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Introduction

Checkpointing is a simple technique for
rollback recovery.

User level

Transparent Sequential and incremental
checkpointing

User-Directed checkpointing
little information yield large improvements.



Transparent Checkpointing

Sequential Checkpointing

Not completely transparent :
change main() to ckpt_target()

Generates a timer interrupt, and take a
sequential checkpoint at each interrupt

.ckptrc file :
o checkpointing<on/off>

o dir <directory>
o Maxtime <sec>



Transparent Checkpointing

Incremental Checkpointing
Incremental <on/off>

old sequential checkpoint file can be deleted.
but incremental one can't.

Maxfiles <n>

use page protection to identify which pages
should be save.



Transparent Checkpointing

Forked Checkpointing
Main-memory checkpointing

Saving of the checkpoint to disk is
overlapped with application execution.

fork <on/off>
main-memaory or copy-on-write checkpointing



User-Directed Checkpointing

Memory exclusion
o Locations is dead
o Locations is clean

Heap variables and variables which reside in
statically allocated data segment don’t work.

exclude bytes (char xaddr, int size, inl usage)
include bytes (char *addr, int size)

Usage - CKPT_READONLY - CKPT_DEAD



User-Directed Checkpointing

Synchronous Checkpointing

specify points in the program where it Is most
advantageous for checkpoint

checkpoint_here()
mintime <sec>
asynchronous — maxtime
synchronous — mintime



‘ User-Directed Checkpointing

main () ckpt _target ()
{ i
struct data *D; struct data *D;
FILE *fi, *fo; FILE *fi, *fo;
D = allocate data set|(); D = allocate_data_set();
fi = fopen("input", "r"); fi = fopen("input", "r");
fo = fopen("cutput", "w"); fo = fopen("output”, "w"};
while(read data(fi, D) != -1} { while(read data(fi, D) != -1) {
perform calculation(D); perform calculation (D) ;
output_results(fo, D); output_results(fo, D);
1 exclude bytesz (D, =zizeof (struct data),
} CEPT DEAD) ;

checkpoint _here() ;
include bytes (D, sizeof (struct data))




The Mechanics of Checkpointing and

Recovery

Process creation :

0 auto restore text portion of the process’s state,
and begins execution.

Recovery routine :
0 process’s stack + data segments

System state restoration :
o Save the state of open files.

Processor state restoration
o Program counter - stack pointer



The Mechanics of Checkpointing and

Recovery

Save processor state — setimp()
Record the state of the open file table
Data state (program’s stack, data segment)



‘ Experiments and Results

= SUNnOS

Application Abbreviation || Language | Running Maximum Checkpoint
Time Checkpoint. Interval
(mm:ss) | Size (Mbytes) (min}
Matrix Multiplication MAT C 15:20 4.6 2
Linear Equation Solver SOLVE FORTRAN 13:42 4.6 2
Cellular Automata CELL C 17:39 8.4 2
Shallow Water Model WATER FORTRAN 25:54 13.1 3
Multicommodity Flow MCNF FORTRAN 18:38 24.3 6

Table 1: Description of application instances




Experiments and Results

Sequential Checkpointing
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Experiments and Results

Checkpointing with fork()
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‘ Experiments and Results
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Figure 6: Results of User-Directed Checkpointing on the SOLVE Application
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Figure 7: Results

of User-Directed Checkpointing on the CELL Application



Experiments and Results
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Figure §: Results of User-Directed Checkpointing on the MAT Application



Conclusion

Ease of use and low overhead

Future research : employ compiler analysis
to assist user-directed checkpointing
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