results.)

7 Conclusions

This paper demonstrates that there is a large opportunity

to improve cache performance through non-heuristic ap-

proach to eviction policies. Key-value caches are an es-

sential layer for cloud applications. Scaling the capac-

ity of LRU-based caches is an unsustainable approach to

scale their performance. We have presented a practical

and principled approach to tackle this problem, which

allows applications to achieve their performance goals at

significantly lower cost.

Acknowledgements

We thank our anonymous reviewers, and especially our

shepherd, Jon Howell, for their insightful comments. We

also thank Amit Levy and David Terei for supplying the

Memcachier traces, and Daniel Berger for his feedback

and help with implementing AdaptSize. This work was

funded by a Google Faculty Research Award and sup-

ported by the Parallel Data Lab at CMU.

400 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Redis. http://redis.io/. 7/24/2015.

[2] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and E. A.

Fox. Caching proxies: Limitations and potentials. Technical re-

port, Blacksburg, VA, USA, 1995.

[3] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira. Char-

acterizing reference locality in the WWW. In Proceedings of the

Fourth International Conference on on Parallel and Distributed

Information Systems, DIS ’96, pages 92–107, Washington, DC,

USA, 1996. IEEE Computer Society.

[4] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin. Eval-

uating content management techniques for web proxy caches.

ACM SIGMETRICS Performance Evaluation Review, 2000.

[5] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny.

Workload analysis of a large-scale key-value store. In ACM SIG-

METRICS Performance Evaluation Review, volume 40, pages

53–64. ACM, 2012.

[6] N. Beckmann and D. Sanchez. Talus: A simple way to remove

cliffs in cache performance. In HPCA-21, 2015.

[7] N. Beckmann and D. Sanchez. Modeling cache performance be-

yond LRU. HPCA-22, 2016.

[8] N. Beckmann and D. Sanchez. Maximizing cache performance

under uncertainty. HPCA-23, 2017.

[9] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter. AdaptSize:

Orchestrating the hot object memory cache in a content deliv-

ery network. In 14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 17), pages 483–498, Boston,

MA, 2017. USENIX Association.

[10] H. Bjornsson, G. Chockler, T. Saemundsson, and Y. Vigfusson.

Dynamic performance profiling of cloud caches. In Proceed-

ings of the 4th annual Symposium on Cloud Computing, page 59.

ACM, 2013.

[11] A. Blankstein, S. Sen, and M. J. Freedman. Hyperbolic caching:

Flexible caching for web applications. In 2017 USENIX Annual

Technical Conference (USENIX ATC 17), pages 499–511, Santa

Clara, CA, 2017. USENIX Association.

[12] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competi-

tive paging with locality of reference. Journal of Computer and

System Sciences, 50(2):244–258, 1995.

[13] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web

caching and Zipf-like distributions: Evidence and implications.

In INFOCOM’99. Eighteenth Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings.

IEEE, volume 1, pages 126–134. IEEE, 1999.

[14] P. Cao and S. Irani. Cost-aware www proxy caching algorithms.

In Proceedings of the USENIX Symposium on Internet Technolo-

gies and Systems on USENIX Symposium on Internet Technolo-

gies and Systems, USITS’97, pages 18–18, Berkeley, CA, USA,

1997. USENIX Association.

[15] H. Che, Y. Tung, and Z. Wang. Hierarchical web caching sys-

tems: Modeling, design and experimental results. IEEE Journal

on Selected Areas in Communications, 2002.

[16] L. Cherkasova. Improving WWW proxies performance with

greedy-dual-size-frequency caching policy. Hewlett-Packard

Laboratories, 1998.

[17] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti. Dynacache:

Dynamic cloud caching. In 7th USENIX Workshop on Hot Topics

in Cloud Computing (HotCloud 15), Santa Clara, CA, July 2015.

USENIX Association.

[18] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti. Cliffhanger:

Scaling performance cliffs in web memory caches. In 13th

USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 16), pages 379–392, Santa Clara, CA, Mar.

2016. USENIX Association.

[19] A. Cidon, D. Rushton, S. M. Rumble, and R. Stutsman.

Memshare: a dynamic multi-tenant key-value cache. In 2017

USENIX Annual Technical Conference (USENIX ATC 17), pages

321–334, Santa Clara, CA, 2017. USENIX Association.

[20] C. Cunha, A. Bestavros, and M. Crovella. Characteristics of

WWW client-based traces. Technical report, Boston, MA, USA,

1995.

[21] J. Dean and L. A. Barroso. The tail at scale. Commun. ACM,

56(2), 2013.

[22] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Com-

pact and concurrent MemCache with dumber caching and smarter

hashing. In Proceedings of the 10th USENIX Conference on

Networked Systems Design and Implementation, NSDI’13, pages

371–384, Berkeley, CA, USA, 2013. USENIX Association.

[23] B. Fitzpatrick. Distributed caching with Memcached. Linux jour-

nal, 2004(124):5, 2004.

[24] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and

H. C. Li. An analysis of facebook photo caching. In Proceed-

ings of the Twenty-Fourth ACM Symposium on Operating Sys-

tems Principles, SOSP ’13, pages 167–181, New York, NY, USA,

2013. ACM.

[25] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer. High

performance cache replacement using re-reference interval pre-

diction. In ISCA-37, 2010.

[26] S. Jiang and X. Zhang. LIRS: An efficient low inter-reference

recency set replacement policy to improve buffer cache perfor-

mance. SIGMETRICS Perform. Eval. Rev., 30(1):31–42, June

2002.

[27] S. Jin and A. Bestavros. GreedyDualâĹŮ web caching algorithm:

exploiting the two sources of temporal locality in web request

streams. Computer Communications, 24(2):174–183, 2001.

[28] T. Johnson and D. Shasha. 2Q: A low overhead high performance

buffer management replacement algorithm. In Proceedings of the

20th International Conference on Very Large Data Bases, VLDB

’94, pages 439–450, San Francisco, CA, USA, 1994. Morgan

Kaufmann Publishers Inc.

[29] R. Karedla, J. S. Love, and B. G. Wherry. Caching strategies to

improve disk system performance. Computer, 27(3):38–46, Mar.

1994.

[30] R. E. Kessler, M. D. Hill, and D. A. Wood. A comparison of trace-

sampling techniques for multi-megabyte caches. IEEE Transac-

tions on Computers, 1994.

[31] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.

Kim. On the existence of a spectrum of policies that subsumes

the least recently used (LRU) and least frequently used (LFU)

policies. SIGMETRICS Perform. Eval. Rev., 27(1):134–143, May

1999.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 401

http://redis.io/

[32] C. Li and A. L. Cox. GD-Wheel: a cost-aware replacement pol-

icy for key-value stores. In Proceedings of the Tenth European

Conference on Computer Systems, page 5. ACM, 2015.

[33] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky,

D. G. Andersen, O. Seongil, S. Lee, and P. Dubey. Architecting to

achieve a billion requests per second throughput on a single key-

value store server platform. In Proceedings of the 42Nd Annual

International Symposium on Computer Architecture, ISCA ’15,

pages 476–488, New York, NY, USA, 2015. ACM.

[34] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A

holistic approach to fast in-memory key-value storage. In 11th

USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 14), pages 429–444, Seattle, WA, Apr. 2014.

USENIX Association.

[35] N. Megiddo and D. S. Modha. Arc: A self-tuning, low overhead

replacement cache. In FAST, volume 3, pages 115–130, 2003.

[36] Memcachier. www.memcachier.com.

[37] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.

Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford,

T. Tung, and V. Venkataramani. Scaling Memcache at Face-

book. In Presented as part of the 10th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 13), pages

385–398, Lombard, IL, 2013. USENIX.

[38] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page re-

placement algorithm for database disk buffering. In Proceedings

of the 1993 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’93, pages 297–306, New York, NY,

USA, 1993. ACM.

[39] K. Psounis and B. Prabhakar. A randomized web-cache replace-

ment scheme. In INFOCOM 2001. Twentieth Annual Joint Con-

ference of the IEEE Computer and Communications Societies.

Proceedings. IEEE, volume 3, pages 1407–1415. IEEE, 2001.

[40] M. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adap-

tive insertion policies for high performance caching. In ISCA-34,

2007.

[41] M. Rajashekhar and Y. Yue. Twemcache. blog.twitter.com/

2012/caching-with-twemcache.

[42] S. M. Rumble, A. Kejriwal, and J. Ousterhout. Log-structured

Memory for DRAM-based Storage. In FAST, pages 1–16, 2014.

[43] T. Saemundsson, H. Bjornsson, G. Chockler, and Y. Vigfusson.

Dynamic performance profiling of cloud caches. In Proceedings

of the ACM Symposium on Cloud Computing, pages 1–14. ACM,

2014.

[44] D. Sanchez and C. Kozyrakis. The zcache: Decoupling ways and

associativity. In MICRO-43, 2010.

[45] P. Scheuermann, J. Shim, and R. Vingralek. A case for delay-

conscious caching of web documents. Computer Networks and

ISDN Systems, 29(8):997–1005, 1997.

[46] A. Seznec. A case for two-way skewed-associative caches. In

ACM SIGARCH Computer Architecture News, volume 21, pages

169–178. ACM, 1993.

[47] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update

and paging rules. Commun. ACM, 28(2):202–208, Feb. 1985.

[48] SNIA. MSR Cambridge Traces. http://iotta.snia.org/

traces/388, 2008.

[49] I. Stefanovici, E. Thereska, G. O’Shea, B. Schroeder, H. Bal-

lani, T. Karagiannis, A. Rowstron, and T. Talpey. Software-

defined caching: Managing caches in multi-tenant data centers.

In Proceedings of the Sixth ACM Symposium on Cloud Comput-

ing, pages 174–181. ACM, 2015.

[50] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li. RIPQ: Ad-

vanced photo caching on flash for Facebook. In 13th USENIX

Conference on File and Storage Technologies (FAST 15), pages

373–386, Santa Clara, CA, Feb. 2015. USENIX Association.

[51] C. Waldspurger, T. Saemundsson, I. Ahmad, and N. Park. Cache

modeling and optimization using miniature simulations. In 2017

USENIX Annual Technical Conference (USENIX ATC 17), pages

487–498, Santa Clara, CA, 2017. USENIX Association.

[52] R. P. Wooster and M. Abrams. Proxy caching that estimates page

load delays. In Selected Papers from the Sixth International Con-

ference on World Wide Web, pages 977–986, Essex, UK, 1997.

Elsevier Science Publishers Ltd.

[53] N. Young. The k-server dual and loose competitiveness for pag-

ing. Algorithmica, 11:525–541, 1994.

402 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

www.memcachier.com
blog.twitter.com/2012/caching-with-twemcache
blog.twitter.com/2012/caching-with-twemcache
http://iotta.snia.org/traces/388
http://iotta.snia.org/traces/388

A Age coarsening with bounded error

RankCache chooses how much to coarsen ages and how

many ages to track in order to stay within a user-specified

error tolerance. RankCache is very conservative, so that

in practice much more age coarsening and fewer ages can

be used with no perceptible loss in hit rate.

Choosing a maximum age: The effect of age coarsening

is to divide ages into equivalence classes in chunks of

COARSENESS, so that the maximum true age that can be

tracked is COARSENESS × MAX_AGE. Any events above

this maximum true age cannot be tracked. Hence, if the

access pattern is a scan at a larger reuse distance than

this, the cache will be unable to find these objects, even

with an optimal ranking metric.

If the cache fits N objects and the scan contains M
objects, then the maximum hit rate on the trace is N/M .

To keep the error tolerance below ǫ, we must track ages

up to M ≥ N/ǫ, hence:

MAX_AGE ≥
N

COARSENESS× ǫ
(7)

Choosing age coarsening: COARSENESS hurts per-

formance by forcing RankCache to be conservative

and keep objects around longer than necessary, until

RankCache is certain that they can be safely evicted. The

effect of large COARSENESS is to reduce effective cache

capacity, since more space is spent on objects that will be

eventually evicted. In the worst case, all evicted objects

spend an additional COARSENESS accesses in the cache,

reducing the space available for hits proportionally.

Coarsening thus “pushes RankCache down the hit rate

curve”. The lost hit rate is maximized when the hit rate

curve has maximum slope. Since optimal eviction poli-

cies have concave hit rate curves [6], the loss from coars-

ening is maximized when the hit rate curve is a straight

line. Once again, this is the hit rate curve of a scanning

pattern with uniform object size.

Without loss of generality, assume objects have

size = 1. The cache size equals the sum of the expected

resources spent on hits and evictions [8],

N = E[H] + E[E]

In the worst case, coarsening increases space spent on

evictions by

E[E′] = E[E] + COARSENNG,

so space for hits is reduced

E[H ′] = E[H]− COARSENNG

With a scan over M objects, the effect of coarsening is

thus to reduce cache hit rate by

Hit rate loss =
COARSENNG

M

This loss is maximized when M is small, but M cannot

be too small since M ≤ N leads to zero misses.

To bound this error below ǫ, RankCache coarsens ages

such that

COARSENNG ≤ N × ǫ (8)

Substituting into Eq. 7 yields

MAX_AGE ≥
1

ǫ2
(9)

Implementation: Age coarsening thus depends only

on the error tolerance and number of cached objects.

RankCache monitors the number of cached objects

and, every 100 intervals, updates COARSENNG and

MAX_AGE. We find that hit rate is insensitive to these

parameters, so long as they are within the right order of

magnitude.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 403

