
LHI-TREE: AN EFFICIENT DISK-BASED IMAGE SEARCH APPLICATIO N

Lászĺo Havasi, Domonkos Varga, Tamás Sziŕanyi

MTA SZTAKI, Computer and Automation Research Institute of the Hungarian Academy of Sciences

ABSTRACT

Querying of nearest neighbour (NN) elements on large data
collections is an important task for several information or
content retrieval tasks. In the paper Local Hash-indexing
tree (LHI-tree) is introduced, which is a disk-based index
scheme that uses RAM for quick space partition localization
and hard disks for the hash indexing. When large collections
are considered, such hybrid data structure should be used to
implement an effective indexing service. The proposed struc-
ture can produce list of approximate nearest neighbours. We
compare LHI-tree to FLANN (Fast Library for Approximate
Nearest Neighbors), an effective implementation of ANN
search. We show that they produce similar lists of retrieved
images (although FLANN works only on RAM). In case of
huge multimedia database a disk based indexing and retrieval
method has a significant advantage against a vector based
system running in RAM data. For the visual content indexing
we built an image descriptor composed of four different infor-
mation representations: edge histogram, entropy histogram,
pattern histogram and dominant component colour character-
istics. The paper will mention the content based retrieval of
Hungarian Wikipedia images.

Index Terms— multimedia indexing, content based re-
trieval, high dimensional data searching, disk-based tree, hi-
erarchical tree, image descriptor

1. INTRODUCTION

Multimedia information systems are becoming increasingly
important with the advent of multi-sensor networks, mobile
phone data capture and increasing number of multimedia
databases. Since visual, auditory media and the adherent in-
formation requires large amounts of memory and computing
power for storage and processing, there is a need to effi-
ciently index, store, and retrieve the visual information from
multimedia/cross-media databases [1].

Today image retrieval even with 25.000.000 pictures
based on image and textual features is a very difficult task,
and retrieval times above a few seconds are not acceptable. In
the video retrieval area, current retrieval challenges areraised
with e. g. given 50GB/200 hours of video data. As to other
multimedia retrieval problems, e. g. 3D object content based
retrieval is presumably a new field of investigation with inter-

esting future applications. On this kind of information the3D
surface representation, local and global similarity measures,
effective indexing are challenging problems.

The general approach to build such multimedia databases
comprises the following, or similar steps. The first step is fea-
ture selection and extraction. Then comes the preprocessing
with dimension reduction and/or sophisticated clusteringof
feature space. After that some tree-like or hashing-based data
structure is selected and built for storage. At last we connect
relevance feedback to query interface. Further limitationof
semantics based retrieval systems in the missing capability of
generalization. These systems need to rebuild feature clus-
ters and indexes when new features, information streams or
objects are added.

2. STATE OF THE ART

When the dimension of a feature set increases dramatically,
the methods used for low-dimensional indexing are not appli-
cable any more. The classical kd-tree algorithm [2] is efficient
in low dimensions, but its performance degrades at higher di-
mensions.

[3] uses a multiple randomized kd-tree, where it splits the
data for a randomly chosen set of dimensions (e. g. 5) in-
stead of the greatest variance. In [4] this random kd-tree isap-
plied by using multiple trees, priority search on hierarchical
k-means trees, and automatic parameter setting. They have
demonstrated that this configuration of algorithms can speed
up the matching of high-dimensional vectors by up to several
orders of magnitude compared to linear search.

Many graph mining problems revolve around the compu-
tation of the most similar k-nodes to a given query node. The
similarity measures based on random walks on graphs may
result in low speed and memory allocation problems. The ob-
vious solution [5] for the problem of computing similarities
at query time when the graph is too large to be memory resi-
dent is to split the graph into clusters of nodes and store each
cluster on a disk page; ideally random walks will rarely cross
cluster boundaries and cause page-faults. Another speedup
can be achieved by using only sequential sweeps over data
files. However, in this solution the vertices have the same fea-
ture dimension and the similarity between the query node and
others is examined by local neighbourhoods around the query
node instead of a distance, relying on dynamic programming

or power iteration like techniques which involve updating the
neighbourhood.

The clustering approach is applied in [6] as well. It ex-
amines a cluster CBIR system using self-organizing tree map
approach, with relevance feedback using radial-basis func-
tion network. Computational cost is reduced by adopting
clustering CBIR over the conventional centralized CBIR ap-
proach. The proposed relevance feedback technique resulted
in a higher retrieval precision for the clustered CBIR systems.

Recent method proposed in [7] is the Nearest Vector Tree
which is designed for approximate nearest neighbour search
in very large, high-dimensional databases. It transforms the
high dimensionality search task into an efficient one dimen-
sional space based on the combination of projections of data
points to lines and the partitioning of the projected space.
150.000 images have been indexed by the NV-Tree.

In our previous demo work [8] we have demonstrated that
LHI-tree performs well in image search applications. A mo-
bile frontend application for iOS was prepared for CrossMe-
dia to find images in the Hungarian Wikipedia. We compare
the results in this article with other methods.

3. DISK BASED INDEXING

The LHI-tree is similar to M-index [9] where base points
(so called pivots) are chosen randomly to reduce the high-
dimensional feature vectors. A modification of this random
selection is applied, where a quasi orthogonality criteriais
forced during random point selection. Beyond the point se-
lection we estimate basic statistical properties of input space
from the representative sample set.

In contrast to permutation-based scheme, LHI-tree uses
base points to compute reference distances and to calculate
hash codes for every input vector from the quantized dis-
tances. It is carried out by using AVL-trees inside the LHI-
tree, connected to every base point. Input of AVL-trees are
the distances of the input image to the base points, while the
outputs are the number of bin in which the quantized dis-
tance fell. The use of AVL-tree for such quantization task
is favourable because it is balanced and very fast. Visually,
LHI-tree contains base points as hyper-sphere centers in the
feature space. The indices from AVL-trees are the shells of
such spheres with different radius.

Thus, parameters of the LHI-tree are:

• Number of spheres: It defines the number of base
points, namely the number of AVL-trees. This pa-
rameter controls the non-linear reduction, assigns new
dimensionality to the high dimension feature space.

• Number of shells: It defines the bin count for distance
quantization. A non-linear quantization was selected.
This parameter controls the number of intersections
through the complexity of the generated hash code.

Table 1. Run-time parameters of the proposed index-
ing method. Number of base spheres/number of input
points/dimension of input vector.

3sphs/300k 5sphs/600k 5sphs/829k 5sphs/632k

64 dims 64 dims 64 dims 64 dims

Build time 456 sec 12194 sec 17619 sec 14901 sec

RAM storage 0.912 MB 1.248 MB 1.432 MB 0.945 MB

HDD storage 80200 MB 161000 MB 215000 MB 329210 MB

Search time 67 msec 45 msec 110 msec 160 msec

RAM usage

during search 1.2 MB 0.97 MB 1.2 MB 2.2 MB

To assign a disk partition to a part of the feature space,
we have used hashing function of quantized distances. This
hash function guarantees that close vectors are placed intothe
same disk partition (file). Figure 1 demonstrates the building
process step-by-step.

Fig. 1. Flow-chart of LHI-tree building algorithm. The em-
bedded AVL trees give a fast solution to prepare hash code
from input data. Next the hash code is translated into direc-
tory structure on disks.

During evaluation process two datasets were used:

• CoPhIR (Content-based Photo Image Retrieval): colour
structure, edge histogram and homogeneous texture de-
scriptors were selected.

• Caltech101 [10]: SIFT vectors.

CoPhIR dataset contains MPEG7 descriptors in XML format,
while we extracted SIFT region descriptors on images from
CALTECH. For building indices and searching a desktop In-
tel Core7 computer was used with standard speed HDD stor-
age.

4. THE REGION BASED DESCRIPTORS

The goal of the preprocessing is to preserve the substantive
content of the image, first of all the dominant edges and
the contours. After this the selecting of the regions will be
possible. From among the simply image transformations the
median filter is a practical choice. The localization of the
descriptor serves the determination of two basic parameters.
The first is the center of the operative region of the descrip-
tor, the second is the radius of the descriptor. These two
parameters determine together the image content used in the
computation of the descriptor. In contrast to the previously
used descriptors, the goal is a description of the parts of the
shapes. Therefore the goal is not the determination of the
corner points and the coverage of their environment, but the
finding the contour defined, nearly homogeneous areas of the
image. Also the location of the descriptors can be divided
into two phases:

1. The determination of the position: is done based on the
localization of the edges. Nearly the sides of the de-
scriptors the same direction, arranged edges must be
rewarded. In the middle of the descriptors the presence
of the edges is also punished. The degree of the disor-
dering of the edges is determined by Renyi entropy.

2. The determination of the radius: It is determined
with the help of the information content by the radius
bounded area.

Our applied region based descriptor vectors will each consist
of four individual feature vectors representing the edges,the
entropy, the texture and the image colour:

1. The edge histogram: The magnitude and the orientation
of the gradient vectors is calculated in each pixel. The
range between minus 180 degrees and plus 180 degrees
is divided into twelve equal bins. We take the gradient
vectors one after the other, examine the orientation and
the bin of the suitable element will be increased by the
absolute value of the gradient vector. It is invariant to
translation and rotation of the images and normalizing
the histogram leads to scale invariance.

2. The entropy histogram: This type of descriptor is used
for the analysis of the grey level inhomogeneity. First
the entropy map of the gray-level preprocessed image is
created in the following way: we take a square from the
preprocessed image and the entropy of this square will
be calculated. Then we substitute this value into the en-
tropy map to the place of the center pixel of the square.
The entropy histogram is calculated in the following
way: the circle of the region is divided into eight equal
parts. We determine the median value of the entropy
map in each region. This gives us an 8-bin histogram.

3. The pattern histogram: Local Binary Pattern (LBP) fea-
ture performs very well in various applications, includ-
ing texture classification and segmentation [11], surface
analysis [12] and face recognition [13]. The original
LBP operator labels the pixels of an image by thresh-
olding the 3-by-3 neighbourhood of each pixel with
central pixel value and the result is taken as a binary
number [14]. The LBP operator was later extended
to LBPR,P [15], which probes P circularly symmetric
neighbouring samples on a circle of radius R, instead
of a local 3-by-3 neighbourhood. With larger sampling
radius and more neighbouring samples considered, the
operator is able to capture information from a larger
area. The differences the value of the center pixel and
its neighbouring values are encoded into a binary num-
ber. Formally,

LBPR,P =

P−1
∑

p=0

u(gp−gc)·2
p, u(x) =

{

1 if x ≥ 0
0 if x < 0

(1)
wheregc is the grey value of the center pixel,gp is the
grey value of the pth neighbour of the center pixel,P

is the number neighbours located on a circle of radius
R. For our pattern histogram we useLBPR,P operator
with the following parameters,R = 1 andP = 8. On
this circle, if a neighbour position does not exactly fit
with the center of the pixel, its grey value will be calcu-
lated by bilinear interpolation. The pattern histogram
is computed in the following way: we determine to all
pixels over the cell the binary numbers with the help
of LBPR,P operator. These binary numbers are taken
one after the other and on the same place located dig-
its are added together. This process gives us an 8-bin
histogram then it will be normalized.

4. The dominant color characteristics: There are many
different methods to obtain colour descriptors [16, 17,
18]. Our colour descriptor is calculated in the fol-
lowing way: after transforming the picture into HSV
colour space, we divide the region into four parts.
Then we calculate the median of the hue values in all
sectors. Our colour descriptor is scale-invariant and
shift-invariant with respect to light intensity.

Therefore the whole the descriptor is made up of four parts:

Di = [di0 | di1 | di2 | di3]. (2)

1. Vectordi0 is the edge descriptor in 30 degrees resolu-
tion that means 12 dimensions.

2. Vectordi1 is the entropy descriptor of the masked im-
age item, the number of the dimension is 8.

3. Vectordi2 is the pattern histogram, 8 dimensions.

4. Vectordi3 is the colour descriptor, 4 dimensions.

In summary the total number of dimension is 32. Previous
experience has shown that complex metrics are not useful in
comparing the histograms. Based on our experiments the Eu-
clidean distance is a good choice for similarity measure.

5. EXPERIMENTAL RESULTS

Based on the validated images the built tree locates 71 GBytes
in 1.420.277 files on the SSD (Solid-State Drive) for media
indices. The memory usage is about 1.5 GByte for the tree
structure. Index building procedure finished in 8.2 hours.

An additional database was built for translating media
identifiers to wikipage identifiers. This translation is neces-
sary to determine the valid URLs and titles for the result list
(table contains 1996158 records for the Hungarian pages).

To summarize our experiments, the LHI-tree retrieves NN
list with acceptable response time. Because of its RAM-based
nature the FLANN is slightly faster with the pure RAM ac-
cesses. The subjective evaluations of the results validatethe
usability of the index structure. In most cases the list of re-
trieved images is similar to the output of FLANN [19]. We
demonstrate the promising results shown on Figure 2. Our
precision and recall values are little less, but the first three or
four hits are usually the same. Among the first twenty hit in
the 93-98 % of the cases there are relevant images. We mea-
sured that the precision of the system is between 90-95 %. On
the other hand the average ratio of the irrelevant hits among
the first twenty hit is between 70 and 80 %. Consequently, the
recall of the system is between 20-30 %.

Table 2 summarizes the performance of retrieval engine.
Computational times depend on the number of region based
descriptors (marked with Count column in the table) to be sent
to the search engine. We compared the times of the retrievel
process with the values of FLANN. In Table 2 the times of
FLANN can be seen in parenthesis.

We compared the results with another systems and we ex-
perienced that our retrieval and run times were shorter, our
precision and recall values were slightly less [7].

The system with the current image descriptors is capable
of finding the most similar couple of images to a given exam-
ple. In its current state it is perfect for finding the source of
an image, for example finding the source of an image used in
an article, or finding the original of a family photo on a disc
by taking a snapshot of a printed version.

6. CONCLUSIONS AND FUTURE WORK

In this paper we proposed the LHI-tree, which is a disk-based
data structure for retrieving high-dimensional image descrip-
tors on large datasets. We introduced the region based image
descriptors in detail. Main goals of this indexing scheme are:
disk-based operation to reduce the RAM usage and neglect

Fig. 2. We compared the LHI-tree to FLANN. In most cases
the lists of images are similar.

Table 2. Computation times in retrieval process. The retrieval
process consists of three phases: feature extraction, similarity
search, ranking and translating IDs. In parenthesis there is the
value of FLANN.

Count Feature Similarity Ranking

extraction search and translating IDs

80 250 msec 434 msec (420 msec) 600 msec (590 msec)

250 780 msec 1425 msec (1400 msec) 1700 msec (1650 msec)

450 1400 msec 3150 msec (3025 msec) 1880 msec (1870 msec)

vector data representation and metric norms to achieve ap-
proximate NN search.

We showed that the proposed retrieval engine could
achieve acceptable speed for searching with very low mem-
ory and CPU loads. The test results were validated with
subjective comparison to results to FLANN.

The main advantage of our index is that the building speed
is not (or only slightly) dependent on the number of previ-
ously added elements and its querying time is not dependent
on the index size. However, its prerequisite is the availability
of some representative samples during initialization stage.

Our future work contains a better optimized image pro-
cessing module and a reduced size index structure.

7. REFERENCES

[1] P. Geetha and V. Narayanan, “A Survey of Content-Based
Video Retrieval”,Journal of Computer Science, vol. 4, pp.
474-486, 2008

[2] J.H. Friedman, J.L. Bentley and R.A. Finkel, “An algo-
rithm for finding best matches in logarithmic time”,ACM
Transactions on Mathematical Software, vol. 3, pp. 209-
226, 1977

[3] C. Silpa-Anan and R. Hartley, “Optimised KD-trees for
fast image descriptors matching”,IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1-8, 2008

[4] M. Muja and D.G. Lowe, “Fast approximate nearest
neighbors with automatic algorithm configuration”,In
VISAPP International Conference on Computer Vision
Theory and Applications, pp. 331-340, 2009

[5] P. Sarker and A.W. Moore, “Fast nearest-neighbor search
in disk-resident graphs”,Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pp. 513-522, 2010

[6] I. Lee, “Feedback for Distributed Content Based Image
Retrieval”, Proceedings of International Symposium on
Computer Network and Multimedia Technology, pp. 1-4,
2009

[7] H. Lejsek, F.H. Asmundsson, B.T. Jonsson and L. Am-
saleg, “NV-Tree: An Efficient Disk-Based Index for Ap-
proximate Search in Very Large High-Dimensional Col-
lections”, IEEE Trans. Pattern Analysis and Machine In-
telligence, vol. 31, pp. 869-883, 2009

[8] L. Havasi, M. Szabo, M. Pataki, D. Varga, T. Sziranyi and
L. Kovacs, “Search in WikiImages using mobile phone”,
Proceedings of 11th International Workshop on Content-
based Multimedia Indexing, pp. 219-222, 2013

[9] G. Amato and P. Savino, “Approximate similarity search
in metric spaces using inverted files”,Proceedings of the
3rd International Conference on Scalable Information Sys-
tems, pp. 1-10, 2008

[10] L. Fei-Fei, R. Fergus and P. Perona, “Learning gener-
ative visual models from few training examples: an in-
cremental Bayesian approach tested on 101 object cate-
gories”,Computer Vision and Image Understanding, vol.
106, pp. 59-70, 2007

[11] M. Topi, O. Timo, P. Matti and S. Maricor, “Robust tex-
ture classification by subsets of local binary patterns”,Pro-
ceedings of the 15th International Conference on Pattern
Recognition, pp. 935-938, 2000

[12] M. Pietikainen, “Image Analysis with Local Binary Pat-
terns”,Proceedings of the 14th Scandinavian Conference,
pp. 115-118, 2005

[13] T. Ahonen, A. Hadid and M. Pietikainen, “Face Recog-
nition with Local Binary Patterns”,Proceedings of the 8th
European Conference on Computer Vision, pp. 469-481,
2004

[14] T. Ojala, M. Pietikainen and T. Maenpaa, “Multiresolu-
tion gray-scale and rotation invariant texture classification
with local binary patterns”,IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 24, pp. 971-987, 2002

[15] M. Heikkila, M. Pietikainen and J. Heikkila, “A Texture-
based Method for Detecting Moving Objects”,IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 28,
pp. 657-662, 2006

[16] B.S. Manjunath, J.-R. Ohm, V.V. Vasudevan and A. Ya-
mada, “Color and Texture Descriptors”,IEEE Trans. Pat-
tern Analysis and Machine Intelligence, vol. 11, pp. 703-
715, 2001

[17] K.E.A. van de Sande, T. Gevers and C.G.M. Snoek,
“Evaluating Color Descriptors for Object and Scene
Recognition”,IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 32, pp. 1582-1596, 2010

[18] O.A.B. Penatti and R. da Silva Torres, “Color Descrip-
tors for Web Image Retrieval: A Comparative Study”,
SIBGRAPI ’08. XXI Brazilian Symposium on Computer
Graphics and Image Processing, pp. 163-170, 2008

[19] M. Muja and D. G. Lowe, “Fast Approximate Near-
est Neighbors with Automatic Algorithm Configuration”,
In VISAPP International Conference on Computer Vision
Theory and Applications, pp. 331-340, 2009

