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1 Introduction

Four-dimensional N = 1 supergravity is highly motivated for phenomenological purposes

as it provides an appropriate setup to describe low-energy effective field theories originating

from string theory. The main focus in this direction has been the study of supergravity

theories where supersymmetry can in principle be restored within the validity of the su-

pergravity theory. This procedure requires the study of supergravity theories with broken

or unbroken supersymmetry where there always exists a smooth limit to the restoration of

supersymmetry within the regime of validity of the effective supergravity theory.

However, this is not an essential criterion that any low-energy supergravity theory

originating from string theory has to satisfy, as there exist known constructions containing

(anti)branes, where supersymmetry might not be restored within the supergravity limit.

Notable examples are the brane supersymmetry breaking setup [1–7], and the KKLT sce-

nario [8–10]. Indeed a paradigm shift was considered only recently, where models of su-

pergravity with non-linear realizations have been investigated, where supersymmetry is

not allowed to be restored [11–17]. Constrained superfields in supergravity were however

known earlier, for example since the work of [18, 19], and the contrast of such theories

to standard supergravity is striking. In particular new forms of the scalar potential are

allowed which can easily describe inflation or a KKLT-type uplift [20–25].
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Following this line of thought, new terms have been constructed in supergravity where

effects similar to the non-linear realizations have been achieved, but the theory has off-

shell supersymmetry linearly realized. In particular in [26] an uplift usually attributed

to non-linear realizations (anti-D3 branes) has been constructed where supersymmetry is

linearly realized, albeit spontaneously broken by the auxiliary field of the vector multiplet.

In [27] Kähler invariance is restored and a constant uplift is described. These novel results

indicate that all the effects that have been studied with constrained superfields and non-

linear realizations of supersymmetry can be instead studied with supersymmetry linearly

realized. Let us note in passing that models for inflation utilizing the setup of [26] have

been studied in [28, 29].1

In this work we do one further step towards this new direction. We study chiral mod-

els coupled to supergravity and we show that whenever supersymmetry is spontaneously

broken there exists a deformation of the scalar potential of the form

V = VSUGRA + U
(

AI , A
J
)

. (1.1)

This deformation is induced by off-shell linear realizations of supersymmetry, and by con-

struction also respects the Kähler invariance of the standard supergravity theory. The

consistency of this new contribution requires that supersymmetry is broken by at least one

of the auxiliary fields of the standard chiral multiplets, and the positivity of the Kähler

metric of the scalar manifold. For gauged chiral models the consistency of the new term can

be also guaranteed if supersymmetry is broken by the gauge sector. In other words the con-

sistency requirements for the new term to be well-defined are absolutely minimal, they are

model independent, and they are satisfied under any circumstance where four-dimensional

N = 1 supersymmetry is broken spontaneously.

The addition of the new interaction term relaxes the form of the scalar potential giving

more freedom to its structure. This has consequences for many applications, for instance

in low-energy phenomenological models build up out of supergravity and in models of

primordial inflation avoiding the so-called η-problem [32]. For this reason, we dub this

extension “Liberated Supergravity”.

The paper is organized as follows. In section 2 we review the chiral models of su-

pergravity, while in section 3 we present the concept of liberated N = 1 supergravity,

presenting its equivalent formulation with constrained superfields in section 4. Section 5

contains the particular case of a single superfield and section 6 our conclusions and outlook.

2 Chiral models in supergravity

Let us quickly review some of the basic properties of the chiral multiplets coupled to

minimal N = 1 supergravity. Our intention is to point out some aspects of the theory

which are of relevance in the following sections. The subject is now standard [33–36] and

we will follow here [34].

1Theories with similar properties have been also investigated in [30, 31].
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In the old-minimal formulation of supergravity the component fields of the supergravity

multiplet are the vielbein e a
m which describes gravity, and its superpartner the gravitino

ψ α
m which is a spin-3/2 fermion. The auxiliary fields of the supergravity multiplet are the

complex scalar M and the real vector ba [37–39]. The local supersymmetry transformations

of the supergravity multiplet are

δe a
m = i

(

ψmσaξ − ξσaψm

)

,

δψ α
m =− 2Dmξα + ie c

m

{

1

3
M(ǫσcξ)

α + bcξ
α +

1

3
bd(ξσdσc)

α

}

,

δM =− ξ
(

σaσbψab + ibaψa − iσaψaM
)

,

δbαα̇ = ξδ
{

3

4
ψ

γ̇
α δγ̇α̇ +

1

4
ǫδαψ

γγ̇
γα̇γ̇ −

i

2
Mψαα̇δ +

i

4

(

ψ
ρ̇

αρ̇ bδα̇ + ψ
ρ̇

δρ̇ bαα̇ − ψ
ρ̇
δ α̇bαρ̇

)

}

+ c.c.

(2.1)

For the gravitino we have ψ α
nm = Dnψ

α
m − Dmψ α

n where Dmψnα = ∂mψnα − ω β
mα ψnβ,

and for the supersymmetry parameter we have Dmξα = ∂mξα − ω β
mα ξβ .

Let us consider a set of chiral superfields

ΦI = AI +
√
2ΘαχI

α +Θ2F I . (2.2)

The local supersymmetry transformations are

δAI = −
√
2ξχI ,

δχI
α = −

√
2F Iξα − i

√
2σa

αα̇ξ
α̇
D̂aA

I ,

δF I = −
√
2

3
MξχI − ξ̄α̇

(

i
√
2D̂αα̇χ

Iα −
√
2

6
bαα̇χ

Iα

)

,

(2.3)

where we have made use of the supercovariant derivatives

D̂aA = e m
a

(

∂mA− 1√
2
ψα
mχα

)

, D̂aχα = e m
a

(

Dmχα − 1√
2
ψmαF − i√

2
ψ

β̇
m D̂αβ̇A

)

.

(2.4)

We couple the ΦI to standard supergravity via2

L0 =

∫

d4θ E Ω

(

ΦI ,Φ
J
)

+

(
∫

d2Θ2E W (ΦI) + c.c.

)

. (2.5)

Here Ω is a real function which is related to the Kähler potential as

K = −3 log(−Ω/3) , (2.6)

and W is a holomorphic function of the chiral superfields. Standard N = 1 supergravity is

invariant under super-Weyl-Kähler transformations with chiral superfield parameter Σ(ΦI),

under which the Kähler potential K and the superpotential transform as

K → K + 6Σ + 6Σ , W → W e−6Σ. (2.7)

2We use
∫

d4
θ E Ω =

∫

d2Θ2E
[

− 1
8
(D

2
− 8R) Ω

]

+ c.c. up to boundary terms. In [34] the explicit

expressions for 2E and R can be found.
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The above transformations are symmetries of the superspace Lagrangian (2.5) if they are

accompanied by compensating transformations of the superspace measures

d4θ E → d4θ E e2Σ+2Σ , d2Θ2E → d2Θ2E e6Σ , (2.8)

where also the chiral projection transforms under the super-Weyl-Kähler as (see for

example [35])

− 1

4

(

D2 − 8R
)

→ −1

4

(

D2 − 8R
)

e−4Σ+2Σ . (2.9)

Once the auxiliary fields are eliminated and a Weyl rescaling is performed in order to write

the theory in the Einstein frame, the bosonic sector of the standard N = 1 supergrav-

ity (2.5) takes the form

e−1L0|bosonic = −1

2
R− gIJ∂mAI∂mA

J − V , (2.10)

where

V = eK
[

DJWgJIDIW − 3WW
]

, (2.11)

and as usual we have DIW = WI +KIW , WI = ∂W/∂AI and KI = ∂K/∂AI . The Kähler

metric is defined as gIJ = KIJ and gJI is its inverse. In this standard setup the complex

gravitino mass is given by

m3/2 = eK/2W . (2.12)

Notice that the positive contribution to the scalar potential, which is essentially related to

the breaking of supersymmetry, is sourced by the term

DJWgJIDIW ∼ F IgIJF
J
, (2.13)

whereas the negative contribution is related to the gravitino mass, and has the form

−3|m3/2|2. We remind that on-shell, before Weyl rescaling, we have for the bosonic con-

tributions to the matter auxiliary fields

F I = −eK/3gIJDJW. (2.14)

It is therefore important to realize that in any situation where supersymmetry is sponta-

neously broken we will have the model independent property

Broken supersymmetry : 〈F IgIJF
J〉 6= 0 . (2.15)

As we will see, (2.15) is the only consistency condition for the new Lagrangian we will

propose next to be well-defined. In addition, we should also mention that (2.15) is satisfied

whenever at least one of the vevs of the auxiliary fields 〈F I〉 is non-vanishing due to the pos-
itivity of the Kähler metric. Let us finally present the bosonic contribution to the on-shell

value of the supergravity scalar auxiliary field M , which before Weyl rescaling is given by

M = −3W eK/3 −KJF
J
. (2.16)

– 4 –
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3 Liberated N = 1 supergravity

When supersymmetry is non-linearly realized one can introduce a variety of new terms

which deform the scalar potential in ways not allowed by the standard supergravity with

linearly realized supersymmetry. In [26] a new coupling has been introduced where su-

persymmetry is linearly realized off-shell, but does however generate the uplift which is

usually attributed to non-linear realizations. Therefore in such setup the uplift can in

fact be described by linear supersymmetry, which is nevertheless broken by the vev of

the auxiliary field of an abelian vector multiplet. The constructions in [26, 27] pave the

way for a novel understanding of spontaneous supersymmetry breaking by linearly realized

supersymmetry, and our work is in the spirit of this approach.

In this section we will work with the chiral multiplets ΦI coupled to supergravity.

We present the superspace formula and the component form (up to two fermions) of the

Lagrangian term responsible for inducing the generic contribution U
(

AI , A
J
)

in the scalar

potential (1.1). We study the coupling of the new term to standard supergravity and we

discuss its properties. Our construction here is similar to the one in [26], however instead

of introducing a Fayet-Iliopoulos term we will use the method presented there to introduce

a direct uplift in the scalar potential, thus liberating it from its standard form. In the

bulk of this section we do not consider the coupling to any gauge multiplet, however we

comment on this extension in the end of the section.

3.1 The new term

In order to construct our new supergravity Lagrangian, we will assume that Kähler invari-

ance is still a good symmetry and it is respected [40]. Since the Kähler transformation of

the Kähler potential K(ΦI ,Φ
J
) in (2.7) is like an effective abelian gauge transformation

of a vector multiplet, it is clear that in order to maintain Kähler invariance, we should

employ the field strength of K(ΦI ,Φ
J
). Therefore, we define the spinor chiral superfield

Wα(K) = −1

4

(

D2 − 8R
)

DαK , (3.1)

which is clearly invariant under the Kähler transformation (2.7). It has lowest component

field the fermion

ηα ≡ iWα| = i
√
2KIJF

J
χI
α − i√

2
KIL J χ

LχJχI
α +

√
2KIJ σ

a
αρ̇ χ

ρ̇Je m
a D̂mAI . (3.2)

Notice that the structure of this fermion is very similar to the goldstino appearing in stan-

dard supergravity: KIJF
J
χI
α. Of course this is not by chance since here the new terms we

will introduce are allowed if and only if supersymmetry is spontaneously broken by the chi-

ral superfields. Since Wα(K) is a spinor chiral superfield (the various components of which

can be found in formula (14.15) of [36]), the only pure bosonic part is in the component

DβWα(K)|bosons = −2ǫβαgIJF
IF

J
+ 2

(

σb
ββ̇
ǫβ̇α̇σa

αα̇

)

e m
a e n

b gIJ ∂mAI∂nA
J ≡ Fβα , (3.3)
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where we define the composite bosonic field Fβα for later use. Notice that when the con-

dition (2.15) holds, we will have

〈D2W2(K)
∣

∣〉 = −2〈FαβFαβ〉 = −16

(

〈gIJF IF
J〉
)2

6= 0 , (3.4)

which means that the inverse of D2W2(K) exists and it is 1/D2W2(K). Now we are ready

to introduce the term

LNEW = −16

∫

d4θ E e−2K/3 W2(K)W2
(K)

D2W2(K)D2W2
(K)

U
(

ΦI ,Φ
J
)

, (3.5)

where U
(

ΦI ,Φ
J
)

is a general real function of the chiral superfields ΦI and Φ
J
. To main-

tain Kähler-Weyl invariance as in the standard supergravity then U should be invariant

under such transformations. Indeed, using the fact that under super-Weyl transformations

we have DαK → exp{Σ− 2Σ}DαK, and taking into account (2.9), we see that the Wα(K)

superfield changes under Kähler-Weyl transformations as

Wα(K) → Wα(K) e−3Σ . (3.6)

This leads to
W2(K)W2

(K)

D2W2(K)D2W2
(K)

→ W2(K)W2
(K)

D2W2(K)D2W2
(K)

e2Σ+2Σ , (3.7)

therefore (3.5) is Kähler-Weyl invariant.

To built some intuition about the properties of this term we notice that we can recast

the new Lagrangian in terms of the spinor goldstino superfield studied in [19]. To this end

we can define the composite spinor superfield

Γα ≡ −2
DαW2(K)

D2W2(K)
, (3.8)

which satisfies
DαΓβ = ǫβα

(

1− 2Γ2R
)

,

Dβ̇
Γα = 2i (σa Γ)β̇ DaΓ

α +
1

2
Γ2Gβ̇α .

(3.9)

The superfield Gβ̇α is defined for example in [34]. From (3.8) we have that

Γ2Γ
2 ≡ 16

W2(K)W2
(K)

D2W2(K)D2W2
(K)

, (3.10)

which can be used to write the new Lagrangian term (3.5) in a much more compact notation,

namely

LNEW = −
∫

d4θ E e−2K/3 Γ2Γ
2 U . (3.11)

Here Γ is not an independent constrained superfield, rather it is the composite superfield

given by (3.8). Now one can directly see from the first formula in (3.9) that (3.11) once

– 6 –
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expanded in component fields will start with a bosonic term of the form e−2K/3 U , and the

rest of the terms will be fermionic. In particular, if we denote

γα = Γα| = 4
DαWβ

D2W2
Wβ

∣

∣

∣
= −4i

(DαWβ

D2W2

∣

∣

∣

)

ηβ , (3.12)

we will have that

γα =
2iFαβ

FρσFρσ
ηβ + 3-fermi terms , (3.13)

where ηα and Fαβ are defined in (3.2) and (3.3), respectively. Notice that under a local

supersymmetry transformation the fermion γ transforms as

δγα = −ξα(x) + 3-fermi terms , (3.14)

it is in other words a realization of the Volkov-Akulov fermion, but in contrast to the latter,

here γα is composite.

Now we are ready to reduce the term (3.5) to component fields, and we find

e−1LNEW = −e−2K/3 U
(

AI , A
J
)

+ i e−2K/3 U (Dmγ σmγ +Dmγ σmγ)

+ e−2K/3 U
{

iγ σaψa +
2

3
M γ2 − 1

6
γσaγ ba + c.c.

}

+
[ (

e−2K/3 U
)

I

{√
2 γχI − F I γ2 − iγ σmγ ∂mAI

}

+ c.c.
]

+ 4-fermi terms ,

(3.15)

whereDmγα = ∂mγα−ω β
mα γβ. We see that the first line of (3.15) contains the contribution

to the scalar potential and also a contribution to the fermion kinetic terms. Notice that

the second line contains the essential gravitino-goldstino mixing dictated by the Noether

method, exactly as has been analyzed in [26]. Clearly in this setup we can always fix

the gauge

γα = 0 ↔ ηα = 0 , (3.16)

which will eliminate one spin-1/2 fermion from the component form expression and it will

be absorbed by the massive gravitino. In this gauge the new Lagrangian term gets a very

simple form

LNEW

∣

∣

∣

η=0
= −e e−2K/3 U

(

AI , A
J
)

. (3.17)

We should stress however that practically imposing the gauge choice (3.16) requires to

solve the equation

i
√
2KIJF

J
χI
α − i√

2
KIL J χ

LχJχI
α +

√
2KIJ σ

a
αρ̇ χ

ρ̇Je m
a D̂mAI = 0, (3.18)

in terms of a single fermion, say χ1
α belonging to a chiral multiplet. The latter is therefore

removed from the spectrum as in fact it is eaten by the gravitino. Finally, from the

definition of the fermion γ in (3.12) we see that (3.15) is well-defined if and only if (3.4)

holds, otherwise the fermionic terms become singular.

– 7 –
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3.2 The total supergravity Lagrangian

The full theory we are anticipating now, can be written down by coupling (3.5) to the

standard supergravity (2.5) so that the dynamics is described by the liberated supergravity

Lagrangian

LLIB = L0 + LNEW

= −3

∫

d4θ E e−K/3 +

(
∫

d2Θ2E W + c.c.

)

− 16

∫

d4θ E e−2K/3 W2(K)W2
(K)

D2W2(K)D2W2
(K)

U
(

ΦI ,Φ
J
)

.

(3.19)

The theory (3.19) describes a four-dimensional N = 1 supergravity coupled to the chiral

multiplets ΦI , and the supersymmetry transformations of the component fields are given

by (2.1) and (2.3), which are the standard local supersymmetry transformations.

Once we integrate out the auxiliary fields, and performing the Weyl rescaling of the

metric, we find that the bosonic sector is similar to (2.10), namely

e−1L|bosons = −1

2
R− gIJ∂mAI∂mA

J − V , (3.20)

but now the scalar potential has the form

V = eK
[

DJWgJIDIW − 3WW
]

+ U
(

AI , A
J
)

. (3.21)

Clearly if U
(

AI , A
J
)

is positive, we have a positive definite uplift, and Kähler-Weyl invari-

ance is maintained if U is inert under Kähler transformations. The e−2K/3 factor appearing

in (3.15) in front of U does not appear in (3.21) because it has been canceled by the Weyl

rescaling of the vielbein determinant,

Weyl rescaling : e → e2K/3 e , (3.22)

needed to write the theory in the Einstein frame as usual. Notice that LNEW changes the

on-shell values of the auxiliary fields by fermionic corrections compared to their values in

standard supergravity. Therefore we can now directly evaluate all the terms in LNEW after

eliminating the auxiliary fields. Keeping only up to two fermions and after Weyl rescaling

we find

e−1LNEW

∣

∣

∣

on−shell
= −U

(

AI , A
J
)

+ i e−K/6 U
(

D̃mγ̃ σmγ̃ + D̃mγ̃ σmγ̃
)

+ U
{

ie−K/12γ̃ σaψa − 2W eK γ̃2 + c.c.
}

+
[

UI

{√
2 e−K/12γ̃χI

+eK/3gIJDJW γ̃2 − ie−K/6γ̃ σmγ̃ ∂mAI
}

+ c.c.
]

+ 4-fermi terms .

(3.23)

– 8 –



J
H
E
P
0
6
(
2
0
1
8
)
0
1
1

Here γ̃α = 2iF̃αβ η̃
β/F̃ρσF̃ρσ with

η̃α =− i
√
2 eK/4DIWχI

α +
√
2 e−K/4gIJ σ

m
αρ̇ χ

ρ̇J∂mAI ,

F̃βα =− 2 e2K/3ǫβαDJWgJIDIW + 2 e−K/3
(

σn
ββ̇
ǫβ̇α̇σm

αα̇

)

gIJ ∂mAI∂nA
J
,

(3.24)

and we have defined the Kähler covariant derivative for the composite fermion as

D̃mγ̃ = Dmγ̃ +

(

1

6
KI∂mAI − 1

3
KJ∂mA

J
)

γ̃ . (3.25)

The total Lagrangian will be the one describing the standard four-dimensional N = 1

matter-coupled supergravity where one simply adds (3.23). To check the Kähler-Weyl

invariance of (3.23) under (2.7) one has to take into account that the composite fermion γ̃

changes as

γ̃ → exp
(

−Σ+ 2Σ
)

γ̃ , (3.26)

while the gravitino and the matter fermions change as usual, namely

χI → exp (3i ImΣ)χI , ψn → exp (−3i ImΣ)ψn . (3.27)

It would be interesting to study these new coupling in a manifestly Kähler covariant setup,

as for example the one presented in [41], where the full Lagrangian (3.23) might be easier to

write down up to higher order in fermions. We leave this interesting calculation for future

work. Clearly the non-linearities in the fermionic sector which arise while integrating

out the auxiliary fields, is the price one has to pay for achieving a generic uplift while

keeping both Kähler-Weyl invariance of the standard theory, and supersymmetry linearly

realized off-shell.

Let us note that for the consistent propagation of the gravitino in a curved background

one has to ask the condition V ≥ −3|m3/2|2 to hold, which is always respected by standard

supergravity. For a discussion of this issue in a supergravity setup see for example [17].

Moreover, in standard supergravity this equation is saturated by anti de Sitter supersym-

metric vacua, where the gravitino supersymmetry transformations (2.1) give the Killing

spinors. In our setup however, the condition V ≥ −3|m3/2|2 puts a bound on the value of

the function U evaluated on a generic background. The bound on the background values

of U is

U ≥ −eKDJWgJIDIW , (3.28)

which is always satisfied for positive definite U . When the bound (3.28) is saturated on the

vacuum, we will have an anti de Sitter supergravity, however the gravitino transformations

will not provide a full N = 1 Killing spinor, unless 〈DIW 〉 = 0. This is seen either by

taking into account that the on-shell M which enters the Killing equations (2.1) is given

by (2.16), or simply by the fact that the supersymmetry transformations of the matter

fermions (2.3) will not preserve supersymmetry unless 〈DIW 〉 = 0. Therefore an N = 1

supersymmetric background will require both 〈U〉 and 〈DIW 〉 to vanish.

We will now discuss in more detail what happens in the limit

F = 〈gIJF IF
J〉 → 0 , (3.29)
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where supersymmetry will be restored. If we wish to have a generic U function entering (3.5)

then the limit (3.29) has to be excluded from the moduli space of the effective supergravity

theory, because all fermionic terms will diverge. This signals that when approaching this

limit in principle the effective supergravity description will break down. However, this is

not the full story. An inspection of the term (3.5) will show that a conservative evaluation

of the worse possible divergencies which can appear in the fermionic sector have the form

U (0)

F6
,

U (1)

F5
,

U (2)

F4
,

U (3)

F3
,

U (4)

F2
, (3.30)

where the superscripts U (n) refer to derivatives with respect to AI or A
J
. Therefore, if we

have a function U (and its derivatives) which goes to zero faster than 〈gIJF IF
J〉nmax , then

the divergent terms will be damped, and the limit where supersymmetry gets restored will

exist. Thus functions U which allow for the restoration of supersymmetry have to satisfy

U (n)

F6−n

∣

∣

∣

F→0
→ 0 . (3.31)

Under the assumption (3.31) the new terms (3.5) can be always added to a four-dimensional

N = 1 supergravity, independent of the properties of the vacuum. However, if indeed the

function scales as in (3.31), then in the supersymmetric point the theory will be identical

to standard supergravity, as all new interactions will be highly suppressed.

Other deformations of the scalar potential originating from higher derivative couplings

are known to exist where supersymmetry is generically allowed to be restored [42–45].

However our new term has a minimal impact on the bosonic sector of the theory as it

changes only the scalar potential as shown in (3.21).

3.3 Gaugings

As a direct generalization of our construction, we can extend the discussion to gauged

chiral models. However, we will discuss models with gauging only in this subsection and

we leave a more detailed discussion for a future work.

The gauging in four-dimensional N = 1 supergravity works by gauging the isome-

tries of the Kähler manifold, and it is described in detail in standard supergravity text-

books [34, 36]. Here we follow the approach presented in [34]. In the Lagrangian for the

chiral superfields one adds toK a counter-term P which renders the theory gauge invariant,

namely

K → K

(

ΦI ,Φ
J
)

+ P
(

ΦI ,Φ
J
, V (a)

)

. (3.32)

The function P is uniquely determined by the Kähler metric and the isometries one wants

to gauge. In the Wess-Zumino gauge we have

P
(

ΦI ,Φ
J
, V (a)

)

= V (a)D(a) +
1

2
gIJX

I(a)X
J(b)

V (a)V (b) , (3.33)

where

XI(b) = −i gJI ∂J D
(b) , X

I(b)
= i gIJ ∂J D

(b) , (3.34)
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are coordinates of the holomorphic (and antiholomorphic) Killing vectors

X(b) = XI(b)∂I , X
(b)

= X
I(b)

∂I , (3.35)

which generate the gauged isometries of the Kähler manifold, while D(a) are the Killing

potentials. The Killing vectors obey the relations
[

X(a), X(b)
]

= −fabcX(c) ,
[

X
(a)

, X
(b)
]

= −fabcX
(c)

,
[

X(a), X
(b)
]

= 0 , (3.36)

where fabc are the structure constants of the isometry group. The gauge transformations

act as
δΦI =

(

Λ(a)X(a) + Λ
(b)
X

(b)
)

ΦI = Λ(a)XI(a)(ΦJ) ,

δ eV
(a)T(a)

= −iΛ
(a)

T(a) eV
(a)T(a)

+ i eV
(a)T(a)

Λ(a)T(a) .
(3.37)

Notice that a gauge transformation does not leave the combination K+Γ invariant, rather

it will generically change it up to a Kähler transformation.

In our setup one has to do the same replacement (3.32) in any place where the Kähler

potential appears. Moreover, we will need to introduce an additional counter-term, namely

Q(ΦI ,Φ
J
, V (a)), which will render the theory gauge invariant once we set

U → U
(

ΦI ,Φ
J
)

+Q
(

ΦI ,Φ
J
, V (a)

)

. (3.38)

To respect all the symmetries of the theory, the sum U + Q has to be inert under gauge

and Kähler transformations. To achieve this we can impose a series of simple conditions.

In particular, it has to hold that

(

X(a) +X
(a)
)

U
(

ΦI ,Φ
J
)

= 0 , (3.39)

and under a gauge transformation Q has to transform as

δQ = i(Λ(a) − Λ
(a)

)D̃
(a)

, (3.40)

where we now define

D̃
(a)

= iX(a)U = −iX
(a)U . (3.41)

Following then the general procedure described in [34] we have in the Wess-Zumino gauge

Q = V (a)D̃
(a)

+
1

2
UIJX

I(a)X
J(b)

V (a)V (b) . (3.42)

Notice that now there exists also the equivalent expressions to (3.34), namely

UIJX
I(b) = −i ∂J D̃

(a)
, UJIX

I(b)
= i ∂J D̃

(a)
, (3.43)

and that D̃
(a)

satisfies
[

X(a) +X
(a)
]

D̃
(b)

= −fabcD̃
(c)

, X(a)D̃
(b)

+X
(b)
D̃

(a)
= 0 . (3.44)
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We conclude that in a gauged supergravity setup we should consider the term

LNEW-gauged = −16

∫

d4θ E e−2(K+P)/3 W2W2

D2W2D2W2 (U +Q) , (3.45)

where

Wα = −1

4

(

D2 − 8R
)

Dα(K + P) . (3.46)

The bosonic sector of (3.45) will simply give

LNEW-gauged

∣

∣

∣

bosons
= −e e−2K/3 U

(

AI , A
J
)

. (3.47)

Including now (3.45) to a gauged chiral model coupled to supergravity, the effect on the

scalar potential will be exactly given by (1.1), namely

V =
1

2
g2(D(a))2 + eK

[

DJWgJIDIW − 3WW
]

+ U , (3.48)

where U is now a gauge invariant function. Moreover the bosonic sector of such theory

will be given by the bosonic sector of standard gauged supergravity, except of the scalar

potential, which will be given by (3.48).

Finally the term (3.48) is generically consistent only if

〈F IgIJF
J〉 6= 0 or 〈D(a)D(a)〉 6= 0 , (3.49)

with D(a) being the auxiliary fields of the vector multiplets. The conditions (3.49) are es-

sentially the conditions that supersymmetry has to be broken at least from the gauge sector

or the matter sector. In the limit that supersymmetry gets restored there will be divergen-

cies in the fermionic sector of (3.45). However, as we discussed in the previous subsection,

it is conceivable that U will go to zero fast enough and thus damp these divergent terms.

4 Equivalent formulation with constrained superfields

Constrained superfields can in principle be used to describe any system where supersymme-

try is spontaneously broken. A method to find the equivalent theory in terms of constrained

superfields has been explained in [46]. We wish to present here the supergravity theory

which is equivalent to (3.19) in terms of constrained superfields. We first give the result,

and then we proceed to do the proof of the equivalence. Let us note that for the equivalence

to hold we are assuming that supersymmetry is always spontaneously broken, which is the

generic feature of the models we study here, and that U 6= 0.

The Lagrangian (3.19) is equivalent to a Lagrangian of standard supergravity of

the form

L = −3

∫

d4θ E e−K̂/3 +

(
∫

d2Θ2E Ŵ + c.c.

)

, (4.1)

where the new Kähler potential and superpotential are given by

K̂ = K + eK
XX

U , Ŵ = W +X . (4.2)
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The chiral multiplets X and ΦI in (4.1) are subject to the following two constraints

X2 = 0 , XWα(K) = 0 . (4.3)

The theta expansion of the chiral superfield X is

X =
(χX)2

2FX
+
√
2ΘαχX

α +Θ2FX , (4.4)

and it scales as X → X exp{−6Σ} under the standard Kähler-Weyl transformations (2.7).

Notice that the only independent component fields in X are the fermion χX and the

auxiliary field FX .

Models for inflation with non-linear realizations of supersymmetry with Kähler po-

tentials of the form (4.2) can be found in [24, 25]. Of course, in contrast to [24, 25], in

our setup there is an underlying linear realization of supersymmetry which together with

Kähler-Weyl invariance dictates the form of (4.2).

Let us now prove that (4.1) is equivalent to (3.19). With a simple manipulation one

can bring the Lagrangian (4.1) to the form

L = L0 + LX , (4.5)

where L0 is the Lagrangian (2.5) and LX is given by

LX =

∫

d4θE e2K/3 U−1XX +

(
∫

d2Θ2E X + c.c.

)

. (4.6)

Therefore to prove the equivalence of (4.1) to (3.19) we have to reduce (4.6) to (3.5). This

will indeed happen once we eliminate the auxiliary field FX of the constrained superfield

X via its own equations of motion. The variation with respect to FX can be consistently

performed if we split the constrained X multiplet into two independent parts. One part

which will contain χX as independent component field and one part which will contain FX

as independent component field. To this end we split the superfield X as

X = Z H , (4.7)

where Z and H are chiral superfields (Dα̇H = 0 = Dα̇X). These superfields are not

arbitrary but rather they are subject to the constraints

Z2 = 0 , −1

4
Z
(

D2 − 8R
)

Z = Z , ZWα = 0 , (4.8)

and

Z Dα̇H = 0 . (4.9)

These constraints have been studied in detail in [47, 48] and the splitting (4.7) follows the

logic discussed in [46]. The superfield Z is in fact the one constructed by Lindström and

Roček in [18].

Let us discuss at this point in more detail the splitting (4.7). Firstly, we observe that

it is consistent if and only if

〈H|〉 6= 0 . (4.10)
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Secondly, the superfield Z contains only a single fermion as independent component field,

which resides in DαZ|. The fermionic degrees of freedom of the X multiplet, namely the

fermion χX , will now reside in the fermion of Z. Indeed, we can see from (4.7) that

DαZ| ∼ χX
α . (4.11)

Thirdly, the constrained chiral superfield H contains only a complex scalar, namely H|, as
independent component field, while the projections DαH| and D2H| are composite and do

not contain any new independent component fields. The auxiliary field of X, namely FX ,

will now reside in the lowest component of H. Indeed we have

H| = FX + fermions. (4.12)

In this way we can express all the degrees of freedom of X in terms of the ones in Z and

H, and vice versa. Finally, let us point out that the constraint on Wα in (4.3), namely the

constraint XWα = 0, now takes the form ZWα = 0 as one can easily show, whereas the

constraint X2 = 0 in (4.3) is reduced to Z2 = 0. These constraints are given in (4.8).

Using (4.7) we replace X with Z H in (4.6). After some manipulations the La-

grangian (4.6) can take the form

LX =

∫

d4θE
(

e2K/3 U−1Z Z HH+ Z Z H+ Z Z H
)

+

∫

d4θE
(

GZ H+GZ H
)

,

(4.13)

where in the second line of (4.13) we have introduced the complex linear Lagrange multiplier

G. Being a complex linear superfield, G is defined to satisfy

(D2 − 8R)G = 0 . (4.14)

The reason for introducing G in (4.13) is to make H an unconstrained chiral superfield,

which will allow us to perform the superfield variation and derive its superspace equations

of motion. If we vary G then we get the constraint (4.9), and the Lagrangian will be given

only by the first line of (4.13).

Now we proceed to integrate out FX , which amounts to integrating out the chiral

superfield H. This is done by performing a superfield variation of H and G, which gives

δH : (D2 − 8R)
[

e2K/3 U−1Z Z H+ Z Z +GZ
]

= 0 , (4.15)

δG : Z Dα̇H = 0 . (4.16)

We multiply (4.15) with Z to find

e2K/3 U−1Z Z H+ Z Z +GZ = 0 , (4.17)

which we then multiply with Z to derive

Z Z G = 0 . (4.18)
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Acting on (4.17) with Z D2 and using both the properties (4.18) and (4.14) we find

Z Z H = −Z Z e−2K/3 U . (4.19)

Equation (4.19) is the appropriate expression derived from the equations of motion of H
which we can use to eliminate it from the Lagrangian (4.13). Indeed, inserting (4.19)

into (4.13) and using also (4.16), we find

LX = −
∫

d4θE e−2K/3 U
(

ΦI ,Φ
J
)

Z Z . (4.20)

We remind the reader that Z in (4.20) is a constrained chiral superfield which satisfies (4.8).

To complete the equivalence we have to replace Z in (4.20) with an expression in terms

of Wα, such that (4.20) takes the form (3.5). As we said, Z satisfies the constraints (4.8)

which we can use to express Z in terms of Wα. Acting with D2 on the third constraint

of (4.8), we get that

Wα(K) =
−2DβZDβWα(K)−ZD2Wα(K)

D2Z , (4.21)

which leads to

ZZ = 16
W2W2

D2W2D2W2 . (4.22)

Replacing (4.22) into (4.20) we reproduce (3.5). In other words, the Lagrangian (4.5) is

equivalent to (3.19), and therefore (4.1) is equivalent to (3.19) as well.

5 A single chiral superfield

In this section we study the coupling of a single chiral superfield Φ to supergravity. We

will assume that the dynamics is described by the Lagrangian (3.19) and we will study

the properties of this model in two steps. First we study the model in the unitary gauge

where it simplifies considerably. Second we study the superspace equations derived from

the variations of the auxiliary fields and we see that they have a very interesting property.

Namely, the on-shell value of the auxiliary fields is determined only by their on-shell values

derived from Lagrangian (2.5), and from consistency conditions derived from the properties

of the supergravity algebra.

The data for a single chiral multiplet Φ coupled to supergravity described by the

Lagrangian (3.19) are the Kähler potential, the superpotential and the uplifting potential

K,W and U , respectively, which are functions of Φ

K = K(Φ,Φ) , W = W (Φ) , U = U(Φ,Φ) . (5.1)

To simplify formulas in component form we use the definitions for the component fields of

the single chiral superfield given by: Φ = A+
√
2Θχ+Θ2F . In the case of a single chiral

multiplet the equation (3.18) can easily be solved and leads to

ηα = 0 → χα = 0. (5.2)
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Therefore, in the unitary gauge, the full supergravity Lagrangian in component form in-

cluding the uplifting term is

e−1L = −1

2
R−KAA∂mA∂mA− V(A,A) + 1

4
ǫklmn(KA∂kA−KA∂kA)ψlσmψn

+
1

2
ǫklmn(ψkσlDmψn − ψkσlDmψn)− eK/2W ψaσ

abψb − eK/2W ψaσ
abψb ,

(5.3)

where

V(A,A) = eK
[

DAW (KAA)
−1DAW − 3WW

]

+ U(A,A) . (5.4)

For the consistency of this theory however we must have

〈DAW 〉 6= 0 . (5.5)

This is of course not manifest in (5.3), but one has to keep in mind that to write (5.3) we

have already assumed (5.5) holds so that we can perform all the redefinitions and eliminate

the goldstino. To study the limit where 〈DAW 〉 → 0 one has to go out of the gauge η = 0,

where clearly the theory becomes ill-defined for 〈DAW 〉 → 0.

Let us note that if we give to the Kähler potential and the superpotential the no-scale

form [49], namely K = −3 ln(T + T ) and W = W0, then the scalar potential simplifies to

V = U . In contrast, if we set U = −eK
[

DAW (KAA)
−1DAW − 3WW

]

, then we will have

V = 0 independent of K and W . Finally, if we have U = 3eKWW the scalar potential

becomes V = eKDAW (KAA)
−1DAW .

5.1 The properties of the auxiliary fields

The above setup for a single chiral superfield has a tight structure, which as we already

mentioned has, among others, a very interesting property concerning the auxiliary fields.

As we will see, the new couplings we have introduced change the on-shell values of the

auxiliary fields in a very constrained way. In particular, we will first present a set of

constraints which, for the case of a single chiral superfield, are trivially satisfied by the

standard supergravity on-shell auxiliary fields. Then we will show that the on-shell values

of the liberated supergravity auxiliary fields satisfy exactly the same constraints, which are

generically solved iteratively. As a result, the on-shell values of the liberated supergravity

auxiliary fields are uniquely derived by their on-shell values in standard supergravity via

a straightforward iterative procedure. This is a profound property which means that a

similar setup could be also possible in supergravity theories where the off-shell structure is

not yet complete. This is one of the most promising future directions of our work.

Let us now see how the on-shell properties of the auxiliary fields are derived. In

standard supergravity (U ≡ 0) the superspace equations of motion for the supergravity
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and matter superfields read3

WΦ − 1

4

(

D2 − 8R
){

e−K/3KΦ

}

= 0 , (5.6)

W +
1

4

(

D2 − 8R
){

e−K/3
}

= 0 , (5.7)

Gαα̇ − 1

4
eK/3

(

[

Dα,Dα̇

]

{

e−K/3
}

− 3
{

e−K/3
}

ΦΦ
DαΦDα̇Φ

)

= 0 . (5.8)

Notice the two first equations are chiral whereas the third is real. The auxiliary fields of

the supergravity and the matter multiplet are given by

F = −1

4
D2Φ| , M = −6R| , ba = −3Ga| , (5.9)

therefore their on-shell values are essentially determined by the lowest components of the

superspace equations (5.6), (5.7) and (5.8) respectively. In particular (5.6) can be recast

in the form

(KΦKΦ−3KΦΦ)D
2
Φ=−12

{

WΦe
K/3+2RKΦ

}

+

{

1

3
KΦ(KΦ)

2−KΦKΦΦ−2KΦKΦΦ+3KΦΦΦ

}

(DΦ)2 ,
(5.10)

which gives the equations for the auxiliary field F when we project to componentns. Equiv-

alently, when we act with Dα on (5.6) or (5.10) and project to components we get the

equations of motion of the fermion χα. If we act with D2 we get the equations of motion

for the complex scalar A. Equation (5.7) can be recast in the form

R =
1

2
W eK/3 +

1

8
eK/3D2

e−K/3 , (5.11)

which gives the equation for M once we project to components.4 Finally, equation (5.8)

clearly gives the equations for ba when projected to components. The Dα component

of (5.8) will give the gravitino equations of motion, while the [Dα,Dα̇] component gives the

Einstein equations. Further properties of equation (5.8) in component form can be found

for example in [52].

However when supersymmetry is spontaneously broken, i.e. 〈F 〉 6= 0, we can define the

superfield Γα as in (3.8), and we can also construct the nilpotent chiral superfield Z of [18]

as follows

Z = −1

4

(

D2 − 8R
)

Γ2Γ
2
. (5.12)

Then, we simply multiply the equations (5.6) and (5.7) with Z, to derive

Z
[

WΦ − 1

4

(

D2 − 8R
){

e−K/3KΦ

}

]

= 0 (5.13)

3These equations can be derived with superspace methods which we will discuss in the next subsection.

Alternatively one can vary the auxiliary fields of each multiplet and lift the equations from component fields

to full superspace. Both methods give essentially the same results.
4In standard supergravity it is preferable to also use equation (5.11) to bring (5.10) to a simpler form.
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and

Z
[

W +
1

4

(

D2 − 8R
){

e−K/3
}

]

= 0 , (5.14)

respectively. Finally, multiplying (5.8) with ZZ we obtain

ZZ
[

Gαα̇ − 1

4
eK/3

(

[

Dα,Dα̇

]

{

e−K/3
}

− 3
{

e−K/3
}

ΦΦ
DαΦDα̇Φ

)

]

= 0 . (5.15)

Equations (5.13)–(5.15) have well understood properties which have been explained in [48]

for a generic setup, and for the supergravity auxiliary fields in particular in [17, 50]. Their

effect is to completely eliminate the auxiliary fields from the spectrum, by giving them the

values determined uniquely by solving (5.13)–(5.15) iteratively. Therefore, even though

these equations are completely compatible and derivable from standard supergravity, they

can be viewed as independent equations which determine the on-shell values of the auxiliary

fields F , M and ba.

The important result now is that the superspace equations derived from (3.19), for a

single chiral superfield, reproduce exactly (5.13)–(5.15). In other words the variations aris-

ing from (3.5) have the profound property to leave the equations (5.13)–(5.15) unchanged.

We will prove this in the next subsection. For the rest of this subsection, we will illustrate

the properties of these equations.

To explain the structure of equations (5.13)–(5.15), and their relation to (5.6)–(5.8)

in standard supergravity, let us use (5.13) as an example which is also familiar to most

readers. To avoid long formulas, let us define

Y = WΦ − 1

4

(

D2 − 8R
){

e−K/3KΦ

}

. (5.16)

Here Y is a composite chiral superfield, with component fields

Y = Y +
√
2ΘχY +Θ2F Y . (5.17)

As we explained earlier, the superfield Y has the property to contain the matter multiplet

equations of motion in its three component fields, namely

Y = 0 → Variational equation of F ,

χY = 0 → Equations of motion of χ ,

F Y = 0 → Equations of motion of A .

(5.18)

The constraint (5.13) will now give

Z Y = 0 , (5.19)

which is solved by

Y =
χZχY

FZ
− Z

FZ
F Y . (5.20)

In standard supergravity, clearly one finds Y = 0 once the equations of motion for the

physical fields χ and A are assumed.5 The equation Y = 0 will just set the auxiliary field

to its form derived by standard supergravity.

5This is related to the nomenclature “on-shell”, used to refer to the supergravity theories where the

auxiliary fields have been integrated out.
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If supersymmetry is unbroken, equation (5.19) is satisfied trivially for Y = 0, χY = 0

and F Y = 0. However when supersymmetry is spontaneously broken, equation (5.19) can

be still satisfied off-shell if Y is given by the condition (5.20). In particular (5.19) will lead

to a superspace equation of the form

−1

4
D2

Φ = 3(KΦKΦ − 3KΦΦ)
−1
{

WΦe
K/3 + 2RKΦ

}

− 1

4
(KΦKΦ − 3KΦΦ)

−1

{

1

3
KΦ(KΦ)

2 −KΦKΦΦ − 2KΦKΦΦ + 3KΦΦΦ

}

(DΦ)2

+O
(

Γ,Γ
)

. (5.21)

In the above equation we have denoted by O
(

Γ,Γ
)

terms which contain at least one Γα

or Γα̇ superfield, and are uniquely determined by (5.19). In this case the equation for the

auxiliary field F will be given by the lowest component field projection of (5.21), which

leads to an expression of the form

F = F0 +O (γ, γ) . (5.22)

Here F0 refers to the one-shell value of the auxiliary field F when the chiral multiplet is cou-

pled to standard supergravity (the one determined by (5.10)). In addition, we have denoted

by O (γ, γ) the component projection of the O
(

Γ,Γ
)

terms in (5.21). Of course the O (γ, γ)

terms will contain all the component fields of the theory (including F ), and therefore (5.22)

has to be solved iteratively. Once this is done we will have: F |on-shell = F0 +O (γ, γ),

and therefore on-shell F will be given as a function of the remaining component fields of

the theory.

To summarize, equation (5.22) is controlled only from the structure of the supergravity

algebra and the form of F0. A similar discussion can be done also for equations (5.14)

and (5.15), giving

M = M0 +O (γ, γ) (5.23)

and

ba = ba 0 +O (γ, γ) (5.24)

for the on-shell values of the supergravity auxiliary fields. Here M0 and ba 0 refer to

their values in standard matter-coupled supergravity. As a result, one can solve equa-

tions (5.22), (5.23) and (5.24) iteratively. The only input is then the solutions for the

auxiliary fields derived from the standard matter-coupled supergravity Lagrangian and the

structure of the supergravity algebra which controls the iterative formulas.6

5.2 Deriving the equations for the auxiliary fields

Let us now prove that supergravity coupled to a single chiral superfield Φ in the presence

of (3.5) leads to (5.13)–(5.15). To prove this we have to perform three independent su-

perfield variations and multiply the resulting equation with Z or ZZ. Then (5.13)–(5.15)

hold if all contributions from (3.5) vanish.

6It would be interesting to investigate the properties of these equations within the setup presented in [51].
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The variations for the auxiliary fields F and M . From the construction (5.12) we

have the identities

ZWα(K) = 0 , (5.25)

ZZ = Γ2Γ
2
= 16

W2W2

D2W2D2W2 , (5.26)

ZZ DαΦ = 0 = W2W2DαΦ , (5.27)

which we will use throughout the calculations that follow.

Let us start from the variation of the full superspace Lagrangian of liberated super-

gravity (3.19), which will give the superspace equations relevant to F . This is achieved in a

superspace setup by varying the chiral superfield Φ by using the form δΦ = (D2 − 8R)δN ,

for some complex unconstrained prepotential N . The result of the variation corresponding

to F is

WΦ−
1

4

(

D2−8R
){

e−K/3KΦ

}

+4
(

D2−8R
)

[

(e−2K/3U)Φ
W2W2

D2W2D2W2

]

−2(D2−8R)

{

KΦDα

(

D2−8R
)

[

WαW
2
(e−2K/3U)
|D2W2|2 −WαD2

{

W2W2(e−2K/3U)
|D2W2|2D2W2

}]

+KΦΦ(Dρ̇Φ)(D2−8R)

(

W2W ρ̇

[

e−2K/3U
|D2W2|2−D2

{

W2
e−2K/3U

|D2W2|2D2W2

}])}

=0 . (5.28)

Multiplying the above equation by Z and using the identities

Z
(

D2−8R
)

[

(e−2K/3U)Φ
W2W2

D2W2D2W2

]

≡ 0 ,

Z(D2−8R)KΦDαWα

(

D2−8R
)

[

W2
(e−2K/3U)
|D2W2|2 −D2

{

W2W2(e−2K/3U)
|D2W2|2D2W2

}]

≡ 0 ,

Z (D2−8R)KΦΦ Dρ̇ΦD2W2W ρ̇

[

e−2K/3U
|D2W2|2−D2

{

W2
e−2K/3U

|D2W2|2D2W2

}]

≡ 0 ,

(5.29)

we get (5.13) which is the constraint obeyed by standard supergravity.

Now we turn to the variation of the auxiliary field M . We want to show that all

the contributions to the variation of M arising from (3.5) are vanishing once we multiply

with Z. The easiest way to derive the variational equations of M is to turn to the super-

Weyl formulation of supergravity and vary with respect to the compensator. Assume

we have the chiral superfield σ as compensator, which transforms under the super-Weyl

transformation (2.8) as

σ → σ +Σ (5.30)

and under Kähler as: σ → σ−Σ. The Lagrangian (3.5) then takes the super-Weyl invariant

form

LNEW = −16

∫

d4θ E e−4σ−4σ e−2K/3 W2(K)W2
(K)

D2W2(K)D2W2
(K)

U
(

ΦI ,Φ
J
)

. (5.31)
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To go back to standard supergravity we gauge-fix σ = 0. We now vary the full Weyl-

invariant liberated supergravity Lagrangian with respect to σ (and then we set σ = 0) to get

W +
1

4

(

D2 − 8R
){

e−K/3
}

− 8

3

(

D2 − 8R
)

[

e−2K/3 W2W2

D2W2D2W2 U
]

= 0 . (5.32)

Once we multiply with Z and using the identity

Z
(

D2 − 8R
) [

e−2K/3 W2W2

D2W2D2W2 U
]

≡ 0 , (5.33)

we find (5.14). Note that equation (5.32) is related to the component field variation of M .

The variation for the auxiliary field ba. Finally, we have to perform the variation

of the ba in Lagrangian (3.19) and show that it does not alter (5.15). In principle one can

follow the procedure presented in [35, 53] and perform a full superspace variation to derive

the equivalent equations for the Ga superfield.

However, since in our setup supersymmetry will be generically spontaneously broken,

we can utilize the form of the action we derived in the previous section in terms of con-

strained superfields. Therefore instead of varying ba in (3.19), we can equivalently vary ba in

L = L0 + LX + LL , (5.34)

where the term LL contains the appropriate chiral Lagrange multipliers ρ and τα, namely

LL =

(
∫

d2Θ2E ρX2 + c.c.

)

+

∫

d4θE (X ταDαK + c.c.) . (5.35)

In the Lagrangian (5.34) the superfield X is chiral but otherwise unconstrained, and the

same holds for Φ. However once we vary ρ and τ we get the equations (4.3). Since now

we have only standard chiral superfields in the theory we easily reduce to components

and perform the standard supergravity variation which will give the equations for ba. In

particular the only ba dependence of (5.34) is given by the following terms

LL=

{

∂

∂Θβ
(EXτβ)

∣

∣

∣

}

KAAbaχσ
aχ+c.c.

−
{

EXτα
∣

∣

∣

}

[

iKAAσ
c
αβ̇

emc ψ
β̇
mbaχσ

aχ−bαβ̇

(√
2iKAAFχβ̇− i√

2
KAAAχ

2χβ̇

+
√
2KAAσ

aβ̇ρχρD̂aA

)]

+c.c.+ terms with no ba dependence .

(5.36)

It is now straightforward to show that the variation of the Lagrangian (5.34) under ba will

give component field equations which can be directly lifted to the superspace equations of

the form

Gαα̇ − 1

4
eK/3

(

[

Dα,Dα̇

]

{

e−K/3
}

− 3
{

e−K/3
}

ΦΦ
DαΦDα̇Φ

)

= DβX Bβαα̇ + c.c. (5.37)
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for some superfield Bβαα̇. From (4.3) however we have

W2W2DαX = 0 → ZZ DαX = 0 , (5.38)

where we have used (5.26). Then we can derive (5.15) once we multiply (5.37) with ZZ.

We therefore conclude that the variation of (3.19) with respect to ba gives (5.15). Notice

that even though (5.37) will depend on U (through Bβαα̇), equation (5.15) does not.

6 Discussion and outlook

In this work we have studied a new deformation of four-dimensional N = 1 matter-coupled

supergravity which has the effect of directly adding an arbitrary real function U
(

AI , A
J
)

to the scalar potential. Our proposal works for any generic gauged chiral model and it

is valid under any circumstance as long as supersymmetry is spontaneously broken in

some sector. The superspace term preserves the Kähler-Weyl invariance of the standard

supergravity theory and supersymmetry is linearly realized off-shell.

Summarizing, the features of such liberated N = 1 supergravity we discussed here

comprise the following unique features:

• It is invariant under N = 1 linear local supersymmetry off-shell.

• It is generically in a supersymmetry broken phase.

• It preserves the Kähler-Weyl invariance of standard N = 1 supergravity.

• The potential of the theory has the standard structure of the N = 1 theory with an

additional uplifting part.

• Depending of the behavior of U as F → 0, we have two cases. Either the new term

does not vanish and we are always in the broken phase, or it vanishes giving standard

N = 1 supergravity with higher order interaction terms. In particular, in the latter

case, its vacuum structure is the same as in the standard N = 1 case.

As mentioned in the introduction, liberated supergravity is rich of consequences. For

instance, it is well known that inflationary models rooted in supergravity suffer from the

so-called η problem [32]. The latter arises because the flatness of the standard scalar

potential is easily ruined by the overall exponential term containing the Kähler potential.

Since the new extra term (3.5) is completely free from constraints one has the freedom to

write any potential which could support an inflationary dynamics. Furthermore, liberated

supergravity is a suitable starting point to construct low-energy phenomenological models

where the fermion-boson mass degeneracy is broken by the extra terms. This represents

an alternative (or extension) to the traditional low-energy supergravity construction where

the degeneracy is broken by soft terms.

The new term presented here and the term in [26] are only the first and probably

simplest constructions which one can encounter, but there are definitely more possibilities
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even in the minimal four-dimensional N = 1 supergravity. Moreover there has to be

generalizations with more supersymmetry and/or in other dimensions; in other words we

have been only scratching the surface here. However, the fact that the function U(AI , A
J
)

always enters the scalar potential in the form (1.1), no matter the supersymmetry breaking

pattern or no matter if the theory is gauged or not, is a positive sign for the generality of

our findings.

Finally, one of the most pressing questions concerns the string theory/brane origin

of these new terms. The term in [26] is apparently related to the effective theory of the

anti-D3 brane. The term we discuss here might have a similar origin, but we can only

speculate on this at the moment.
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