
Libckpt :
Transparent Checkpointing under Unix

James S. Plank, Micah Beck, Gerry Kingsley,
University of Tennessee ; Kai Li, Princeton University
Proceedings of the USENIX Winter 1995 Technical 
Conference

Presented by Shian-Tai Chiou
12/13/06



OUTLINE

Introduction
Transparent Checkpointing
User-Directed Checkpointing
The Mechanics of Checkpointing and 
Recovery
Experiments and Results
Conclusion



Introduction

Checkpointing is a simple technique for 
rollback recovery.
User level
Transparent Sequential and incremental 
checkpointing
User-Directed checkpointing
little information yield large improvements.



Transparent Checkpointing

Sequential Checkpointing
Not completely transparent ：
change main() to ckpt_target()
Generates a timer interrupt, and take a 
sequential checkpoint at each interrupt
.ckptrc file : 

checkpointing<on/off>
dir <directory>
Maxtime <sec>



Transparent Checkpointing

Incremental Checkpointing
incremental <on/off>
old sequential checkpoint file can be deleted.
but incremental one can’t. 
Maxfiles <n>
use page protection to identify which pages 
should be save. 



Transparent Checkpointing

Forked Checkpointing
Main-memory checkpointing
Saving of the checkpoint to disk is 
overlapped with application execution.
fork <on/off>
main-memory or copy-on-write checkpointing



User-Directed Checkpointing

Memory exclusion
Locations is dead
Locations is clean

Heap variables and variables which reside in 
statically allocated data segment don’t work.

Usage：CKPT_READONLY、CKPT_DEAD



User-Directed Checkpointing

Synchronous Checkpointing
specify points in the program where it is most 
advantageous for checkpoint
checkpoint_here()
mintime <sec>
asynchronous – maxtime
synchronous – mintime



User-Directed Checkpointing



The Mechanics of Checkpointing and 
Recovery

Process creation：
auto restore text portion of the process’s state, 
and begins execution.

Recovery routine：
process’s stack + data segments

System state restoration：
Save the state of open files.

Processor state restoration：
Program counter、stack pointer



The Mechanics of Checkpointing and 
Recovery

Save processor state – setjmp()
Record the state of the open file table
Data state (program’s stack, data segment)



Experiments and Results

SunOS



Experiments and Results

Sequential Checkpointing



Experiments and Results

Checkpointing with fork()



Experiments and Results

Incremental Checkpointing



Experiments and Results



Experiments and Results



Conclusion

Ease of use and low overhead

Future research ：employ compiler analysis 
to assist user-directed checkpointing


	Libckpt :�Transparent Checkpointing under Unix
	OUTLINE
	Introduction
	Transparent Checkpointing
	Transparent Checkpointing
	Transparent Checkpointing
	User-Directed Checkpointing
	User-Directed Checkpointing
	User-Directed Checkpointing
	The Mechanics of Checkpointing and Recovery
	The Mechanics of Checkpointing and Recovery
	Experiments and Results
	Experiments and Results
	Experiments and Results
	Experiments and Results
	Experiments and Results
	Experiments and Results
	Conclusion

