Libckpt :

Transparent Checkpointing under Unix

James S. Plank, Micah Beck, Gerry Kingsley,

University of Tennessee ; Kai Li, Princeton University

Proceedings of the USENIX Winter 1995 Technical
Conference

Presented by Shian-Tai Chiou
12/13/06

OUTLINE

Introduction
Transparent Checkpointing
User-Directed Checkpointing

The Mechanics of Checkpointing and
Recovery

Experiments and Results
Conclusion

Introduction

Checkpointing is a simple technique for
rollback recovery.

User level

Transparent Sequential and incremental
checkpointing

User-Directed checkpointing
little information yield large improvements.

Transparent Checkpointing

Sequential Checkpointing

Not completely transparent :
change main() to ckpt_target()

Generates a timer interrupt, and take a
sequential checkpoint at each interrupt

.ckptrc file :
o checkpointing<on/off>

o dir <directory>
o Maxtime <sec>

Transparent Checkpointing

Incremental Checkpointing
Incremental <on/off>

old sequential checkpoint file can be deleted.
but incremental one can't.

Maxfiles <n>

use page protection to identify which pages
should be save.

Transparent Checkpointing

Forked Checkpointing
Main-memory checkpointing

Saving of the checkpoint to disk is
overlapped with application execution.

fork <on/off>
main-memaory or copy-on-write checkpointing

User-Directed Checkpointing

Memory exclusion
o Locations is dead
o Locations is clean

Heap variables and variables which reside in
statically allocated data segment don’t work.

exclude bytes (char xaddr, int size, inl usage)
include bytes (char *addr, int size)

Usage - CKPT_READONLY - CKPT_DEAD

User-Directed Checkpointing

Synchronous Checkpointing

specify points in the program where it Is most
advantageous for checkpoint

checkpoint_here()
mintime <sec>
asynchronous — maxtime
synchronous — mintime

‘ User-Directed Checkpointing

main () ckpt _target ()
{ i
struct data *D; struct data *D;
FILE *fi, *fo; FILE *fi, *fo;
D = allocate data set|(); D = allocate_data_set();
fi = fopen("input", "r"); fi = fopen("input", "r");
fo = fopen("cutput", "w"); fo = fopen("output”, "w"};
while(read data(fi, D) != -1} { while(read data(fi, D) != -1) {
perform calculation(D); perform calculation (D) ;
output_results(fo, D); output_results(fo, D);
1 exclude bytesz (D, =zizeof (struct data),
} CEPT DEAD) ;

checkpoint _here() ;
include bytes (D, sizeof (struct data))

The Mechanics of Checkpointing and

Recovery

Process creation :

0 auto restore text portion of the process’s state,
and begins execution.

Recovery routine :
0 process’s stack + data segments

System state restoration :
o Save the state of open files.

Processor state restoration
o Program counter - stack pointer

The Mechanics of Checkpointing and

Recovery

Save processor state — setimp()
Record the state of the open file table
Data state (program’s stack, data segment)

‘ Experiments and Results

= SUNnOS

Application Abbreviation || Language | Running Maximum Checkpoint
Time Checkpoint. Interval
(mm:ss) | Size (Mbytes) (min}
Matrix Multiplication MAT C 15:20 4.6 2
Linear Equation Solver SOLVE FORTRAN 13:42 4.6 2
Cellular Automata CELL C 17:39 8.4 2
Shallow Water Model WATER FORTRAN 25:54 13.1 3
Multicommodity Flow MCNF FORTRAN 18:38 24.3 6

Table 1: Description of application instances

Experiments and Results

Sequential Checkpointing

150
100
50 N

++

0 1+
I 1 I 1 | I 1 I 1 | I 1 I I | I 1 1 I | I I 1 1 |
0 3 10 15 20 23

Checkpoint Size (Mbyvtes)

Checkpoint Time
and Overhead (sec)
+

Experiments and Results

Checkpointing with fork()

Y% Reduction
In Checkpoint Overhead

100 —

30 —_$

60 —

40 4

20 —

0
0

3 10 15 20
Checkpoint Size (Mbyvtes)

‘ Experiments and Results

— MCNF

— WATER

— CELL

— SOLVE

— MAT

__
g

-20

L L B B
8 8% 8 °
PEINYIIA0

JutodyRayd ur
UOTIINPAI ISLIUININJ

— MCNF
— WATER
— CELL
— SOLVE

— MAT

= Incremental Checkpointing

__
E

[T
2388 °8

IZ1S
JutodyRayd ur
UOTIINPAI ISLIUININJ

Experiments

N

and Results

= > =]
o 4 - I 150 -
wn — = o o 3
- = = N EE Cequential
s = 3 2= 1003 @ [ncremental
= 2 Z g 1007 5
2& 2 = . =3 Sequential with fork()
- =] 1 T -
E; = { 52 50 E —— Incremental with fork()
& C N
~ 0 —_— 0 -
No User User No User User
Directives Directives Directives Directives
Figure 6: Results of User-Directed Checkpointing on the SOLVE Application
& 7 _ 400
i 8 -
wo_ - = @) .
-7 64 = =2 300 EE. Sequential
= § 2F , 00 @ [ncremental
;% = 4 — E = 7 === Sequential with fork()
o | = = . ; 1-
11 ~ o S 100 1 Incremental with fork()
5 : S
e’
0 - 0
No Uszer User No User User
Directives Directives Directives Directives

Figure 7: Results

of User-Directed Checkpointing on the CELL Application

Experiments and Results

. 5 2!
' —
7 _ 4 $ 200
) £ = W ! - .
- B g‘) . Ccquential
-)
=z 3 2F 130 Incremental
I E 2 E _,E 100 =1 Sequential with fork()
ot = — Incremental with fork
21 SE 0
® — W e__
0 0
No User User No User Uszer
Directives Directives Directives Directives

Figure §: Results of User-Directed Checkpointing on the MAT Application

Conclusion

Ease of use and low overhead

Future research : employ compiler analysis
to assist user-directed checkpointing

	Libckpt :�Transparent Checkpointing under Unix
	OUTLINE
	Introduction
	Transparent Checkpointing
	Transparent Checkpointing
	Transparent Checkpointing
	User-Directed Checkpointing
	User-Directed Checkpointing
	User-Directed Checkpointing
	The Mechanics of Checkpointing and Recovery
	The Mechanics of Checkpointing and Recovery
	Experiments and Results
	Experiments and Results
	Experiments and Results
	Experiments and Results
	Experiments and Results
	Experiments and Results
	Conclusion

