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Abstract. We show that if α > 1, then the logarithmically weighted Bergman space A2logα

is mapped by the Libera operator L into the space A2
logα−1 , while if α > 2 and 0 < ε 6 α−2,

then the Hilbert matrix operator H maps A2logα into A
2
logα−2−ε .

We show that the Libera operator L maps the logarithmically weighted Bloch space
Blogα , α ∈ R, into itself, while H maps Blogα into Blogα+1 .

In Pavlović’s paper (2016) it is shown that L maps the logarithmically weighted Hardy-
Bloch space B1logα , α > 0, into B

1
logα−1 . We show that this result is sharp. We also show

that H maps B1logα , α > 0, into B1
logα−1 and that this result is sharp also.

Keywords: Libera operator; Hilbert matrix operator; Hardy space; Bergman space; Bloch
space; Hardy-Bloch space

MSC 2010 : 47B38, 47G10, 30H25

1. Introduction

We consider the action of the Libera and Hilbert matrix operators on logarithmi-

cally weighted Bergman, Bloch and Hardy-Bloch spaces.

We show that if α > 1, then the logarithmically weighted Bergman space A2
logα

is mapped by the Libera operator L into the space A2
logα−1 . In [4] it is shown that

if f ∈ A2
logα , where α > 3, then Hf ∈ A2. Here H is the Hilbert matrix operator.

Also, in [1] it is shown that H : A2
logα → A2 for α > 2. We improve this result by

showing that if α > 2 and 0 < ε 6 α− 2, then H is well defined on A2
logα and maps

this space into A2
logα−2−ε .
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We show that the Libera operator L maps the logarithmically weighted Bloch

space Blogα , α ∈ R, into itself, while H maps Blogα into Blogα+1 .

In [8] it is shown that L maps the logarithmically weighted Hardy-Bloch space

B1
logα , α > 0, into B1

logα−1 . We note that this result is sharp. Our main results are

given in Theorem 5.3. Among other things, we show that H maps B1
logα , α > 0, into

B1
logα−1 and that this result is sharp.

The definitions of logarithmically weighted Bergman, Bloch and Hardy-Bloch

spaces will be given in Sections 3, 4 and 5, respectively.

For 0 < p 6 ∞, Hardy space Hp is the space of all functions f holomorphic in the

unit disk D = {z ∈ C : |z| < 1} for which

‖f‖Hp = ‖f‖p = sup
06r<1

Mp(r, f) < ∞,

where

Mp(r, f) =

(
1

2π

∫ 2π

0

∣∣f(reit)
∣∣p dt

)1/p
if 0 < p < ∞,

and

M∞(r, f) = sup
06t<2π

|f(reit)|.

The Lebesgue measure on D will be denoted by A and will be normalized so as to

have A(D) = 1. That is,

dA(z) =
1

π

dxdy =
1

π

r dr dt, where z = x+ iy = reit.

The Bergman space Ap, 0 < p < ∞, is the space of holomorphic functions in

Lp(D, dA), that is,

Ap =

{
f ∈ H(D) : ‖f‖pAp =

∫

D

|f(z)|p dA(z) < ∞

}
.

A function f holomorphic in the unit disk D belongs to the Hardy-Bloch space

Bp,q
0 , 0 < p 6 ∞, 0 < q 6 ∞ (notation from [7]) if

∫ 1

0

M q
p (r, f

′)(1− r)q−1 dr < ∞ for 0 < q < ∞,

and

sup
06r<1

(1− r)Mp(r, f
′) < ∞ for q = ∞.

Let H(D) denote the space of all functions holomorphic in the unit disk D of

the complex plane endowed with the topology of uniform convergence on compact
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subsets of D. The dual of H(D) is equal to H(D), where g ∈ H(D) means that g is

holomorphic in a neighborhood of D (depending on g). The duality pairing is given

by

〈f, g〉 =

∞∑

n=0

f̂(n)ĝ(n),

where f(z) =
∞∑

n=0
f̂(n)zn ∈ H(D) and g(z) =

∞∑
n=0

ĝ(n)zn ∈ H(D).

It is easy to see that the Libera operator defined by

Lg(z) =

∞∑

n=0

( ∞∑

k=n

ĝ(k)

k + 1

)
zn =

∫ 1

0

g(t+ (1− t)z) dt,

g(z) =
∞∑

n=0

ĝ(n)zn ∈ H(D)

maps H(D) into H(D).

We denote by L the operator

Lg(z) =

∫ 1

0

g(t+ (1 − t)z) dt,

g(z) =

∞∑

n=0

ĝ(n)zn ∈ H(D),

whenever the integral converges uniformly on compact subsets of D. Uniform con-

vergence means that the limit

lim
r→1−

∫ r

0

g(t+ (1 − t)z) dt

is uniform with respect to z in any compact subset of D. This hypothesis guarantees

that Lg is a holomorphic function in D. We call L also the Libera operator since

L = L on H(D).

The Hilbert matrix is an infinite matrix H = [hn,k]
∞
n,k=0 whose entries are hn,k =

1/(n+ k + 1) for all nonnegative integers n and k. It can be viewed as an operator

on spaces of holomorphic functions by its action on their Taylor coefficients. If

f(z) =

∞∑

n=0

f̂(n)zn

is a holomorphic function in the unit disk D, then we define the transformation H

by

Hf(z) =
∞∑

n=0

∞∑

k=0

hn,kf̂(k)z
n =

∞∑

n=0

∞∑

k=0

f̂(k)

n+ k + 1
zn.
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It is possible to write Hf , f ∈ Hp, 1 6 p 6 ∞, in an integral form, which is quite

convenient for analyzing the operator. More specifically, by looking at the Taylor

series expansion of the function f , we have the following integral representation:

Hf(z) =

∫ 1

0

f(t)

1− tz
dt.

It is well known that the Libera operator L acts as a bounded operator from Hp

into Hp if and only if 1 < p 6 ∞ and that L acts as a bounded operator from Ap

into Ap if and only if 2 < p < ∞ (see [2], [6]). On the other hand, it is well known

that the Hilbert matrix operator H acts as a bounded operator from Hp into Hp

if and only if 1 < p < ∞ and that H acts as a bounded operator from Ap into Ap if

and only if 2 < p < ∞ (see [3]).

2. Some preliminary results

In this section we shall collect some results which will be needed in our work. We

start with one useful result.

Sublemma 2.1. Let α ∈ R and a > 2. Then

∫ ∞

log a

tαe−t dt 6 Cα
logα a

a
,

where Cα is a constant independent of a.

P r o o f. (1) Case α 6 0.

∫ ∞

log a

tαe−t dt 6 logα a

∫ ∞

log a

e−t dt =
logα a

a
.

(2) Case α > 0. In this case, partial integration gives

∫ ∞

log a

tαe−t dt =
logα a

a
+ α

∫ ∞

log a

tα−1e−t dt

=
logα a

a
+ α

logα−1 a

a
+ α(α− 1)

∫ ∞

log a

tα−2e−t dt

6 Cα
logα a

a
+ α(α − 1)

∫ ∞

log a

tα−2e−t dt.
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Continuing on this way, we find that
∫ ∞

log a

tαe−t dt 6 Cα
logα a

a
+ α(α − 1) . . . (α− ⌊α⌋)

∫ ∞

log a

tα−⌊α⌋−1e−t dt

6 Cα
logα a

a
+ α(α − 1) . . . (α− ⌊α⌋)

logα−⌊α⌋−1 a

a

6 Cα
logα a

a
,

where ⌊α⌋ is the largest integer less then or equal to α. �

Consequently, we get the following result.

Lemma 2.2. Let α ∈ R and let n be a nonnegative integer. Then

∫ 1

0

rn logα
2

1− r
dr ≍

logα(n+ 2)

n+ 1
,

where the corresponding constant is independent of n, i.e., there is a constant Cα

independent of n such that

1

Cα

logα(n+ 2)

n+ 1
6

∫ 1

0

rn logα
2

1− r
dr 6 Cα

logα(n+ 2)

n+ 1
.

P r o o f. (1) Case α > 0. First, we find that

∫ 1

0

rn logα
2

1− r
dr >

∫ 1

1−1/(n+1)

rn logα
2

1− r
dr

> logα(n+ 2)

∫ 1

1−1/(n+1)

rn dr

=
logα(n+ 2)

n+ 1

(
1−

(
1−

1

n+ 1

)n+1)

> C
logα(n+ 2)

n+ 1
.

On the other hand, by using Sublemma 2.1, we have that

∫ 1

1−1/(n+1)

rn logα
2

1− r
dr 6

∫ 1

1−1/(n+1)

logα
2

1− r
dr

= 2

∫ ∞

log(2n+2)

tαe−t dt

6 2

∫ ∞

log(n+2)

tαe−t dt

6 Cα
logα(n+ 2)

n+ 1
,
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and

∫ 1−1/(n+1)

0

rn logα
2

1− r
dr 6 Cα logα(n+ 2)

∫ 1−1/(n+1)

0

rn dr

= Cα
logα(n+ 2)

n+ 1

(
1−

1

n+ 1

)n+1

6 Cα
logα(n+ 2)

n+ 1
.

Therefore, ∫ 1

0

rn logα
2

1− r
dr 6 Cα

logα(n+ 2)

n+ 1
.

(2) Case α < 0. Let ϕ(r) = r logα(2/r), 0 < r 6 1. Then ϕ is a nonnegative,

increasing function on the interval (0, 1] and

t1−2αϕ(r) 6 ϕ(tr) 6 tϕ(r)

for all 0 < t < 1. By using Lemma 4.1 in [5], we find that

∫ 1

0

rn
ϕ(1− r)

1− r
dr ≍ ϕ

( 1

n+ 1

)
.

Hence, ∫ 1

0

rn logα
2

1− r
dr ≍

logα(n+ 2)

n+ 1
.

�

The following auxiliary result will be useful.

Theorem 2.3. (a) For every real α, the Taylor coefficients F̂ (n) of the function

F (z) =
1

1− z
logα

2

1− z

have the property

F̂ (n) ≍ logα(n+ 2),

where the corresponding constant is independent of n.

(b) For every real α, the Taylor coefficients Ĝ(n) of the function

G(z) = logα
2

1− z

have the property

Ĝ(n) ≍
logα−1(n+ 2)

n+ 1
,

where the corresponding constant is independent of n.
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This theorem is a consequence of Theorem 2.31 on page 192 of the classical mono-

graph [10], hence we omit its proof. Now, we are ready to prove our next result.

Lemma 2.4. Let α ∈ R and let k be a nonnegative integer. Then

∞∑

n=0

logα(n+ 2)

(n+ 1)(n+ k + 1)
≍

logα+1(k + 2)

k + 1
,

where the corresponding constant is independent of k, i.e., there is a constant Cα

independent of k such that

1

Cα

logα+1(k + 2)

k + 1
6

∞∑

n=0

logα(n+ 2)

(n+ 1)(n+ k + 1)
6 Cα

logα+1(k + 2)

k + 1
.

P r o o f. By using Lemma 2.2 and Theorem 2.3 (b), we find that

logα+1(k + 2)

k + 1
≍

∫ 1

0

rk logα+1 2

1− r
dr

≍

∫ 1

0

rk
∞∑

n=0

logα(n+ 2)

n+ 1
rn dr

=

∞∑

n=0

logα(n+ 2)

n+ 1

∫ 1

0

rn+k dr

=
∞∑

n=0

logα(n+ 2)

(n+ 1)(n+ k + 1)
,

where the corresponding constant is independent of k. �

3. Libera and Hilbert matrix operator on

logarithmically weighted Bergman spaces

For α ∈ R we define the logarithmically weighted Bergman spaces A2
logα as follows:

A2
logα =

{
f ∈ H(D) : ‖f‖2A2

logα
=

∫

D

|f(z)|2 logα
2

1− |z|2
dA(z) < ∞

}
.

Note that A2
logα ⊂ A2 for α > 0 and A2

log0 = A2.

Let f(z) =
∞∑
n=0

f̂(n)zn ∈ A2
logα . By using Parseval’s formula and Lemma 2.2, we

find that

‖f‖2A2
logα

=

∞∑

n=0

|f̂(n)|2
∫ 1

0

rn logα
2

1− r
dr ≍

∞∑

n=0

|f̂(n)|2
logα(n+ 2)

n+ 1
,
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where the corresponding constant is independent of function f , i.e., there is a con-

stant C independent of function f such that

1

C
‖f‖2A2

logα
6

∞∑

n=0

|f̂(n)|2
logα(n+ 2)

n+ 1
6 C‖f‖2A2

logα
.

3.1. Libera operator on logarithmically weighted Bergman spaces. Our

next result describes the action of the Libera operator L on the logarithmically

weighted Bergman space A2
logα for α > 1.

Theorem 3.1. If α > 1, then the operator L is well defined on A2
logα and maps

this space into A2
logα−1 .

P r o o f. Let f(z) =
∞∑
n=0

f̂(n)zn ∈ A2
logα . Then, by using the Cauchy-Schwarz

inequality, we find that

∞∑

n=0

|f̂(n)|

n+ 1
6

( ∞∑

n=0

|f̂(n)|2
logα(n+ 2)

n+ 1

)1/2( ∞∑

n=0

1

(n+ 1) logα(n+ 2)

)1/2
< ∞,

because α > 1. From this, we get that if f(z) =
∞∑
n=0

f̂(n)zn ∈ A2
logα , then

∞∑
n=0

|f̂(n)| ×

(n+1)−1 < ∞. Hence, the operator L is well defined on A2
logα . Using inequality (59)

from [6], we find that

rM2
2 (r,Lf) 6 C(1− r)−1

∫ 1

r

M2
2 (s, f) ds

for all 0 6 r < 1. Therefore,

∫

D

|Lf(z)|2 logα−1 2

1− |z|2
dA(z) = 2

∫ 1

0

rM2
2 (r,Lf) log

α−1 2

1− r2
dr

6 C

∫ 1

0

1

1− r

∫ 1

r

M2
2 (s, f) ds log

α−1 2

1− r2
dr

= C

∫ 1

0

M2
2 (s, f)

∫ s

0

1

1− r
logα−1 2

1− r2
dr ds

6 C

∫ 1

0

M2
2 (s, f)

∫ s

0

1

1− r
logα−1 2

1− r
dr ds

= C

∫ 1

0

M2
2 (s, f)

(
logα

2

1− s
− logα 2

)
ds

6 C

∫ 1

0

M2
2 (s, f) log

α 2

1− s
ds
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= C

∫ 1

0

uM2
2 (u

2, f) logα
2

1− u2
du

6 C

∫ 1

0

uM2
2 (u, f) log

α 2

1− u2
du

= C

∫

D

|f(z)|2 logα
2

1− |z|2
dA(z) < ∞.

Hence, Lf ∈ A2
logα−1 . �

3.2. Hilbert matrix operator on logarithmically weighted Bergman

spaces. In [4] it is shown that if f ∈ A2
logα , where α > 3, then Hf ∈ A2. Also, in [1]

it is shown that H : A2
logα → A2 for α > 2. Our next theorem improves this result.

Theorem 3.2. If α > 2 and 0 < ε 6 α− 2, then H is well defined on A2
logα and

maps this space into A2
logα−2−ε .

P r o o f. For α > 2, we have that if f(z) =
∞∑

n=0
f̂(n)zn ∈ A2

logα , then we get

∞∑
n=0

|f̂(n)|/(n+ 1) < ∞. Therefore, the operator H is well defined on A2
logα . On

the other hand, if f(z) =
∞∑

n=0
f̂(n)zn ∈ A2

logα , then by using the Cauchy-Schwarz

inequality and Lemma 2.4, we find that

‖Hf‖2A2

logα−2−ε
≍

∞∑

n=0

|Ĥf(n)|2
logα−2−ε(n+ 2)

n+ 1

=

∞∑

n=0

∣∣∣∣
∞∑

k=0

f̂(k)

n+ k + 1

∣∣∣∣
2
logα−2−ε(n+ 2)

n+ 1

6

∞∑

n=0

∞∑

k=0

|f̂(k)|2 logα(k + 2)

n+ k + 1

×

∞∑

k=0

1

(n+ k + 1) logα(k + 2)

logα−2−ε(n+ 2)

n+ 1

6

∞∑

k=0

|f̂(k)|2
logα(k + 2)

k + 1

∞∑

k=0

1

logα(k + 2)

∞∑

n=0

logα−2−ε(n+ 2)

(n+ 1)(n+ k + 1)

6 C‖f‖2A2
logα

∞∑

k=0

1

logα(k + 2)

logα−1−ε(k + 2)

k + 1

= C‖f‖2A2
logα

∞∑

k=0

1

(k + 1) log1+ε(k + 2)
< ∞.

Therefore, Hf ∈ A2
logα−2−ε . �
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We note that for α ∈ (1, 2] the operatorH is well defined on A2
logα . We do not know

whether Theorem 3.2 holds in this case. A natural question is: Does Theorem 3.2

hold for ε = 0?

4. Libera and Hilbert matrix operator on

logarithmically weighted Bloch spaces

For α ∈ R we define the logarithmically weighted Bloch spaces Blogα as follows,

Blogα =
{
f ∈ H(D) : |f ′(z)|(1− |z|) = O

(
logα

2

1− |z|

)}
.

The norm in the space Blogα is defined by

‖f‖Blogα
= |f(0)|+ sup

z∈D

|f ′(z)|(1− |z|) log−α 2

1− |z|
.

Note that Blog0 is the Bloch space B
∞,∞
0 = B.

4.1. Libera operator on logarithmically weighted Bloch spaces. Now, we

have the following theorem.

Theorem 4.1. Let α ∈ R. Then L is well defined on Blogα and maps this space

into Blogα .

P r o o f. By Theorem 2.1 (a) in [8], we have that if f(z) =
∞∑

n=0
f̂(n)zn ∈ Blogα ,

then
∞∑

n=0
|f̂(n)|/(n+ 1) < ∞. Therefore, the Libera operator L is well defined on

Blogα .

By using Lemma 22 from [6], for ν = 1 and p = ∞, we find that

M∞(r, (Lf)′) 6 (1 − r)−2

∫ 1

r

(1− s)M∞(s, f ′) ds

for all 0 6 r < 1. Then, by using Sublemma 2.1, we have that

(1− r)M∞(r, (Lf)′) 6
1

1− r

∫ 1

r

(1− s)M∞(s, f ′) ds

6 C
1

1− r

∫ 1

r

logα
2

1− s
ds

= C
1

1− r

∫ ∞

log(2/(1−r))

tαe−t dt

6 C logα
2

1− r
.

Hence, we obtain Lf ∈ Blogα . �

568



4.2. Hilbert matrix operator on logarithmically weighted Bloch spaces.

Our next result describes the action of the Hilbert matrix operator H on the log-

aritmically weighted Bloch space Blogα for α ∈ R. We improve results given in

Proposition 5.1 and Proposition 5.2 in [4].

Theorem 4.2. Let α ∈ R. Then H is well defined on Blogα and maps this space

into Blogα+1 .

P r o o f. By Theorem 2.1 (a) in [8], we have that if f(z) =
∞∑

n=0
f̂(n)zn ∈ Blogα ,

then
∞∑
n=0

|f̂(n)|/(n+ 1) < ∞. Hence, the Hilbert matrix operator H is well defined

on Blogα .

Now, let f ∈ Blogα , where without loss of generality, we can additionally assume

that f(0) = 0. Then, by Lemma 4.2.8 in [9], we can write

f(z) =

∫

D

f ′(w)(1 − |w|2)

w(1 − wz)2
dA(w),

for all z ∈ D. Also, we have that

∫

D

zk|z|2n

1− z
dA(z) =

1

n+ k + 1
,

for all nonnegative integers n and k. Therefore,

∫

D

f(z)
|z|2n

1− z
dA(z) =

∞∑

k=0

f̂(k)

n+ k + 1
= Ĥf(n).

Consequently,

|Ĥf(n)| =

∣∣∣∣
∫

D

f(z)
|z|2n

1− z
dA(z)

∣∣∣∣

=

∣∣∣∣
∫

D

f ′(w)(1 − |w|2)

w

∫

D

|z|2n

(1− wz)2(1− z)
dA(z) dA(w)

∣∣∣∣

=
1

π

∣∣∣∣
∫

D

f ′(w)(1 − |w|2)

w

∫ 1

0

r2n+1

∫ 2π

0

1

(1− wreiθ)2(1− re−iθ)
dθ dr dA(w)

∣∣∣∣

=
1

π

∣∣∣∣
∫

D

f ′(w)(1 − |w|2)

w

∫ 1

0

r2n+1 2π

(1− r2w)2
dr dA(w)

∣∣∣∣

6 C

∫

D

|f ′(w)|(1 − |w|)

|w|

∫ 1

0

r2n+1

|1− r2w|2
dr dA(w)

6 C

∫

D

logα 2
1−|w|

|w|

∫ 1

0

r2n+1

|1− r2w|2
dr dA(w)
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= C

∫ 1

0

r2n+1

∫

D

logα 2
1−|w|

|w||1 − r2w|2
dA(w) dr

= C

∫ 1

0

r2n+1

∫ 1

0

logα
2

1− ̺

∫ 2π

0

1

|1− r2̺eiθ|2
dθ d̺ dr

6 C

∫ 1

0

r2n+1

∫ 1

0

1

1− r2̺
logα

2

1− ̺
d̺ dr

= C

∫ 1

0

logα
2

1− ̺

∫ 1

0

rn

1− r̺
dr d̺.

On the other hand, we find that

∫ 1

0

rn

1− r̺
dr =

∞∑

k=0

̺k

n+ k + 1
.

Hence, by using Lemma 2.2 and Lemma 2.4, we obtain

|Ĥf(n)| 6 C

∞∑

k=0

1

n+ k + 1

∫ 1

0

̺k logα
2

1− ̺
d̺

6 C
∞∑

k=0

logα(k + 2)

(k + 1)(n+ k + 1)

6 C
logα+1(n+ 2)

n+ 1
.

Therefore,

|(Hf)′(z)| =

∣∣∣∣
∞∑

n=1

nĤf(n)zn−1

∣∣∣∣

6

∞∑

n=1

n|Ĥf(n)||z|n−1

6 C

∞∑

n=1

n

n+ 1
logα+1(n+ 2)|z|n−1

6 C

∞∑

n=0

logα+1(n+ 3)|z|n

6 C

∞∑

n=0

logα+1(n+ 2)|z|n.

By using Theorem 2.3 (a), we find that

1

1− |z|
logα+1 2

1− |z|
≍

∞∑

n=0

logα+1(n+ 2)|z|n.
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Finally,

|(Hf)′(z)| 6 C

∞∑

n=0

logα+1(n+ 2)|z|n

6 C
1

1− |z|
logα+1 2

1− |z|
.

Hence, Hf ∈ Blogα+1 . �

5. Libera and Hilbert matrix operator on

logarithmically weighted Hardy-Bloch spaces

For α ∈ R we define the logarithmically weighted Hardy-Bloch spaces B1
logα in the

following way:

B1
logα =

{
f ∈ H(D) : ‖f‖B1

logα
= |f(0)|+

∫

D

|f ′(z)| logα
2

1− |z|
dA(z) < ∞

}
.

For α = 0, B1
log0 is the Hardy-Bloch space B1,1

0 (notation from [7]). We note

that if α > 0, then B1
logα ⊆ B1,1

0 ⊆ H1 and if f(z) =
∞∑
n=0

f̂(n)zn ∈ H1, then

∞∑
n=0

|f̂(n)|/(n+ 1) < ∞.

5.1. Libera operator on logarithmically weighted Hardy-Bloch spaces.

Action of the Libera operator on the logarithmically weighted Hardy-Bloch spaces

has been considered in [8] and the following two theorems are proved.

Theorem 5.1 ([8]). Let α > −1 and let f(z) =
∞∑
n=0

f̂(n)zn ∈ H(D), where

f̂(n) ↓ 0 as n → ∞. Then

f ∈ B1
logα if and only if

∞∑

n=0

f̂(n)
logα(n+ 2)

n+ 1
< ∞.

Moreover, there is a constant C independent of the function f , such that

1

C
‖f‖B1

logα
6

∞∑

n=0

f̂(n)
logα(n+ 2)

n+ 1
6 C‖f‖B1

logα
.
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Theorem 5.2 ([8]). Let α > 0.

(a) Then L is well defined on B1
logα and maps this space into B1

logα−1 .

(b) If f(z) =
∞∑
n=0

f̂(n)zn, where f̂(n) ↓ 0 as n → ∞ and
∞∑

n=0

f̂(n)/(n+ 1) < ∞,

then Lf ∈ B1
logα−1 implies f ∈ B1

logα .

(c) If α < 0, then L cannot be extended to a continuous operator from B1
logα to

H(D).

For (a) see Theorem 2.3 in [8]. Item (b) follows from Theorem 1.1 and Theorem 1.2

in [8]. For (c) see Theorem 2.1 (c) in [8].

5.2. Hilbert matrix operator on logarithmically weighted Hardy-Bloch

spaces. Now we are ready to state the main theorem of this section.

Theorem 5.3. Let α > 0.

(a) Then H is well defined on B1
logα and maps this space into B

1
logα−1 .

(b) If f(z) =
∞∑
n=0

f̂(n)zn, where f̂(n) ↓ 0 as n → ∞ and
∞∑

n=0
f̂(n)/(n+ 1) < ∞,

then Hf ∈ B1
logα−1 implies f ∈ B1

logα .

(c) The result in (a) is sharp in the sense that for any ε > 0 there exists f ∈ B1
logα

such that Hf /∈ B1
logα−1+ε .

(d) If α < 0, then H cannot be extended to a continuous operator from B1
logα to

H(D).

P r o o f. (a) By Theorem 2.1 (b) in [8], we have that if f(z) =
∞∑
n=0

f̂(n)zn ∈ B1
logα ,

then
∞∑

n=0
|f̂(n)|/(n+ 1) < ∞. Therefore, the operator H is well defined on B1

logα .

Now, let f ∈ B1
logα , where without loss of generality, we can additionally assume

that f(0) = 0. Then, by Lemma 4.2.8 in [9], we have

f(z) =

∫

D

f ′(w)(1 − |w|2)

w(1 − wz)2
dA(w),

for all z ∈ D. Let S =
∫
D
|(Hf)′(z)| logα−1(2/(1− |z|)) dA(z). Then, by using the

integral representation of the Hilbert matrix operator Hf(z) =
∫ 1

0
(f(t)/(1− tz)) dt,
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we find that

S 6

∫

D

∫ 1

0

|f(t)|

|1− tz|2
logα−1 2

1− |z|
dt dA(z)

=

∫

D

∫ 1

0

1

|1− tz|2

∣∣∣∣
∫

D

f ′(w)(1 − |w|2)

w(1− wt)2
dA(w)

∣∣∣∣ log
α−1 2

1− |z|
dt dA(z)

6 C

∫

D

|f ′(w)|(1 − |w|)

|w|

∫

D

logα−1 2

1− |z|

∫ 1

0

dt

|1− tz|2|1− tw|2
dA(z) dA(w)

6 C

∫

D

|f ′(w)|(1 − |w|)

|w|

∫

D

1

|1− zw|3
logα−1 2

1− |z|
dA(z) dA(w)

6 C

∫

D

|f ′(w)|

|w|

∫

D

1

|1− zw|2
logα−1 2

1− |z|
dA(z) dA(w)

6 C

∫

D

|f ′(w)|

|w|

∫ 1

0

∫ 2π

0

dθ

|1− reiθw|2
logα−1 2

1− r
dr dA(w)

6 C

∫

D

|f ′(w)|

|w|

∫ 1

0

1

1− r|w|
logα−1 2

1− r
dr dA(w).

On the other hand, by using Lemma 2.2 and Theorem 2.3 (b), we have that

∫ 1

0

1

1− r|w|
logα−1 2

1− r
dr =

∞∑

n=0

|w|n
∫ 1

0

rn logα−1 2

1− r
dr

≍

∞∑

n=0

logα−1(n+ 2)

n+ 1
|w|n

≍ logα
2

1− |w|
.

Consequently,

S 6 C

∫

D

|f ′(w)|

|w|
logα

2

1− |w|
dA(w)

6 C

∫

D

|f ′(w)| logα
2

1− |w|
dA(w)

< ∞

and we get that Hf ∈ B1
logα−1 .

(b) We have Hf(z) =
∞∑
n=0

Ĥf(n)zn, where Ĥf(n) =
∞∑
k=0

f̂(k)/(n+ k + 1) ↓ 0 as

n → ∞. Then, by using Theorem 5.1, we find that

‖Hf‖B1

logα−1
≍

∞∑

n=0

Ĥf(n)
logα−1(n+ 2)

n+ 1
,
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where the corresponding constant is independent of f . On the other hand, by using

Lemma 2.4, we have that

∞∑

n=0

Ĥf(n)
logα−1(n+ 2)

n+ 1
=

∞∑

n=0

∞∑

k=0

f̂(k)

n+ k + 1

logα−1(n+ 2)

n+ 1

=

∞∑

k=0

f̂(k)

∞∑

n=0

logα−1(n+ 2)

(n+ 1)(n+ k + 1)

≍

∞∑

k=0

f̂(k)
logα(k + 2)

k + 1
.

Therefore,

‖Hf‖B1

logα−1
≍

∞∑

n=0

f̂(n)
logα(n+ 2)

n+ 1
,

where the corresponding constant is independent of f . Then
∞∑
n=0

f̂(n) logα(n+ 2)×

(n+ 1)−1 < ∞ and by using Theorem 5.1 we find that f ∈ B1
logα .

(c) Let ε > 0 and let f̂(n) = (logα+1+ε/2(n+ 2))−1 for all n > 0. Then
∞∑
n=0

f̂(n)×

(n+ 1)−1 < ∞ and f̂(n) ↓ 0 as n → ∞. Also, we find that

∞∑

n=0

f̂(n)
logα(n+ 2)

n+ 1
< ∞ and

∞∑

n=0

f̂(n)
logα+ε(n+ 2)

n+ 1
= ∞.

Let f(z) =
∞∑
n=0

f̂(n)zn. Then f ∈ B1
logα by Theorem 5.1 andHf /∈ B1

logα−1+ε , because

otherwise we would have
∞∑

n=0
f̂(n) logα+ε(n + 2)(n + 1)−1 < ∞ by part (b) of this

theorem. A contradiction.

(d) Since B1
logα ⊂ B1

logβ for β < α, we may assume that −1 < α < 0. Let

f(z) =
∞∑

n=0

zn

log(n+ 2)
.

For every r ∈ (0, 1) the function fr(z) = f(rz) belongs to H(D) and by Theorem 5.1,

the set {fr : r ∈ (0, 1)} is bounded in B1
logα . On the other hand,

Hfr(0) =

∞∑

k=0

rk

(k + 1) log(k + 2)
→ ∞ as r ↑ 1.

This contradicts the fact that if a set X ⊂ B1
logα is bounded and H is bounded

on B1
logα , then the set {Hf(0) : f ∈ X} is bounded, because the functional h → h(0)

is continuous on H(D). This completes the proof. �
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Remark 5.4. We note that the result stated in Theorem 5.2 (a) is sharp in the

sense that for any ε > 0 and α > 0 there exists f ∈ B1
logα such that Lf /∈ B1

logα−1+ε .

As above, we have that

f(z) =

∞∑

n=0

zn

logα+1+ε/2(n+ 2)
∈ B1

logα ,

while Lf /∈ B1
logα−1+ε .

Corollary 5.5. Let α > 0 and let f(z) =
∞∑

n=0
f̂(n)zn, where f̂(n) > 0 for all

nonnegative integers n and
∞∑
n=0

f̂(n)/(n+ 1) < ∞. Then

Hf ∈ B1
logα−1 if and only if

∞∑

n=0

f̂(n)
logα(n+ 2)

n+ 1
< ∞.

Moreover, there is a constant C independent of the function f , such that

1

C
‖Hf‖B1

logα−1
6

∞∑

n=0

f̂(n)
logα(n+ 2)

n+ 1
6 C‖Hf‖B1

logα−1
.

P r o o f. We have that Ĥf(n) =
∞∑
k=0

f̂(k)/(n+ k + 1) ↓ 0 as n → ∞, because

f̂(k) > 0 for all k > 0. Now the proof follows from the proof of part (b) of Theo-

rem 5.3. �

Corollary 5.6. Let α > 0 and let f(z) =
∞∑
n=0

f̂(n)zn ∈ H(D), such that

∞∑
n=0

|f̂(n)| logα(n+ 2)(n+ 1)−1 < ∞. Then Hf ∈ B1
logα−1 .

P r o o f. Let xn = Re f̂(n) and yn = Im f̂(n) for all nonnegative integers n.

Then, functions g(z) =
∞∑
n=0

xnz
n and h(z) =

∞∑
n=0

ynz
n are holomorphic in the unit

disk D. Now, let x+
n = (|xn|+ xn)/2 and x−

n = (|xn| − xn)/2 for all n = 0, 1, . . ..

Then, x±
n > 0, x±

n 6 |xn| 6 |f̂(n)| and x+
n − x−

n = xn. Therefore, functions g
+(z) =

∞∑
n=0

x+
n z

n and g−(z) =
∞∑

n=0
x−
n z

n are holomorphic in the unit disk D, and

∞∑

n=0

x±
n

logα(n+ 2)

n+ 1
6

∞∑

n=0

|f̂(n)|
logα(n+ 2)

n+ 1
< ∞.
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Hence, by using Corollary 5.5, we find that

Hg+ ∈ B1
logα−1 and Hg− ∈ B1

logα−1 .

Then, we have

∫

D

|(Hg)′(z)| logα−1 2

1− |z|
dA(z) =

∫

D

|(Hg+)′(z)− (Hg−)(z)| logα−1 2

1− |z|
dA(z)

6

∫

D

(
|(Hg+)′(z)|+ |(Hg−)(z)|

)
logα−1 2

1− |z|
dA(z) < ∞,

and we get Hg ∈ B1
logα−1 . In the same way, we prove that Hh ∈ B1

logα−1 . Then, we

have that Hf = Hg + iHh, because of f = g + ih. Consequently,

∫

D

|(Hf)′(z)| logα−1 2

1− |z|
dA(z) =

∫

D

|(Hg)′(z) + i(Hh)′(z)| logα−1 2

1− |z|
dA(z)

6

∫

D

(|(Hg)′(z)|+ |(Hh)′(z)|) logα−1 2

1− |z|
dA(z)

< ∞.

Therefore, Hf ∈ B1
logα−1 . �
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