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surability conditions are identified which guarantee that a given payoff can be
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forward libor and swap rates, and shown to have a unique positive solution when
the percentage volatility function is bounded, implying existence of an arbitrage-
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1. Introduction

Traditionally, models of interest rate have dealt with continuously compounded,
instantaneous rates. The instantaneous, continuously compounded spot rate and
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forward rates and a continuum of discount factors are constructed and options
are evaluated, using the risk-neutral measure. The latter is arrived at by taking as
numeraire the continuously compounded saving account (bond). Yet, in the actual
market place, the rates applicable to interest-rate derivatives, foremost among
them LIBOR and swap derivatives, are quoted for accrual periods of at least
a month, commonly three or six months, and their calculation is simple rather
than continuously compounded. Moreover, the market quotes liquid caps and
(European) swaptions in terms of implied Black-Scholes volatilities, implicitly
assuming forward LIBOR and swap rates follow lognormal processes with the
guoted volatilities.

The traditional models take a continuum of initial instantaneous forward rates
or discount factors as given, and construct a continuum of processes, making
assumptions either on the dynamics of the instantaneous spot rate (possibly de-
pendent on several state variables) or volatilities of instantaneous forward rates.
(A comprehensive treatment can be found in Musiela and Rutkowski (1997).)
In order to match market quoted prices of caps or European swaptions, they
need to suitably parametrize degrees of freedom in their specified dynamics of
instantaneous spot rate or volatilities of instantaneous forward rates, and then
“calibrate” these parameters to quoted prices by, in general, a multidimensional
and often highly computationally intensive, numerical root search algorithm. The
resultant processes for forward LIBOR or swap rates are analytically intractable,
and generally bear no resemblance to lognormality.

Only recently, arbitrage-free models have appeared that model LIBOR or
swap rates directly as the primary process rather than a secondary process derived
from instantaneous rates. By a direct hedging argument, Neuberger (1990) derived
the industry standard Black-Scholes formula for European swaptions. However,
a term structure of swap rates (or LIBOR rates), which is necessary for modelling
of more complex derivatives, such as Bermudan swaptions, was not developed.

Sandmann and Sondermann (1993, 1994) proposed a lognormal model for the
effective rate and showed that it circumvents certain instabilities (particularly with
Eurodollars) present in lognormal, continuously compounded rate models. This
was further developed within the framework of Heath et al. (1992) by Goldys et
al. (1994) and Musiela (1994). Continuing in this framework, the emphasis was
shifted to LIBOR rates in Miltersen et al. (1995, 1997) and Brace et al. (1997),
where by different techniques a term structure model of lognormal LIBOR rates
was constructed which priced caplets by the industry standard Black-Scholes
formula — and for this reason termed the “market model” by the latter. Such a
model is now automatically calibrated to caplet prices and can be used to evaluate
more complex products like captions and callable capped floating rate notes.

Brace, Gatarek and Musiela’s approach was complicated by the fact that the
LIBOR market model dynamics was specified in the risk-neutral measure, and as
such still relied on the continuously compounded spot rate, which they (implic-
itly) assumed to have finite variation. A satisfactory and transparent construction
was subsequently carried out by Musiela and Rutkowski (1995) in the forward-
risk-adjusted measure (of the final payment). Their “backward induction” was an
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explicit recursive equation for the term structure of forward LIBOR rates with a
lognormal (i.e., deterministic percentage) volatility. In particular, it followed that
prices of all LIBOR derivatives depended only on the finite humber of discount
factors that define the LIBOR rates.

Our approach to LIBOR and swap derivatives is largely motivated by Musiela
and Rutkowski (1995). We do not use continuously compounded instantaneous
interest rates, or the risk-neutral measure: LIBOR and swap derivatives are eval-
uated and hedged without them. Key to this is the fact that payoffs of LIBOR
and swap derivatives are homogeneous of degree one in the discount factors that
define these ratésAs such, relative to a zero-coupon bond numeraire (or a linear
combination of them), the payoff is a function only of (the path of) LIBOR and
swap rates. As we will show, under suitably general conditions, such payoffs can
be attained by self-financing trading strategies involving only the finite number
of zero-coupon bonds that define LIBOR rates, even in some situations where
there is no instantaneous saving bond, or the market is incomplete.

The no-arbitrage framework adopted here assumes the existencetatea
price deflatorwhich makes deflated zero-coupon bond prices martingales (in
the actual measure), as in Duffie (1992, Chapter 6). This framework does not
require the instantaneous saving bond. Moreover, the condition is evidently only
on the ratios of zero-coupon bond prices. But, forward LIBOR (and swap) rates
are defined in terms of these ratios, and vice versa. As such, the no-arbitrage
condition naturally translates into a constraint on forward LIBOR (or swap)
rates, an equation which relates the drifts and covariance matrix of the rates.
This leads to the existence of a unique arbitrage-free term structure of forward
LIBOR (or swap) rates from an arbitrary specification of forward LIBOR (or
or swap) volatility function, with an explicit construction in the lognormal case.
LIBOR and swap derivative prices and hedges are then determined, because, as
already mentioned, their payoffs (relative to appropriate numeraires) are specified
directly in terms of LIBOR and swap rates.

The content is as follows. The next section will establish notation, recalls
various mathematical facts and records some preliminary results. We work in a
continuous semimartingale framework. Not depending on the choice of a Brown-
ian motion as a basis, it makes the derivations and formulae more conceptual and
arguably simpler. We will specialize to Ito processes when constructing models
as solutions of stochastic differential equations (SDE).

Section 3 discusses self-financing trading strategies (SFTS). A useful criteria
is established which facilitates several examples. The European swaption (in-
cluding stepup and amortizing varieties) is treated as an instance of the option
to exchange two assets, leading to its market model Black-Scholes formula. A
more general example derives the SFTS (and price) for a “trigger swap.” In this
section we also point out a fact which becomes a theme for the rest of the pa-
per. Suppose we are given a finite number of assets, whose covariance matrix
of instantaneous returns is nonsingular. Then a payoff which is a function of
these asset prices at expiration cannot be attained by a SFTS, unless the payoff
function is homogeneous of degree one in the prices. This is a situation where
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the market is incomplete, e.g., a European call option on an individual asset
cannot be replicated, unless another asset is a zero-coupon bond maturing at the
option expiration. The reason is that an instantaneous saving bond cannot be
replicated in the non-singular covariance case. Yet homogeneous payoffs, such
as an option to exchange two assets, can be replicated, because a long position
in one asset can be financed by a short position in the other. Thus, as long as the
homogeneity property is satisfied, the existence of an instantaneous saving bond
iS an unnecessary restriction.

Section 4 introduces “locally arbitrage-free” (LAF) price systems. This en-
ables to bypass technical integrability conditions, and instead concentrate on
the linear constraint between the drift and covariance matrix that underlines the
essence of the no-arbitrage condition. These constraints are also formulated in
terms of forward LIBOR rates, leading to an SDE, and in the case of the LIBOR
market model to its explicit solution by the “backward induction” technique of
Musiela and Rutkowski (1995). The LAF condition already implies to some ex-
tent that there are no “free lunches.” It also enables deriving prices and hedging
strategies for path-independent payoffs, as solution to a “fundamental differential
equation” expressed in terms of forward LIBOR.

Section 5 strengthens the LAF condition by assuming that the relevant lo-
cal martingales are actually martingales. This enables stronger no-free lunch re-
sults, representation of appropriately measurable payoffs by self-financing trading
strategies, and their valuation by taking expectation. We also prove the existence
of an arbitrage-free term structure of positive forward LIBOR rates, given an ab-
solute forward LIBOR volatility function of linear growth. We use the technique
of change of numeraire as applied for the special case of zero-coupon bonds and
forward risk adjustment in Jamshidian (1987) and El Karoui and Rochet (1989)
(and in connection with exchange rates in Jamshidian (1993)) and described for
general numeraires in, for instance, Babbs and Selby (1993), and more fully in
this connection, by Geman et al. (1995).

In Sect.6, we introduce a tenor structure and with it the notion of a tenor
adapted self-financing trading strategy. A “spot LIBOR measure” is constructed
which shares many characteristics of the risk neutral measure (e.g., prices are
“discounted along the path before averaging”), yet is well-adapted to LIBOR
and swap derivatives. The SDE for forward LIBOR here resembles the Heath et
al. (1992) "forward rate restriction” for instantaneous forward rates. They had
to assume a bounded absolute volatility function for otherwise the solution may
explode. But here, a unique positive solution exists when the percentage volatility
is bounded (absolute volatility having linear growth).

Assuming a tenor structure, Sect.7 finally imposes the unity constraint
(Bi(Ti) = 1) for zero-coupon bonds at maturity. The existence results are ex-
tended to enforce this constraint. Forward LIBOR rates are uniquely determined
as before as the solution of an SDE. But the numeraire is uniquely determined
only at the tenor dates. Different continuous interpolation of these values give
rise to different arbitrage-free models. However, relative prices of LIBOR and
swap derivatives are independent of the choice of interpolation, as are the prices
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themselves at all tenor dates. Moreover, implementation algorithms need only to
construct the LIBOR process, not any numeraire.

Section 8 extends the results for LIBOR to the term structure of forward swap
rates with a fixed end date. The dynamics of this term structure in the last-maturity
forward-risk-adjusted measure is derived by noting that each forward swap rate
is a martingale in an associated “forward swap measure” whose numeraire is
an annuity. As in the LIBOR case, the SDE has a unique positive solution, and
the swap market model can be constructed explicitly by backward induction.
However, we point out that the lognormal LIBOR and swap market models are
inconsistent with each other.

The next four sections are devoted to applications. We discuss in some detalil
some primary examples of LIBOR and swap derivatives, including knockout,
Asian, periodic, and flexible caps in Sect. 9, Bermudan swaptions, captions, and
callable capped floating rate swaps in Sect. 10, LIBOR in arrears and constant
maturity swaps in Sect. 11, and spread options, triggered swaps, index amortizing
swaps, and callable reverse floaters in Sect. 12.

The path-dependent derivatives of Sect.9 can be accurately evaluated by
constructing random paths of the LIBOR process using either the forward-risk-
adjusted or spot LIBOR dynamics, followed by averaging. By “forward trans-
porting” contingent payoffs, we can actually cast the Bermudan derivatives of
Sect. 10 as ordinary path-dependent options. But since their definition is recursive,
a multitude of conditional expectations have to be computed, for which conven-
tional Monte Carlo simulation is inadequate, unless there are only two (possibly
three) exercise dates. “Bushy trees” are more appropriate, but they have their
own limitations. A simple “non-arbitrage free approximation” is suggested as
a numerically robust alternative. Section 11 deals with “convexity adjustment.”
Interestingly, a related problem arises in statistical genetics, for which a closed-
form solution is now provided. The options of Sect. 12 depend on both caplet and
swaption volatilities. We indicate how to construct a swap market model which
is root-search calibrated to caplet prices. But, since root-search calibration is not
in the spirit of market models, we suggest alternative “improvised models.”

A concluding section elaborates on the policy of adopting different models
for different products.

2. Notation and mathematical preliminaries

Let T > 0, and (2,.7,P,.%), t € [0,T], be a complete filtered probability
space satisfying the usual hypotheses. The value atttiofi@ stochastic process
X will be denoted byX; or X(t), as convenient. The4 conditional expectation
operator is denotef;, or EF. Let

# = {continuous semimartingales on 0}, & ={Xe€ & : X >0, Vt}.

The quadratic covariation processXfY € & is denoted X, Y). In our conven-
tion, (X, Y)o = 0 rather tharXoYyp. The quadratic variatiofX) = (X, X), being
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a continuous increasing process, induces pathwise a medg¥ieon [0, T],
andd(X,Y) is likewise a signed measure by polarization. Other notations for
d(X,Y) often seen areX - dY, cov(dX, dY) and(dX,dY). ForX € #, and an
appropriate integrand, we denote by/ cdX the process ir¥” whose value at
timet is the stochastic integr%t osdXs. In our conventionfo0 osdXs is O rather

than opXp. With these conventions, Ito’s product rule (or integration by parts)
states

XY:X0Y0+/XdY+/YdX+(X,Y>.

If X,Y € &, Ito’s lemma applied to log() gives
_ [ g g0 _ /dX /dY :/d<X,Y>
X=X e , (logX,logY)={[ " [ ) <y

The compensator of € & is here denotedy or uf; it is the unique process of
finite variationux € ¢ such thatuy (0) = 0 andX — ux is a P-local martingale.
If X > 0, there is an also unique process of finite variatign= U\ € &, such
that Ux (0) = 1 andX /Uy is a P-local martingale. FoiX > 0, the compensator
ux and the multiplicative compensattl are related by

Ux = /Xd(logux), Uy :ef K .
ForX,Y € &, we get from Ito’s product rule
e = [+ Yelu) + (X, Y). @)
If X,Y € &, we have in addition

UXY - UXUYe(|OgX,|OgY> ) (2)

We recall some well-known facts about the Girsanov change of measure needed
for the change of numeraire. L& be a measure equivalent R Denote its7
conditional expectation operator EF SetM; = E[dQ/dP]. Then,M; > 0 is
aP-martingale Mg = 1, and ifXs is a.7 measurableQ-integrable random vari-

able, therEtQ[XS] = EP[XsMs] /My, t < s. This implies thatX is aQ-martingale

iff XM is aP-martingale, and by localizatioX is a Q-local martingale iffXM

is a P-local martingale. Now, assumd is continuous. FoiX € &, by Ito’s
product rule,

(X — ux — (X, logM )M :Xo+/(X—ux—<X,IogM>)dM +/Md(X—ux).

The first integral is a@P-local martingale becausk is, and so is the second
integral becaus& — ux is aP-local martingale. So.X — ux — (X,logM ))M is

a P-local martingale, implying thaX —ux — (X,logM) is aQ-local martingale.
Therefore, the\g—compensatou;(g of X is
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uQ = uf + (X, logM), (MtEEIP BSD (3)

In particular, if X is a P-Brownian motion, therY = X — (X,logM) is a con-
tinuousQ-local martingale satisfyingY ); = (X); = t; henceY is aQ-Brownian
motion by Levy’s characterization. (It is known that stochastic integration and
guadratic variation with respect # andQ coincide.) IfX € &, the multiplica-

tive Q-compensatol),2 of X is similarly given by

UXQ — UXPe(IogX,IogM) ) (4)

For X € &, we consider the following spadgX) of stochastic integrands:
T T

L(X) = {predictable processes: / o2d <X>s+/ los| |dux(S)] < oo as.} .
0 0

For o € L(X), the stochastic integrgf odX is well defined, and is a continuous
semimartingale. It is known th&{X) and | cdX depend only on the equivalence
class of the measur@. Clearly, for anyX € &, L(X) contains all predictable
processes with a.s. bounded paths onT[O In particular, for anyX € ¢,

L(X) contains all adapted processes whose paths are left continuous and have
right limits a.s. For our purposes, the latter would have sufficed and been more
convenient, except for one result (Theorem 5.1) where we need the larger space
L(X).

Lemma 1. Let X, Y€ & ando € L(X)NL(Y). Theno € L(XY), and if Y > 0,
o € L(X/Y).

Proof. SinceX andY have bounded paths on,[D], to show [ od(XY) < oo,

it suffices by the product rule and the assumptiore L(X) N L(Y), to show
that [o?d(X,Y) < oo. But, using againc € L(X) N L(Y), this is a direct
consequence of the Kunita-Watanabe inequality. That| |duxy| < co now
follows from this, Eq. (1), and being inL(X) NL(Y). The second statement is
similar. O

We will deal with vector processes. Set
EN={By,...,By):B €&} &M={(By,....By):B €&}

We regard elements @f" as column vectors. F@ € & ", By andB; will denote
B(0) andB(t), wheread; will denote thei-th component oB. This should not
cause confusion. Fd € £, set

L(B)E{9=(91,...79n):9i EL(B;)}, Be&".

We regard elements df(B) as row vectors. Fo¥ € L(B), [6dB denotes

> [6idB, or in differential notationgdB = " 6;dB;. The following simple
result will be important. Interestingly, Eq. (5) and (6) below have the same form
in the stochastic case as in the deterministic case.
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Lemma 2. (@) If¢ € &,B e &, andf € L(B) with §; € L(¢) for all i, then

d <5/9d8> - 0d(¢B) + (/ 0dB — 9B> de . ®)

(b) If B € &M with B > 0 for some j, andd € L(B) with 6; € L(B;) for all i,

then
B\ _ B 6B
d(Bj/edBj>—9dB+(/9dBj — Bj>dB" (6)

Proof. Using the product rule, then Lemma 1 and associativity, then again the
product rule, gives

s fom) ()=o)

= 6(£dB +d(¢,dB)) = 6(d((B) — Bd) .
(b) Follows by applying (a) witlg replaced byB; andB replaced byB/B;. O

The next result will be used (in different measures) for construction of forward
LIBOR or swap rates processes, given a covariance function and prescribed initial
forward rates.

Lemma 3. Let wy, be a d-dimensional Brownian motion ¢f2,.7 , P,.%). Let
scalar functionsu; (t, x) and d-dimensional row-vector valued functiongt, x),

t €[0,T],x € RT, 1 <i < m, be measurable, bounded and locally Lipschitz in
X. Then, there exist unique-1to processes X> 0, with a given initial condition
X(0) € R, satisfying the SDE dX= X; i (t, X)dt + X i (t, X)dw. Moreover, the
solution is square-integrable.

Proof. It suffices to show that the log-transformed S, = wvj;(t,Y)dt +

~i (t, Y)dw has a unique solution, wherg(t,y) = ai(t, €), vi(t,y) = ui(t, &) —

17 (t,y)|?/2. But it is easy to see that(t,y) andy;(t,y) are bounded and locally
Lipschitz. The desired result now follows from a standard existence and unique-
ness theorem for solutions of SDE$/oreover, a standard argument shows that
the SDE forX implies E[|X|?] < K (1 +|Xo|?)exp(Kt) for someK > 0. O

Corollary 1. Withw; andgi(t, X) as in Lemma 2, there exists a unique (square-
integrable) w;-Ito process X > 0, with a given initial condition X0) € RT,
satisfying the SDE

ax = 2”‘: X% i (t, X)aj (t, X)!

14X dt + Xjoi (t, X)dw .

j=i+l

Moreover, the processes ¥ (1 +X;)... (1 +Xy) are square-integrable martin-
gales, for all i.
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Proof. Since /(1 +X;)) and sum and product of bounded, locally Lipschitz
functions are bounded and locally Lipschitz, by Lemr2 a unique solution
X; > 0 exists. We claim that

m

aY = Yidw, w@ =Y 90X
j=i

1 +Xj (t)

This is obvious fori = m becausery, = 1 +Xn,, anddX;,, = Xmonmdw. By (2) and
backward induction

Uy, = U@y, = Yaax) Uy, exp(log (1 +X),log Y1) >)

_ duy Xioi _
_exp</1+xi>xlxexp(/1+xi~yi+ldt>—l,

where the last equality is a direct consequence of the dritt>¢fgiven by the
SDE and the definition ofj+1. So,Y; is a local martingale, and has zero drift.
That the dispersion coefficient of is Yj~; follows directly from the product
rule. Finally, sincey; is a bounded process, it now follows thétis a square-
integrable martingale. In fact, by a standard argument, for déme0,

E[Y:(1)?] <K@ +Y20) e <00, Vt,i. O

3. Self-financing trading strategies (SFTS)

Definition. A pair (6,B), B € £", 6§ € L(B), is called aself-financing trading
strategy (SFTS) if d9B) = 0dB (i.e.,dB = 6By + [ 6dB). We also say is a
SFTS if B is understood.

In this definition,B; is thought of as the price of theth asset, and; denotes the
number of shares held in ass$efThese assets are considered to be cash securities
without any continuous cash flows, such as stocks, bonds and options. Here, the
B; do not represent forward or futures prices or exchange ?afé® quantity

fdX — d(#X) can be thought of as the continual financing needed to maintain
the trading strategy. So, if it vanishes, it means that, except initially at time
0, no money is put into or taken out of the strategy until matufityThe price

C = 6B of an SFTS is always continuous, even wifigs discontinuous (because

it equalsgoBo+ [ #dB). Sometimes) may only be defined on a subinterval T0']
satisfyingd(#B) = #dB. Then, provided, > 0, we can extend to an SFTS by
setting on T*,T], 6 =0 fori < n, andf(t) = 6(T*)B(T*)/Bn(T*). This can

be done also in the cases wh&eare defined only on [Or*] for i < n.

We will only study securities which can be replicated by an SHT®ith
respect to a given price systéBne #". As such, in this paper, the term “security
price” is synonymous t@B for some SFTS). There may exist two distinct
SFTS# and @’ with the same payoffs, i.e6(T)B(T) = 6’(T)B(T). In that case,
unless they have the same prices, é8,= 0'B, there is obviously an arbitrage
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opportunity. Later we will impose a condition which ensures that such a “law of
one price” will hold, and in fact provides the price as an appropriate expectation
of the payoff.

Theorem 1. If (,B) is an SFTS, then so @, £B) for any ¢ € & such that
6; € L(&) for all i.

Proof. This follows immediately by substitutingB —6oB, = [ 6dB in both sides
of Eq. (2.5). O

Corollary 1. Let B e £ with B > 0 for some j. Le® € L(B) with 6, € L(B;)
foralli. Then(d,B) is an SFTS if and only {¥, B/B;) is an SFTS, and this holds
if and only if

o, (oB©@ B

91_9,(0)+§<9,(0)Bj(0) 9. B /GdBJ) . (1)
Proof. This follows by setting in Theorem 1 = B; (£ = 1/B;) for the “if’
(“only if") part. O

The significance of this result is that we can choose all but a sifigle
arbitrarily, i.e., we can trade in all except theh security arbitrarily, while
using thej-th security to appropriately finance the strategy. Also, when 1,
Corollary 1 implies ¢,1) is an SFTS, s@ is a constant.

We call a price systerB € #" non-degeneraté 6 € L(B) and ([ 6dB) =
imply ¢ = 0. An example is whenB;,B;) is absolutely continuous, and the
n by n matrix d(B;, Bj)/dt is nonsingular for all {,w). By an instantaneous
saving bond(with respect to a giveB € #"), we mean a nonzero SFT&
such that(fB) = 0. Thus, an instantaneous saving bond is a replicable security
whose pricedB has finite variation. Note, an instantaneous saving bond exists
only whenB is degenerate. The following result provides a useful criteria for a
“path-independent” SFTS.

Theorem 2. Let B € &M andd(t, B) be a C* function of n+ 1 real variables. Set
6 = 0(t,B), 09/0t = 89/8t(t, B), etc. Then(d,B) is an SFTS if the following
two equations are satisfied

ZBI 391 =0, Vi (equivalentlyt; = 89?)) : @
0B;
00;
Bd”zZaBJ (Bi,Bj)=0. ®)

Further, if B € & and Eq. (2) is satisfied, then for ady< k < n, Eq. (3) is
equivalent to

26 1« 0 B B _
o Bdt+2i¢%;k 0B BiB;d(log B’ IogBk>—O. 4)
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Conversely, if{6,B) is an SFTS and B= <" is nondegenerate, then (2) and (3)
are satisfied.

Proof. Set C(t,B) = 6B, C; = C(t,B), 9C/ot = 9C/ot(t,B), etc. Since
8C/8Bi =6 + ZB]' (%j /aBi, if (2) holds, then&C/aBi = 6;, and 96, /8B,— =

9%C /0B;0B; = 96; /0B;. Hence by Ito’s lemmagC — 9C /9B - dB equals the

left hand side of (3), which, if zero impliedC = 0dB, i.e., § is an SFTS.
The equivalence of (3) and (4) follows easily from Eq. (2) and the symmetry
of 96;/0B;. As for the converse, since notw € ", and§ is an SFTS, we
have [Bdd = —(B.#). Thus 0 =(/Bdf) = [ > (Bjd6; /9B) - dB, which by
nondegeneracy implies (2). Equation (3) follows as beforel

Note from the proof that (2) implie8¢; /0B; = 06; /0B;, and plugging this
back into (2), it followsé(t,B) (C(t,B)) is homogeneous of degree zero (one)
in B. In particular, wherB is non-degenerate, all path-independent SET&8e
homogeneous of degree 0 in B. By a similar argument one sees tBaisif
non-degenerate and an Ito diffusion, and the pag@B(T)) is a function of
B(T), then there is no SFT8 such thatdrBr = C(B((T)), unless the payoff
is homogeneous of degree 1 By in which case the price will be a function
C(t,B) of B(t) satisfying a PDE provided by (3) or (4).

Example 1 Option to exchange two assdtdargrabe 1978; Geman et al.
1995). LetB = (By,By) € #2. This option has the payoff at tim& > 0 of
max®:1(T) — Bx(T), 0). Assuming(logB;/B,) is positive and deterministic, for
t<T, set

01(t) = N(h(t)), 6a(t) = —N(h_(1)),

where
_ By B _ log (Ba(t)/B2(t)) |, V(t,T)
VL, T) = (IogBZ>T—(IogBZ>t, hy(t) = VET) + )
~ e—x2/2 ~ X
e = © . NE= /_ )y

It is standard that/B approaches maB((T) — B(T),0) at timeT. Also,
(0,B) is an SFTS. Indeed, from the relati@in(h.) = B,n(h_), it follows that
the functionC(t,B) = 0B satisfiesoC /0B; = 6;. Therefore, Eq. (2) in Theorem
2 holds. It remains to show Eq. (4). This follows from

oC oh, oh_

ot dt = (Bl(n(h+) ot — Byn(ho) ot )dt
_ _ 106, _, B
= Bin(hy)dVv = ~20B, Bid(log Bz> .

If B, is a zero-coupon bond price in this example, iB(T) = 1, then the option
is a European call option on the first asset, as in Merton (1973). But, otherwise,
the converse part of Theorem 2 and remarks following it imply that it is not
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possible to replicate a call option on the first asset (by trading;irand B;)
because a call option payoff is not homogeneous of degree B, jiB{).

Example 2 European swaptior(Neuberger 1990). LeB € &, § € RI1,
K > 0. AssumeB; > B,,. SetX =B; — By, Y =61Bx+...+6,_1Bn. A European
payer’'s swaption with coupol, (fixed) day-count fractioné and expirationl
is a security whose payoff at time T is max¥@ — KYt). So, it is an option
to exchange “fixed cash flowKYy for “floating cash flows”X. The pricing
and hedging formulae of Example 1 therefore apply, provided the “forward swap
rate” S = X/Y has deterministic volatility, i.e.{log (S)) is deterministic. This
is the industry-standard approach.cApletis a European swaption with = 2.
A European swaption can also be considered as an option with strike price 1 on
a forward bond with coupoi .

A variation often seen in steep yield curve environments is a “stepup swap-
tion”, where the coupoiK is nonconstant, depending onThis can be reduced
to the standard case by replacifigby 6 K; and settingk = 1. Sometimes one
has a non-constant notional, e.g., an option to enter (or cancel) an amortizing
swap with notionalN € R}~ The payoff is again max(Xr — KYr), where
now X = Nl(Bl_ Bz)+. . -+Nn71(anl_ Bn), andyY = N161Bo+...+Ny_16n_Bp.
We can again apply Example 1 if we assume that the “break-even forward swap
rate” S = X/Y has deterministic volatility. These assumptions of deterministic
volatility for different swap rate$ may not be consistent with each other. Yet,
taken individually, they appear to be quite reasonable assumptions — certainly
robust and convenient.

Example 3 Trigger swap Let B = (By, By, Bs, Bs) € &%, A trigger swap with
maturity T is a security whose payoff at time is Bz(T) — B(T) if By(T) >
B,(T) and zero otherwise. IBs = B; and By = By, then the trigger swap is
the same as the option to exchange assets 1 and 2. Assylogi /B,) and
(logB; /By, logB3/B,) are deterministic, fot < T set

n(h(t))Bs(t) n(h(t))Bs(t)

01(t) = V(t, T)By(t) ’ a(t) = TV T)B(L) 03(t) = N(h(t)) ,
where,
h(t) = h_(t) + ((Iog :;, log E?T — (log Ez, log :?t) NV, T) .

We claim that ¢,B) is an SFTS and
0 - By = Ba(t)N(h(t)) — 1gym)>p,mBs(T) as.as —T.

This then provides the SFTS for the receive leg of the trigger swap, and the pay
leg is given by a similar SFTS witB; replaced byB,. (A digital option is the
special case of this receive leg wiB3(T) = B3(T) = 1.) To establish the claim,
note #,B; + 6,B, = 0, hence the value of the receive legi8; = Bs(t)N (h(t)).
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Now, if B1(T) > By(T), then log B1/By) is bounded above zero ne@r; and
sinceV (t,T) — 0, we see thah_(t) and henceh(t) approach infinity. Hence,
0B — Bs(T). Similarly, if By(T) < By(T), thendB — 0. To showd is self-
financing, we use Theorem 2. Se{t,B) = B = BsN (h). Clearly,0C /0B; = 6,
for all i; hence it remains to show (4) holds. Singé;/9B3; = 0, Eq. (4) for
k = 2 simply reads

ON(h(t)) 106; _, 00, B B
+ + = i = .
Bs ot dt 2B, BidVi Bs B:BsdVi3=0, Vi (log B,’ log Bz>
This equation is easily verified by the calculations
891 a91

B h B
Bf=thf(1+v) ,dvi=-vav, o BiBs =n(h)

881 8B3

oh h_ Vi3(T) — Vis(t) ) _ h dVis
atdt—<1+v>dV+d< Vv =— 1+V dav — v

We can rederive the SFTS for an option to exchange two assets by considering a
trigger swap withBz = B; andB,4 = B,. For the receive (pay) ledy(t) becomes

the same ah.(t) (h_(t)). Aggregating and using the identiBfn(h,) = Bon(h_),

one getd); = N(h,) andd, = —N (h_), as before.

Example 4 SupposeB;, By, B; are geometric Brownian motions with respect
to a one-dimensional Brownian motia(t): dB; /B; = u;dt + ;dz. Set

01=012, 02=621—073, 03=—-03>,
where

0 G (t) it _ Oifj — Oj i
, Gity=eMt, = .
CRTOTORRAS ME g

It is easy to see that)(B) is an SFTS#B = C;, — Cy3, and anddpBg = 0. This

is an example of an SFTS with zero initial investment, and a deterministic value
6B thereafter. Unless this value is zero, g, = p23, it is clear that there will

be an arbitrage opportunity. Note, the conditiery, = p23 is equivalent to the
condition (ug — p2)/(01 — 02) = (13 — p2) /(03 — 02).

The trigger swap example illustrates that, regardless of whether or not there
is an arbitrage opportunity among the underlying asset pties.., By, the
payoff of a trigger swap can be replicated by dynamic trading. For example, in
the situation of Example 4 with, » # u2 3, the SFTS in Example 3 still replicates
the payoff of the trigger swap, although in this case we can do better by combining
it with the SFTS in Example 4. A bookrunner engaged in structured customers’
business is not normally required to take advantage of arbitrage opportunities.
Normally, his primary task is to preserve the initial revenue of the trade by
hedging. What he needs is a systematic way of deriving the price and the hedge.
Arbitrage-free models not only guarantee absence of “free lunches”, but, perhaps
more importantly, provide a systematic method to arrive at the price and the
replicating SFTS.

@ij t) =
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4. Locally arbitrage-free (LAF) price systems

Definition. B € &M is said to belocally arbitrage-free (LAF) if there exists
¢ € &, (called thestate price deflatdrwith £, = 1 such thatéB; are P-local
martingales for all i.

In the next section we will strengthen this §¢8; being martingales. But, as
we see in this section, the LAF condition already suffices for most of the basic
properties. Note, iB is LAF, then so is(B for any ¢ € #.. So, forB € &1,
the LAF condition is only a condition on the rati@/B;. In particular, it does
not depend on the choice of currency. Clearly, it is also invariant under change
of equivalent measure.

Theorem 1. Let B € #" be LAF. Ther{(6B) is a P-local martingale for all
SFTSI such thatg; € L(¢) for all i.

Proof. By Theorem 3.1£0B = 6By + [ 6d(¢B), which is a local martingale
if ¢B; are, provided we show; € L(¢B;). But 6, € L(§) by assumption and
0; € L(B;) becausd is an SFTS. Hence); € L(£(B;) by Lemma 2.1. O

The LAF condition implies there is no “free lunch” in the weak sense below.

Proposition 1. LetBe &",C € &,£ € &.1fCo=0,C > 0, and&C is a
P-local martingale then G=0.

Proof. SinceéC is a non-negative local martingale, it is a supermartingale. So
Eo[&Ci] < £Co = 0. But&Cr > 0. Hence & C = 0 andC; = 0 a.svt. Being
continuousC is indistinguishable from 0. O

Theorem 2. Let B € #™" be LAF and Ce & be such thatC is a P-local
martingale. Then

uc+/chJf +(C,logé) =0. )
£
If further B, > O for some j, then
C
U /g = —(p +109¢B) . @
1
If further C > 0, then the following three equations also hold.
Uce(logc,logg)ug =1; (3)
_ C
UC - UBje <|09 Bj ’|0g§> , (4)

Uc = e*<|09 E(’:J ,log€B;) ) (5)

§j
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Proof. By (2.1), Eq. (1) is equivalent tai.c = O, i.e., to{C being a local
martingale. In particular, iB is LAF, then (1) holds foB;. Combining (1) for

B; with (1) for C, and using (2.1) gives (2). By (2.2), Eq. (3) is equivalent to
Uec = 1, ie., to&C being a local martingale. Eq. (3) applied Bp and then
combined with (3) itself to eliminat&J; gives (4). Equation (5) follows from
(2. O

Equations (1)—(5) hold in particular fa = B;, and by Theorem 1, more
generally for priceC of SFTSs. Either of these equations @r= B; completely
characterizes the LAF condition:

Theorem 3. Let B € &". Then B is LAF if there existse #. such that, for all
i, either Eq. (1) or Eqg. (2) or Eq. (3) or Eq. (4) or Eqg. (5) holds for all €B;
and some j.

Proof. Eq. (1) is equivalent tac = 0 by (2.1). So, if (1) holds foC = B;,

then¢B; is a local martingale an® is LAF. If Eq. (2) holds for some, then
by replacing¢ by £/U¢g , we may assume that Eq. (2) holds for sogneuch
that {B; is a local martingale, i.e., that (1) holds with = B;. Applying (2.1)
to the productB; = (B;/B;j)B;, and using (1) foiIC = B; and (2) forC = B; all

terms cancel, showingB; is a local martingale; s8 is LAF. The rest follows
similarly. O

Remarklf B is LAF andC is the price of an instantaneous saving bond price (so
(C) =0) then by (3Uc = 1/U¢, henceC = Cy/U,. Here, we do not assume that

an instantaneous saving bond necessarily exists (though we allow it). In practice,
B is usually degenerate and it is expected to exist.

Equations (3)—(5) suggest that the LAF condition is essentially a linear
constraint between the “covariance matrig{logB;,logB;) and the “drifts”
d(logU;), as made explicit below.

Theorem 4. Let B € #;". Assume that for some pathwise bounded predictable
processes;, yi,

t
d(logB;,logB;) = v dt, UBi(t):exp(/ pi(s)ds), i,j=1....n.
0

Then, (i) there exist pathwise bounded predictable processes such that

n n
M=r+zfuija,- Vi, ZO{]ZO
j=1 j=1

if and only if (ii) for some (and hence all) k, there exist pathwise bounded pre-
dictable processes;, i # k, such that for all i

Hi :Mk"'zvij,kaj )
itk
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where
_ _ d Bi J
Vij .k =Vij —Vik — Vjk +Ukk = dt(log Bk,log Bk> .
Moreover, if these conditions are satisfied, then B is LAF. In f@gtare P-local
martingales, wherg is given by the equivalent expressions

dB; 1
€ = exp /JZaj g * Z;Oéi’l)ijajfr dt
1 Bg B 1
= Ukexp /7Zaj Bde:(+2,ZaiUij’kajdt
j7k i,j7k
Proof. If (ii) holds for somek, setax = —aj — ... —ak_1 — Qk+1 — ... — Qn,

so thatd a; = 0, and setr =  — > wcjaj. Then, it is easy to check that
i — Y vijo; =1 for all i, so that (i) holds. The converse is similar. The last
statement follows from Theorem 3 by verifying tifadefined by the first formula
above, satisfies Eq. (3) for &t =B;. O

Corollary 1. Let B € &". Then, for some (and hence all) k, the above h by
n — 1 matrix v = (vij k) is nonsingular if and only if for eacft, w) there is no
0#ac R"suchthaty g =) vj(t,w)g = O0foralli. In this case, B is LAF;
in fact, there is a uniquey, with )" «; = 0, such that conditions (i) and (ii) in
Theorem 4 are satisfied.

Proof. The equivalence of the stated conditions is an easy argument in linear
algebra, usingy ;) is a symmetric, positive semidefinite matrix. These conditions
clearly imply the existence of unique processglt, w) satisfying conditions (i)

and (ii) of Theorem 6 for each (w). But then, as a process; (t, w) is necessarily
predictable and locally bounded, because by (ii), it is obtained from the inverse
matrix of v x, whose components are continuous functions;pi. O

The corollary basically shows that if the covariance matrix (vij) has
rankn — 1, thenB is automatically LAF. (In particular, when = 2, B is LAF,
providedwvi12 # 0.). If v = (vij) is non-singular, them is LAF, but ¢ is not
unique (“market is incomplete”) and can be chosen to be a local martingale
itself. (Define¢ by the first formula in the Theorem, with = v=(u), so that
r = 0.) Note also, the process in the first formula in Theorem 6 satisfies
Ue(t) = exp- fg r(s)ds). Hence,r can be interpreted as the instantaneous spot
interest rate, provided/U, is the price of an SFTS.

All the properties we have encountered are those of the relative [Bi¢8s.

The “forward LIBOR process” incorporates only these ratios. Gideg &
and “daycount fractions® = (61,...,6n—1) € R"1, & > 0, define then — 1
dimensional process = (Ly,...,Lh_1) € £""1 by

Li=6" (Blil - 1) . (6)
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This construction is particularly important wh& represent zero-coupon bond
prices. Nevertheless, its properties below hold in general.

Theorem 5. If B € & is LAF, then{B;+1L; are P-local martingales, and
U = u, = —(Li,log (¢Bi+1)) - (7)

Conversely, Be & is LAF if there exist€ € &, such that (7) holds for all
i=1,...,n—1.

Proof. Since¢Bili = £(Bi — Bi+1)/6i, we see ifB is LAF then ¢Bj.L; are
local martingales. Equation (7) is the same as Eq. (2) @ithB;, andj =i +1.
Conversely, (7) implies that (2), and hence (5) holds@or B; andj =i + 1,
for all i. Telescoping and using (2.2), then (5) holds for@ll= B; and allj.
The converse now follows from Theorem 30

By definition (6), we haveBi.; = By(1 +6i+1Li+1) - .. (1 +Op_1Ln_1). Substi-
tuting this into (7) we get

<L.,|og(an)>__Z<L.,|og(1+5,L, __/Z‘SJ (L L) (8)

1+6L;
j=i+l j=i+l

Conversely, it is clear that if this equation holds forialthen Eq. (7) also holds
for all i. Theorem 5 therefore implies

Theorem 6. B € &~ is LAF iff there existg € ¢, such that Eq. (8) holds for
alli=1,...,n—-1.

If L; > 0, then by Eqg. (2.2), we have similar to Eq. (7) and Eq. (8)

n—1 6d(L.L
U, = g—(logLi,log¢Bi) — ef<|°gL"|°g€B”>7ij=i+1 |_li(1+|5J Lﬁ) ) (9)

The following result provides the price and SFTS of a path-independent option.

Theorem 7. Let B € #™ be LAF, and Ce & be such thatC is a P-local
martingale and €= C(t, B;) for some C function C(t, B), homogenous of degree
1inB. ThendC/dB,B)is an SFTS, G- (0C/0B)-B, and dC= (0C/9B)-dB.
Moreover, if B > 0 for all i, then C = B,c(t, L;) for some C function dt, L)
such that a.s.,

n—1n-1 n—1
oc &d(Li,L) 1 d%c
dtf RN d{L,L)=0. (10
;J;lau 1+5,|_J 2 L= OLioL, (Lis L) (10)

Proof. NoteC = 9C /0B -B, becaus& (t, B) is homogenous of degree 1. Let us
temporarily writeX = Y if X —Y has finite variation. Then by thrice application
of Ito’s formula we have
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Q

¢dC + Cd¢ ~ 5‘22 -dB + Cd¢

0 oC
7] 0B

d(¢C)

Q

C oC

B -d(gB)+(C— B) d¢ = 9B -d(£B) .

This shows §C /9B, £B) is an SFTS; hence by Theorem 2.1 (applied {g)1
so is PC /0B, B). As for Eq. (10),C(t,B)/By,, is homogenous of degree zero,
hence equals(t, L) for someC? function ¢ (with L as in (6)). Applying Ito’s
lemma toc(t, L;), and using Eq. (2) and (8) gives (10)d

The significance of Eq. (10) is that, unlike Eq. (1)—(%; ho longer appears.
If the “LIBOR covariance matrixt(L;, L) is a function ofL, then (10) furnishes
a “fundamental differential equation” for the price. As we pointed out in the
previous section, the homogeneity condition above cannot be relaxed Bvhen
is non-degenerate. This issue will be expanded on in the next section, where a
measurability condition is identified for a payoff to be representable by an SFTS.
A LIBOR market modefwith a given daycount fraction € R7~1) is a LAF
price systenB € " such that; > 0 and(logL;, logL;) is deterministic for all
1<i,j <n-—1. The following explicit construction by “backward induction”
is essentially due to Musiela and Rutkowski (1995).

Example 1 LIBOR market modeMWe are giveny € R7~! and bounded, mea-
surable, deterministic functiong;;(t), 1 <i,j < n — 1, such that the matrix
A(t) = (4 (1)) is symmetric and positive-semidefinite. We wish to construct a
LAF B € &, such thatd(logL;,logL;) = A;;dt, with a given initial condi-
tion L(0) € R?~1. We assume that there is an integerand n — 1 bounded,
measurablé® valued functions\y(t), ..., A\n_1(t) (viewed as row vectors) such
that A;; = A - A (so rank(l(t)) < d) and that.%4 supports ad-dimensional
P-Brownian motionz(t). Let¢, B, € & be such that(0) = 1 and¢B, is a local
martingale. Foti =n — 1, define

L =L (O)exp(/ —A; dt+ N\ (d(z — (z, |og§Bi+1>)> . Bi =Bl +6L).

Now, B,_ is available, and we can use the above equationsfan—2 to define
Bn—2, and so on, until alB; are defined. Evidently(logL;, logL;) = A;;dt. Also
Eq. (7) is clearly satisfied, hen@&is LAF by Theorem 5. This solutioB is not
unique. Aside from the freedom in the choiceéoB,,, a different decomposition
Aij = A - AJ-’ leads to a different solution. For example, ¥f(t) = X (t)A(t)
for somed by d orthogonal matrixA(t,w), then a different solution obtains by
replacingz in the above recursive formula /= [ A(s)dz(s). But, by Levy's
characterizationz’(t) is anotherd-dimensional Brownian motion; so these two
solutions are essentially the same. We will later amend this construction when
B; represent zero coupon bonds (to endBr@;) = 1).

Assume now thaB; (hencel;) and & are Ito processes with respect to a
d-dimensional .¢4, P) Brownian motionz(t), following
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T =+ oz, df = rdt—edz, (e L) onpel@). (11)
i

Thed-dimensional process = —d(z,log¢&)/dt is called themarket price of risk
andr(t) = —d(logU,)/dt represents the instantaneous interest rate, provided
1/U, = 6B for some SFTS. WhenB is LAF, Eq. (3) and (4) forC = B
translate to

pi =1 +oip,  pi =pt (o — o). (12)

Conversely, an Ito proce& € &" is LAF, if there is ap € L(z) (i.e. [ |¢|?dt <
o0) such that the second equation in (12) holds. Théh,is defined by the first
equation in (10) for any, and¢ is defined by¢ = exp(f —(r +|¢|2/2)dt — ¢d2).
If C € &; with C = 0B for some SFTS), then

dc 1

C =(r +ocp)dt + ocdz, UC:CiZGiBiUi .

With 5 = (0 —oi—1)(1+6iL;)/é denoting the absolute LIBOR volatility, Eq. (8)
is rewritten as

n—1 ¢ 5 at
dL = — 5jﬁlﬁj dt + 5,dz, ZnEZ+/(g0*CTn)dt- (13)

j=i+1l+5j Lj

5. Arbitrage-free price systems

The strengthening below of the LAF condition enables evaluation of contingent
claims by taking expectation of their payoffs, and determination of the replicating
SFTS. It also leads to existence and uniqueness of the forward LIBOR process,
given a LIBOR volatility function of linear growth.

Definition. B € & is arbitrage-free if there is¢ € &, with £, = 1 such thatB;
are P-martingales for all

Note, if B is arbitrage-free, then so B/X for any X € &..5 So, forB € &,
the arbitrage condition is a condition only on the rati®gB;.

Convention: From now on (for convenience to avoid stating integrability con-
ditions att = 0) we will always assume# consists of null sets and their com-
plements. Hence7 measurable random variables are deterministic constants
(members ofR) and Eg[X] = E[X].

A LAF B is arbitrage-free i£B; satisfy certain integrability conditions. We
recall, (i) a local martingaleX is a martingale ifE[sup<t|X:|] < oo, (ii) a
local martingaleX with E[(X)7] < oo is a square integrable martingale and
E[(X):] = E[X?] — X2 = var[X], (i) by Novikov Theorem, a continuous local
martingaleX > 0 is a martingale (and so jsdX/X) if E[exp((logX)t/2)] < oc.
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Theorem 1. Let B € & be arbitrage-free and be an SFTS. ThegdB is a
square-integrable martingale ifi either (i) E[ [ 62d(¢B;)] < oo, or (i) £B; is
square-integrable and is bounded.

Proof. If E[[62d(¢B)] < oo, then 6 € L(¢B;). SettingC = 6B, it fol-
lows as in Theorem 3.1 thafC = Co + [6d(¢B). But then E[(C)] =
SE[[616,d(¢Bi,£B;)] < oo, implying £C is a square integrable martingale.
(ii) follows from (i). O

The above result provides an intuitive interpretation for the state price deflator
& (w) as the price at time zero of a security which at titrgays the infinitesimal
amountdP(w) if state w occurs and pays zero otherwise. More precisely, let
A € .%, and suppose there is a bounded SHTSuch thatd;B; = 1. By the
theorem 6B is a martingale, henc&Bg = E[£6:B;] = _[A & (w)dP(w).

The next proposition strengthens the no-free lunch result of the LAF case.
In particular, it implies “the law of one price”: two SFTSs with the same payoff
have the same price.

Proposition 1. LetB e &M, C € &, £ € #,. Assum&C is a martingale and
Cr>0as. Then()e>0as.forallo<t <T,and (i) if G < 0,thenG =0
as. forallO<t<T.

Proof. Since¢C is a martingaleC; = E;[¢7Cr]/& for all t. Hence,Cr > 0
implies C; > 0, because& > 0. If further Cp < 0, thenE[(rCr] < 0. But
&Cr >0, hencesrCr =0 andCy =0 a.s. O

Let B € &M be arbitrage-free and assurBe > 0 for somei. SinceM; =
¢Bi /B;i(0) is a positiveP-martingale withM; (0) = 1, an equivalent measuRg,
called theB; numeraire measureis defined bydP, /dP = M;(T). We denote
its .7 conditional expectation operator kﬁ{. If B; > O too, thendP; /dP, =
(Bi (T)/B;(T))(B; (0)/Bi (0)). More generally, ifC € &, is such thatC is aP-
martingale, then th€ numeraire measure. is defined bydP¢ /dP = & Cyr /Co.
As in Sect. 2, for a semimartingalg ¢X is aP (local) martingale ifiX /C is aP¢
(local) martingale. SoB; /B; is aP; martingale. If{C and£A areP-martingales
with A > 0, thenC /A is aPx martingale, and hence

_1 —amei | CM] _ Cr
ct—,E:tEf’[chT]—B.(t)Et {Bim} = AE] [AT] : @)

Remark 1.Let B € & be arbitrage-free. If the local martingafgU, is ac-

tually a martingale, then the measu@e defined bydQ/dP = £(T)/U¢(T) is

called therisk-neutral measureln this caseU:B; are Q martingales (because
UeBi(£/U¢) = £B; areP-martingales). Whether or not a continuous saving bond
exists, we do not assume that the risk-neutral measure exists, because in our
framework, valuation of LIBOR and swap derivatives is not facilitated in this
measure.
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Examples 3.1 and 3.3 revisited We exhibited SFTS and prices for the op-
tion to exchange two assets and trigger swaps. We can now see where these
formulae came from. The pric€ of the exchange option is given by =
B (t)E2[max (0, By(T)/By(T) — 1]. The pricing formula would follow by a stan-
dard calculation if we show that l108(/B;) is a Gaussian process in th®
measure. We need to show that a continuous local martingate 0 is log-
Gaussian if(logX) is deterministic. Lety = [ dX/X. Then,Y is a local mar-
tingale, hencey; = By, for some BrowniarB with respect to another filtration,
wheres(t) = (Y);. Since a Brownian motion is Gaussian as() = (logX);
is deterministic,Y and hence logX) is Gaussian. Having thus found the price
C, the SFTS is obtained by taking partial derivatives as in Theorem 4.7. For
trigger swaps, a similar expectation is calculated to derive the price, and partial
derivatives are then taken to get the hedge.

We now turn to the problem of determining an SF#Shat replicates a
given payoffCy. WhenB is non-degenerate, a replicating SFTS daoesex-
ist for a “generic” .77 measurableCy. We saw this in Sect.3 for the path-
independent case. More generally, Bte & be non-degenerate and satisfy
the absolute continuity assumptions of Theorem 4.4. As remarked there, this
implies thatB is LAF and ¢ can be chosen to be a local martingale. Assume
more strongly thaB is arbitrage-free and is a martingale. TheiB; are Q-
martingales, wher® is defined bydQ/dP = £(T). Suppose; € L(B) is not
an SFTS, butE®[ [ n?d(Bj)] < co. We claim there is no SFT8, such that
EC[[62d(Bi)] < oo and 1By = fOT ndB. Indeed, otherwisg'(n — #)dB would
vanish atT. But, [(n — 6)dB is a Q-martingale, hence it vanishes identically.
Since B is non-degenerate, this implies= 6, a contradiction. As such, when
B is non-degenerate, the market is incomplete. However, this does not prevent
finding an SFTS whelCr is appropriately measurable.

Theorem 2. Let B € &£ be LAF, B, > 0, and¢B,, be a martingale. Assume
that dU: /dt and all d(B;, B;)/dt exist a.s. and have bounded paths[onT],
the matrix dB; /By, B;/Bn)/dt has a.s. constant rank d, € n — 1, and there
exists a d-dimensional PBrownian motionw, such that B/B, are adapted to
the completed filtratiorfj; generated byw. Let G- be a random variable such
that Cr /B, (T) is 3t measurable and Pintegrable. Then there exists an SFI'S
such that G = 6yBr anddB /By is a (J:, Pn) martingale.

Proof. By the local martingale representation Theoredf(B/B,,) = vdw, for
somen —1 by d, J; (adapted and) predictable matrjx= (vi).® The assumption
implies v has full rankd and is pathwise bounded a.s. L¢tbe the pseudo-
inverse ofy. Since~ has full rank, is a continuous function of;, as it is
given by orthogonal projection onto the image-ofollowed by the inverse of

~ on its image. Therefore) too is J; predictable and has bounded paths. Set
¢ = E"[Cr/Bn(T)|3t]- cis a (3, Pn) martingale, so there existsJg-predictable
process) = (11, . . ., ng) such thatf |n|2dt < co andc = co+ [ ndw. Setd = nip.
Then [ [0]2dt < (sup|¥|?) [ |n?dt < oo a.s. Sinceye = Id, [6d(B/By) =
Jndw =c —co. So,c = cy+ [6d(B/Bn). Extendé to ann-vector by setting
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0, =cCc— (9181 +... +9nlenfl)/Bny so thatdB = B,,c = 9By + B, f Qd(B/Bn)
Using this on both sides of Eqg. (2.6) (or using Corollary 3.1) giv¢d3) = 6dB,
i.e. 0 is an SFTS. But to use (2.6), we still need to sh@we L(B;) N L(By).
In fact, we showt; € L(Bj) Vi,j, i.e., [62d(Bj) < oo, and [ |6i] |dy| < oo
a.s., wheray; is the compensator d;. The first folows sincef 9i2dt < oo and
d(B;)/dt have bounded paths. a.s. By Kunita-Watanabe inequality,

1/2
/ 16,1 1d (B, log€)| < ( / 0i2d<Bj>> logé)? < oo as.

The second now follows from this, Eq. (4.1), and the assumptiodlgn Since
6B = Bnc, 6By = Bn(T)cr = Cr, and ¢B)/B, is a (i, Pn) martingale. O

The measurability condition o essentially amounts t€r /Bn(T) being
measurable with respect to the sigma algebra generatBi(8)y B; (s), or equiv-
alently by theL;(s), s < T. So, the appropriate payoffsr are those such that
Cr/Bn(T) (or, equivalentlyCr /B;(T) for anyj) is measurable with respect to
the sigma algebra generated bgs), s < T. This restriction onCt is substan-
tial whenB is non-degenerate. But, otherwigg, usually coincides with7z, in
which case no restriction is imposed Gx.

From the proof of Theorem 1 and the uniqueness of martingale representation,
one sees that fl =n— 1, then the replicating SFTS is unique. Butdik n—1,
then for anyx such that<y = 0, 6 + (k, —(k1B1 +. ..+ kp_1Bn_1)/Bp) is another
replicating SFTS. Nevertheless, their pricis will be the same by the law of
one price.

Let B € & be arbitrage-free. The forward LIBOR is by its definition an
affine transformation oB; /B;.1. Therefore,l; is a P+ martingale, as pointed
out by Brace et al. (1997). Eq. (4.8) and the change of measure formula (2.3)
combine to give thé, compensatou of L;:

sd(Li, L)
Pn — § : J 1 l
u'= / 1+6LJ ' )
j=i+l

Similarly, whenL; > 0, Eqg. (4.9) and (2.4) imply that thB, multiplicative
compensatot);" of L; is

n—1
N Po_ Gd(Li, L)
U=t _exp(/;m Li(l+(5ij)) ' )

We pose the following problem: given am— 1 by n — 1 symmetric posi-

tive semidefinite matrix functionl(t,L) = (4;(t,L)) of t € [0,T], L € R},

is there an arbitrage-free price systdnsuch thatl; > 0 andd(L;,Lj); =

Ay (t, L)L ()L (t)dt? The answer is affirmative providedit,L) is bounded

and locally Lipschitz inL. For example, wheni(t, L) is independent of, we

saw in Sect.4, Example 5, that a solution — the LIBOR market model — can
be explicitly constructed. As in that example, we can expect uniqueness only
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if we pose the problem in terms of the LIBOR “percentage volatility matrix”
A =A(t,L), ann — 1 by d matrix satisfyingAd = A\,

Theorem 3. Let &, B, € & be such that(0) = 1 and£B,, is a P-martingale.

Letw(t) be a d-dimensionalZ;, P,) Brownian motion. Let n be an integer and

i (t, L) be n— 1 d-dimensional vector valued functions fnT] x R7~1, which

are measurable, bounded, and locally Lipschitz in L. Then there exist unique

w-1to processes B...,B,_1, such thatéB; are P-martingales for all i, the

associated LIBOR procesqtl is positive, starts from a given initial condition

L(0) € R?~1, and satisfies @i, w) = X (t,L)Lidt a.s. (So dlogL;,logL;) =

Ai(t, L) (t, L)tdt.)

Proof. If a solution exists, then by Eq. (2) satisfies the SDE

dL = 8 LAt L)X (t, L)
- _ Z ik j

Li 1+6L dt+A(t, Ldw . 4

j=i+l

By Corollary (2.1) (withm =n — 1, measuré® replaced byP,, andX; = §L;),
this SDE has a unique solution, and moreover, if weBset B, (1 +6iLi) ... (1+
6n—1Ln-1), thenB; /B, is aP, martingale. O

When the forward LIBOR covariance matrix is of the fordL;,L;) =
Gy (t, L)L + 6 L)1 + 6iL)dt, for some bounded, locally Lipschitz functions
G; (t, L), we can show that a solution exits by the same method. But homay
no longer be positive. An example is the Gaussian model, wiegd; , log B; )
are deterministic. Thed(L;,L;) is of the above form with a deterministjg; .
An example where no solution exists is whép) is specified to be determinis-
tic, implying L; is Gaussian irP;.;. But, this cannot happen, because we must
always have.; > —1/6;.

In Sect. 7 we impose the zero-coupon bond constraint of unity at maturity,
and modify Theorem 3 such th8&f andU, are part of the solution rather than
given.

6. Spot LIBOR measure

We now introduce additional structure.t&nor structureis a sequence of times
O<Ti<To<...<Th=T.

The tenor structure is usually quarterly or semiannually, and related to the day-
count fractionss; by 6 = Ti+1 — T; (or 360/365 times that). Fdr < T,, define
the left continuous function(t) to be the unique integer such that

Tigg-1 <t < T -

Let B € #". We say an SFT3 is tenor adaptedf 6;(t) = 0 fort > T;. Note,
if B' € &" andB/ = B; on [0, T;], then @,B’) will also be a tenor adapted



316 F. Jamshidian

SFTS, anddB = 6B’. For this reason, the behaviour Bf on (T;, T] does not
matter when considering tenor adapted SFTSs. This can be used to extend the
notion of a tenor adapted SFT8,B) to situations whereB; is only defined
on [0, T;]: simply extendB; to all of [0, T] in any continuous semimartingale
manner whatsoever.

For B € &, a particular tenor adapted SFPS suggests itself: start with 1
dollar at time 0 and buy with it asset 1; at tirfig sell asset 1 and buy asset 2;
at time T, sell asset 2 and buy asset 3, and so on. Formally,

i(t)—1

1t .
10="gg " 1I

B; (Tj)
Bj+a(Tj)’

i1

<t<T *(0) = .
=T O

Note, 6* is a Ieft-continuous step function. Clearly, the prige of this SFTS is

given by

it-1 i0-1

. _ o Bi(t)' Bi(Tj) _ Big()

B =6/B; = = 1+6L(Ty)) - 1

t tBt Jl:{ B]+1(TJ) Bl(o) Jll( | I( l)) ( )

If B is LAF, then¢B* is a local martingale by Theorem 4.1, and the same

argument as in Theorem 4 gives that Eq. (4.2), (4.4) and (4.5) hold Byith

replaced byB*. In particular, for alli

B.
Ug = Ug-exp (—(Iog BI* , Iog§>> . )
Conversely, ifB € &' and for some{ € &, the above equation holds for
all i, then, as in Theorem 4.3, one shoBsis LAF. Since By = Bi+i(1 +
dimLiy) --- (1 +6iLi), we get from (1) and (4.7)
6I I—I7I-J
+{L;,log ¢8°) /Z ! @

j=i()
WhenB; and¢ are Ito processes with respect td-aimensional.¢7, P) Brown-
ian motionz(t) as in Eq. (4.11), thedB*/B* = pidt + 0i;dz, and Eq. (2) is
equivalent to
i (t) = piy(t) + (01 (1) — oigy (1)) (1) - (4)
Conversely, Ito procesB € &£ is LAF if for somey € L(z) the above equation
holds for alli. With 5, (t) denoting the absolute volatility df;, Eq. (3) translates
to
Jﬁl ﬁ] * t
-3 I shar, 7 =a - [© - aeEd.  ©
j=i(t) (] 0
If B is arbitrage-free (i.e.{B; are martingales) thegB* is a martingale,
as follows easily from Eq. (1). Takin@* to be the numeraire as in Sect.5,
we call the corresponding measupé the spot LIBOR measurand denote its
expectation operatde*. As in Sect. 5£C is aP-(local) martingale iffC /B* is
a P*-(local) martingale. The compensator lgf in the P* measure is given by

3.
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Theorem 1. Let B € &" be arbitrage-free, then the following equations hold.

j=i() =i(t)

{L(T')ll_([t)l+6,LJ(T)]_L(t)ll—([t)1+6,L,(t) t<Ti. (@)

Proof. From the definition oL; in (4.6) we have

Bi+a(t) = Biy(t) H
j=i(t)

1 +5, L) ®)

Combining this with Eg. (1) we get

Biw(t) _ B1(0)

B*(t) T oi)-1 i : 9)
[fizn " @+gL M) =@ +6L (1)

Substituting (9) in both sides of the equati&iB;.1(Ti)/B*(Ti)] = Bi+1(t)/B*(t),

the first product cancels, and we get (6). Equation (7) follows from (6) by sub-

tracting (6) withi — 1 from (6).

In the Ito casez*(t) defined in Eq. (5) is &* Brownian motion. When
Gi(t) = Ai(t, L(t))L (t), for some bounded and locally Lipschitz functian(t, L),
then Eqg. (5) is an SDE fok. It has a similar form to the SDE (5.4), and by
Lemma 2.3 it has a unique solutidn’ As in Corollary 2.1 one can show by
induction that the procesg defined by the right hand side of Eq. (9) isPd
martingale. So, the solution of (5) satisfies Eq. (6).

Equations (6) and (7) resemble familiar formulae for the risk-neutral measure
and instantaneous rates. Another resembling formula is that the@rafeSFTS
(for which ¢C are P-martingales) satisfies

e [COOH L .
C(Ti)—Bl(Tl)ETi [Bk(Tk)jl;[ 1+5ij(Tj)] , I <k. (10)

This follows directly from Eq. (1) an€ /B* being aP* martingale. The resem-
blance with the risk-neutral formula and instantaneous rates is complete, only
whenB;(T;) =Bk(Tx) =1
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7. The zero-coupon bond constraint

The primary application of the forward LIBOR proceksis when B repre-
sents zero-coupon bonds, i.8,(T;) = 1. Obviously, wherB is arbitrage-free
and satisfies this constraint, thénstill satisfies all properties of arbitrage-free
price systems established so far. What we need to address égitlienceof an
arbitrage-freeB with a given LIBOR volatility functiong; (t) = X; (t, L(t))L; (t),
safisfying this constraint.

Theorem 1. Let Q be an equivalent measure to P anft) be a d-dimensional
(%, Q) Brownian motion. Let n be an integer(® < R be such K0) € R} 1,

and )\ (t, L) be n— 1 d-dim vector valued functions d, T] x R7~1, which are
measurable, bounded, and locally Lipschitz in L. Then there exists an arbitrage-
free B € & starting from B0) such that B(T;) = 1for all i, P, = Q, and associ-
ated forward LIBOR process L is positive and satisfids dw); = A (t, Li)L; (t)dt.

Proof. By Corollary 2.1 the SDE (5.4) has a unique solutiorstarting from
L(0), and the processeg = (1 +6iLi)...(1 +dén_1Ln_1) are Q-martingales.
Let B, € &; be any process such th&(0) is as given,B,(T,) = 1, and
Bn(Ti) = 1/Y;(T,) fori = 1,...,n — 12 Define B, = B,Y;. ThenBi(T;) = 1.
Define & = B, (0)E:[dQ/dP]/Bn(t). Clearly, (B, is a P-martingale. In fact¢B;

is a P-martingale for alli becauseB; /B, are Q-martingales. It is also clear that
P,=Q. O

Note from the proof that, to ensu(T;) = 1, all we have to do is to make
sure thaB,, passes through given random variables,a0.. ., T,. (B, can also
be chosen to be less than 1.) We do not have uniqueneBs bécause any
such interpolation oB, works. HoweverL itself, being the solution of (5.4),
is independent of the choice of interpolation. This implies Bdf;) are also
independent of the choice of interpolation, because WB€f ) = 1, we have

i—1
1 L
Bi(T,-)—L[MkLk(Tj), j<i.

More generally, leCr be a random variable such that /B, (T) (or equivalently,
Cr/B;(T) for anyj) is measurable with respect to the sigma algebra generated
by L(t),t < T. Consider an option which will pa@r at timeT. The price of this
option isCr = Bn(t)EtQ[CT/Bn(T)]. SincelL does not depend on the particular
interpolation ofB,, it follows that C; /B,(t) is independent of this interpolation
for all t. It now also follows thatC; att = 0 and at allt = T; are independent of

the choice of interpolation, becauBg(T;) are so.

Prices of LIBOR and swap derivatives are generally of the above form.
Hence, the non-uniqueness Bf does not affect their prices. What is more,
pricing algorithms (e.g., simulation, trees, or PDE) need not consBuattall —
all that needs to be constructed is the LIBOR prodess

Another source of non-uniqueness is the arbitrariness in the equivalent mea-
sureQ. (In the Ito case, this is the arbitrariness in the choice of the market price
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of risk ¢.) Another choice of measure would result in different processes for not
only B, but also for L. However, the price at tihes 0 of an option is independent
of the choice ofQ andw. Indeed, by the uniqueness of weak solutions, the mul-
tidimensional distribution function (i.e., the law) of a weak solutioto the SDE
(5.4) is independent o andw. Now, if the payoffCr is such thaiCr /B, (T)
is a function ofL(ty),...,L(tm),tk < T, thenC(0) = B,(0)EQ[Cr/Bn(T)] is
independent of) andw.

The construction of Theorem 1 can also be done in the spot LIBOR measure
B*. Again we are given a Brownian motiaf in an equivalent measur@, and
this time we solve the SDE (6.5). Then we Bt be any process . such that
B*(0) =1 and

i—1

1 )H(1+6ij(Tj)), i<n—-1.
j=1

B ()= 5.0
We then defineB;.1 by the right hand side of (6.9) timeB*. We also define

& = E[dQ/dP]/B*(t). ThenP* = Q, and¢(B; are P-martingales. As before,
prices of LIBOR and swap derivatives at 0 andt = T; do not depend on the
choice of interpolatio8*. A particularly simple choice is the linear interpolation
(which impliesB* has finite variation, i.e.gi(t) = 0 for Ti_; <t < T,). This
works because, by the above equatiBi(T;.1) is .7z measurable, implying the
linearly interpolated3* is adapted. As before, the question of interpolation does
not arise in actual evaluation algorithms anyway, as they only construct ratios,
not any numeraires lik8* or By,.

8. Forward swap measure

Let B € &, andé € R?L. For eachi < n — 1, consider the SFTS (“the

annuity”) consisting of buying and holding_, shares of th¢-th asset for each
j >i. Its price is given by

n
Bn=) 6§.1B, i<n-1. (1)
j=i+1

Thei-th forward swap rateprocessS is defined by

Bi — B,
S=S8n .

: Bin )

With empty sums denoting zero and empty products denoting 1, let us set

n—1 k
si=sjn=> & [[@+848), s=si, 1<i<j<n-1. (3
ksj  I=i+l

It is not difficult to show by induction thaB; , = B,s. This in turn easily
impliest?
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B < 6-15;d(S.S)
= (g,I =— S . 4
US <S Og Bi,n> /j:i+l (1+6171$)S ( )
One can also easily sho = B,(1+Ss), and this implies
. _ B\ _ n SoMA(S, So)t — Set)duly(t))
Us = (S log Bi,n> s +/ 1+suM)Se(t) - ©

Assume nowB is arbitrage-free. As in Sect. 8; ,, induces a measu® " such
that Bj /B; » are P"" martingales. (NotP"~1" = P,.) It follows, S is aP'"
martingale. Hence, by Eq. (2.3) the compensatof$ of theP,, andP* measures
are given respectively by formulae (4) and (5). ScSifare Ito processes with
respect to &, Brownianz", having absolute volatility;, then

2GS oie R

ds j;l(1+6j—1ﬁ)3 dt + ¢ dz" . (6)
If ¢ are functions oft and S = (S,...,$ 1), then this is an SDE fofS.
Consider the case whetg(t) = S (t)vi(t, S), for some functions); (t, S) which
are measurable, bounded and locally Lipschitk.ifhe drift of the SDE (6) then
has these properties too, so by Lemma 2.3 the SDE has unique positive solution
S. Moreover, as in Corollary 2.1, one can show that the prosessa square-
integrableP, martingale. We can now construct an arbitrage-fBeeonsistent
with this forward-swap rate as in Theorem 5.3, or, if a tenor structure is given,
as in the previous section to enforBg(T;) = 1. Equation (5) leads to a similar
SDE with respect to * Brownian motion, which can alternatively be used for
this construction, as in the LIBOR case. For path-independent options, Eq. (4)
(or Eq. (6)) leads to the “fundamental differential equation” as in Theorem 4.7.

When the percentage forward swap volatility(t) is deterministic, the cor-
responding arbitrage-free price syst@rtan be constructed explicitly by “back-
ward induction” as in Example 4.1. But now, we modify slightly that construction
to enforce the constrair®; (T;) = 1.

Example 1 Swap market modelet ;(t) be n — 1 deterministic, bounded,
measurable-dimensional vector-valued functions, azitibe a Brownian motion
in an equivalent measuf@. SetS,_1 = $,_1(0)exp(/[ v dz" —[¢; |2dt/2). Having

inductively defined and for k > i, defines;(j > i) ands by Eqg. (3), and set

12 n-1g .5 S i t
S =S(0)exp(/ (—'%' —Z (Jliz_lé;é)dﬁ/widz“) .M

j=i+1

One shows by induction thag and S5 are Q martingales for alli. Let
B, € &, be any process such th&,(0) is as given,B,(T,) = 1, and
Bn(Ti) = 1/(1 + S(Ti)s(Ti)) (and if desiredB, < 1). SetB; = B,(1 +Ss),
and & = Bn(0)E:[dQ/dP]/Bn(t). Then,Bi(Ti) = 1, and{B; are P martingales
because 1 §s areQ martingales, an® is consistent with constructesl. O
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It is easy to show that the forward LIBOR and swap rates are related by

n—1

A +6L) — 1 1+s

i=i 0 [issa (1 +0kb) S+19+1

It follows that the LIBOR and swap market models are inconsistent with each
other. § and L; cannot simultaneously have deterministic volatilities.) One
chooses one or the other model as appropriate to each particular product.

9. Path-dependent LIBOR derivatives

In this and the following sections, we discuss application of the theory developed
in the previous sections to some primary examples of LIBOR and swap deriva-
tives. We will describe different model choices and implementation algorithms as
appropriate for each option. ThroughoBtwill be an arbitrage-free price system
in &". We assume a tenor structuf&; } is given andB; (T;) = 1.

We consider options with payouts; at T;+; for one or morei, with C;
measurable with respect to the sigma algebragenerated by (t), t < Tij.
For example, a cap with strike rat¢ has, for eachi, a payout atT;.+; of
simax(Q Li(t) — K), with t; < T;. The payout ofC; at T+1 is equivalent to
the “forward transported” payout &; /B,(Ti+1) at timeT = T,, if we assume
that instead of cash, an equal amount wortf ,pfaturity zero-coupon bonds is
paid atT;.;. Aggregating, we can assume there is a sifjgteJ,_1; measurable
payoff at T. By Theorem 5.2Ct can be attained by an SFTS, and the option
price isC; = By (t)E"[Cr]. Generating random paths fau(t) (or S(t)), Co can
be computed by simply taking an average.

An example is a&nockout capIn one variation, caplet gets knocked out
when only the spot LIBOR,;(T;) atT; is below (or above) a certain level. This
is path independent, actually a combination of a LIBOR cap and a digital. In the
path-dependent variation, at the first fixifigsuch thatl; (T;) < Ky all remaining
caplets for futures fixing dateg, j > i, get knocked out. So the payout at time
Tis1 i

Cr., = 6imax(Q Li(Ti) — K) Liminy(ry),....Li () >Ko} -

Another example is aAsian cap with a single payout at tim& = T,, of

n—1
Cr= max(O,Zéi (Li(Ty) — K)) )

i=1

Note, unlike currency or equity markets which check for knockout daily or con-
tinuously, in the swap markets the check is done (quarterly) at the fixing Gates
An example borrowed from the mortgage market is pleeodic cap embedded

in a periodically capped floating-rate note, where the floating rate cokip¢ior
payment aff;.1) is set at spot LIBOR, subject to it not exceeding the previously
set coupon by a prescribed amountThus,K; = min(Li (T;), Ki_1 +X). A more
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complex structure is aatchetwhereK; = max(min(;(T;) +Vyi, Ki_1 +X%), Ki_1).
Clearly, in both case&; is a function ofL;(T;), ] <i. A new structure is the
flexible cap Here, a numbem < n — 1 is specified, and the cap knocks out as
soon agm of the caplets end up in the money. Forward transporting, in all these
examples the payou@r is a function of past spot LIBOR fixings:

Cr =C(Li(Ty), ..., Ln—1(Th-1)) -

The present valu€ (0) of the option is given by either of the equivalent formulae

« | CLa(Ty), ..., Ln—a(Th-1))
[T @ +6Li(m))

Clearly, these formulae also hold wh& is expressed as a function of
spot swap rate§ (T;). The first formula “discounts outside the path” and takes
the “forward-risk-adjusted average”, while the second formula “discounts along
the path” and takes the "spot LIBOR average”. When simulating, both types of
average are just the ordinary average. The difference comes from the choice of
SDE employed to generate random paths: the SDE (5.4) describing the dynamics
in the P, measure, versus the SDE (6.5) for the dynamics irktheneasure. As
shown in Examples 4.1 and 8.1, tRg dynamics can be explicitly constructed
for LIBOR and swap market models. (This can be used to construct explicitly
the P* dynamics as well.) This enables the computation ofdhéntegrals by
the trapezoid rule, rather than by a step function as is usual when dealing with
a general SDE. Our experiments with tRg dynamics have shown that high
accuracy is achieved if the Brownian motion is sampled only quarterly to compute
the dt integrals.

Co = Br(0)E"[C(L(Ty), ..., La—a(Th-1))] = E

10. Bermudan swaptions

A Ti-start { < n — 1) receiver swap with coupoK is a contract to receive
(fixed) 6K and pay (floating); L; (Tj) at each timeTj.,, i <j <n-—1. Givena
subsequencg, of start dates, and expiratiois< T;,, k = 1,...,m, aBermudan
receiver swaptioris an option which at each timig gives the holder the right
to enter &T;, -start swap, provided this right has not already been exercised at a
previous timet,, p < k. Whenm = 1, this is a European swaption. Otherwise,
usuallyix = g+k, whereq =n—m-—1, i.e., the swaption is exercisable after the
first g “noncall” periodsTy, ..., Tq. Often,tk is at the LIBOR fixing date (two
business days beforg, ). Other times, early notice is to be given, apdmay
be 20 to 40 days befor&, . Bermudan swaptions frequently arise as embedded
options in cancellable (callable) swaps, which in turn often originate from new
issue swapping or asset packaging of callable bonds.

In order to model such options, one assumes that the holder acts optimally, in
that the swaption will be exercised at timpef the value at timey of theT; -start
swap is not less than the swaption value. American options are usually posed as
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optimal stopping problems. But, we can cast the Bermudan swaption in the setting
of an ordinary path-dependent by assuming that if the swaption is exerciged at
then instead of actually entering tfi¢ -start swap, the counterparties settle by
the holdor receiving at tim&, T,-maturity zero-coupon bonds worth the value

at timety of the T, -start swap. Obviously, this assumption does not affect the
price and hedge of the Bermudan swaption at tinve0. TheT; -start swap is
worth By (t)VK at timet,, where

Bi"’n(tk)

k —

= K — .

Bn(tk) ( Sk(tk))

Thus, if the holder exercises &t he will receive face valu¥ * of T,-maturity
zero-coupon bonds, so he will have a payoff\of at time T = T,,. Define the
random variable€™, ..., Ct inductively by

cm= max(\/m, 0), Ck = 1{Vk2E(2[Ck+1]}Vk+1{Vk<Et”k[Ck*1]}Ck+l» k<m-1.

The optimality assumption implies that the payoff at tifieof the Bermudan
swaption isC!. As such, we formally define a Bermudan swaption to be the
asset which pay€? at timeT. SinceC!? is J-measurable, by Theorem 5.2 this
payoff can be attained by an SFTS and its pric&j&)E"[C].

Using the recursive relation above, we easily find that the pEi@® of the
Bermudan swaption is

Ci = Bn()E"[max(V' El[max(V?,...
Ep Imax(v™ L E] [max(vV™,0)D]... )], t <t

(A similar formula is obtained by usinB* as the numeraire.) Another Bermu-

dan product is theallable capped floating rate swam which a counter party
receives LIBOR and pays mik( LIBOR + spread) at each;, and has the right

to cancel this swap at a fixed date (European) or at eVeyfter a fixed date
(Bermudan). These arise frooallable capped floating rate notewghere the is-

suer offers a spread over the market rate in exchange for a cap on the floating
coupon plus a call option. We can formalize their payout structure as above. The
European ones are akin to captions (options on caps), already having a compound
option character.

Numerical evaluation of captions, European callable capped floating rate
swaps, and Bermudan swaption having only two call dates, presents no diffi-
culty. We would use the LIBOR market model for the first two, and the swap
market model for the latter. As shown in Example 3.2, these models price caps
and European swaptions by a closed-form Black-Scholes formula (where, in the
formulae of Example 3.1T is now to be replaced htg). Therefore, only a single
unconditional expectation needs to be calculated, and this can be done accurately
by Monte Carlo simulation as described in the previous section. This is valu-
able, as it can be used as a benchmark to attest the accuracy of other numerical
techniques which can handle more call dates.
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However, application of conventional Monte Carlo simulation to the general
Bermudan case is formidable. The difficulty is the recursive nature of the payoff
and the multitude of conditional expectations. Except for the last conditional
expectation which is available in closed-form, to compute kit conditional
expectation, each path up to tirtgemust branch into several paths, Sy paths,
to time ty.+1 before an average can be taken. This means a totislh of. Npm—1
paths, a number that explodes very quickly with the number of call dates
Some recent Monte Carlo techniques, such as those proposed by Broadie and
Glasserman (1994) appear promising, if they can be adapted to LIBOR and swap
market models.

A more standard approach is using “bushy trees” constructed from a binomial
or multinomial discretization of the underlying Brownian motion, as described
by Heath et al. (1990), and, in the context of the LIBOR market model, by
Gatarek (1996). Here, 10, or possibly even 20, call dates can be incorporated
without difficulty. The problem is that coarse time steps must be taken for long-
dated swaptions, e.g., a semiannual time step for a 10-year Bermudan swaption.
Coarse time steps result in sparse sampling of the distributions for the earlier
call dates. But, it is the earlier call dates that contribute more significantly to
the Bermudan premium. Unequal time steps may remedy this to some extent.
Another possibility is generating, say, 200 antithetical random paths for the first
year, followed by a busy tree along each path. Other tricks may be possible along
these lines, but, we are not aware of any substantiated published account.

The approach we favour most is approximation of the model by a conve-
nient non-arbitrage-free model, and numerical implementation of the latter. The
simplest, and possibly best, candidate is taking the spot swap (or LIBOR) rate
as the state variable, while treating zero-coupon bonds as deterministic for the
purpose of discounting. What makes this attractive is that we know that it al-
ready prices simultaneously all-expiry European swaptions consistently with
the market model.

Bermudan swaptions are then evaluated along an ordinary binomial lattice
or grid for the state variable. Without presenting details, we just report that
comparison with the Monte Carlo technique in the case of two exercise dates
indicated surprisingly high accuracy. An approximation by a “Gaussian core”
on a non-bushy multinomial tree has been proposed by Brace (1996). Another
interesting possibility is approximation by a log-Gaussian short-rate model.

11. LIBOR in arrears and CMS convexity adjustment

As we have assumed, LIBOR is fixed at the beginning of the interest accrual
period, and paid at the end. In rare cases, knowhlBOR in Arrears it is fixed

just before it is paid. This can also apply to caps. Gited T; and a payoff
C(Lj(t)) for payment atT;, the problem is thus to calculate its present value
B (0)E'[C(L; (t))], and relate it to the usual case. This is done simply by

Cs = Bi(S)ELC(Li ()] = Ba(ES L +SLIMICLi)], s<t. (1)
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The main case of interest is whe&(L;(t)) = Li(t), in which case we simply
have -

i i 1+6Li(t) divarL L (1)]

ELLi(t)] = EI L . =L s 2

=g Loy 1y o] =ue Y I @
The second term on the right hand side is called a convexity adjustment. In
the LIBOR marketL;(t) is lognormally distributed in thé?,; measure with
meanL; (s), providing an integral expression for Eq. (1) (which leads to explicit
formulae for in Arrears caps and digitals), and (2) simplifies to

BLAO)e!9- ) - 1)

ELOI=LO+ T o)

The procesy = 1— B;,1/B; is aP; martingale, and in the Ito case follows

Bi+1

dy=XAy(l-y)dz, y=1- B
|

When )i (t) is deterministic, this process is described in Karlin and Taylor (1981,
Chap. 15.15) as a model of gene frequency fluctuations. Using (1), we can cal-
culate its probability transition function

(1-x)e (1og 3i73) ) +P(s.)/27/ 2vE(s.0)
V2ry(1 - y)?ui(s,t)

A more important convexity adjustment is associated withdtestant maturity
swap (CMS). In this swap at each payment ddtg; spot LIBOR L;(T;) is
received and an amount equal to the spot swapS&ie), for a fixed length swap
is paid. We therefore wish to calculaB*[S (t)]. Since bothS§ andBi.1/B; n
areP"" martingales, we obtain from the definition of covariance

t
P X, 1Y) = st = / I (U)[2du.
S

s = B gin g g Beil)
SISO = 5 TGR |S0g7 ]
S+ g e [0, 570 ©

Hence, the covariance term above is the CMS convexity adjustment. Note, for
s =0t also equal€'"[(S, Bi+1/Bi n)t]. RecallingBi+1/Bn = (1 +5+1S5+1) with
5 as in (8.3), another expression is

Bn(s)
Bi +1(S)

Unlike LIBOR in arrears, neither (3) nor (4) have a closed-form solution, even
in the market models. However, (4) can easily be calculated by Monte Carlo
simulation of theP, dynamics of the swap market given by Eq. (8.7). (The
LIBOR market model can also be used, but it is more natural to utilize swaption
volatilities here.) It may also be possible to use an approximation based on
Eq. (3). If the volatility of Bj.1/B, were deterministic, theB;.,/B, would be

ESS ()] = ES O +Su()sn®)]- “)
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a log-Gaussian process in thi:" measure, because it is a martingale there.
Obviously, this assumption is inconsistent wii{t) also having deterministic
volatility. But, if we accept it as an approximation, then Eq. (3) is the covariance
of two lognormal random variables, which can be easily calculated.

Another convexity adjustment arises from what is sometimes celteshded
LIBOR. Here, the floating paymett (T;), instead of being paid &fi .1, is paid
at a later dateT;, and we calculatéE! [L; (T;)]. Now the convexity adjustment
will be negative. Again, there is no closed-form solution, but valuation can be
done easily by Monte Carlo simulation of the LIBOR market model.

12. Options depending on both LIBOR and swap rates

The products discussed so far have been basically either a LIBOR/cap product
or a swap/swaption product, but not both. But some products explicitly involve
both. An example is thepread optiona series of payoffs of the form max(t) —

Li(t) — K, 0), whereK can be zero, positive or negative. Another is thHBOR
trigger swap A start dateT;, end dateT,,, strike K and couporKs are specified,

and if Lj(T;) > K, then counterparties enterTa-start swap with coupoiKg

and end datel,. In another variation the swap is triggered at the first i

such thatl; (T;) > K. The most important product in this category is thdex
amortizing swaplt is an interest-rate swap with a stochastic decreasing notional
modelled after mortgage prepayment functions. The basic idea is that if rates fall,
the notional is reduced. A range of LIBOR rates and corresponding percentage
amounts are specified by which percentage the notional drops from its previous
level at everyT; for which LIBOR L;(T;) is within one of the ranges. There are
other variations, including a longer rate for the index and the index amortizing
cap.

In order to incorporate both caplet and swaptions volatilities for valuation
of these products, we need to construct a swap (or LIBOR) market model that
is root-search calibrated to caplets (swaptions) prices. This can be done as fol-
lows. We assume that Black-model caplet volatilities, and hence ptid63 are
available for all expirationdl;. For example, they are derived by appropriate
interpolation of market quoted cap volatilities. Similarly, we assumd;afitart
swaption volatilitiesy; are available. Start with a 2-factor swap market model,
and lety;; andw, be the two components of (percentage) volatilitypftaken
to be independent daf Then,v = ()4 +2)Y/2. We can find another equation by
a backward induction. Fdr=n — 1, the caplet and swaption coincide, so we ar-
bitrary fix the one degree of freedom, e.g., by settiig11 = vn—_1, ¥n_1,2 = 0.
Having inductively determinedy, and+);, for j > i, begin with an initial guess
for ¢i1 (€.9., use)i+1,1). This determineg), via vi. Use these to construct paths
S.,j > i, according to Eq. (8.7). By Eqg. (8.8), we can expressTh@ayoff of
the T; caplet in terms of5, j > i. We iteratet; until C;(0)/B,(0) equals the
average of the payoff over all paths.

The above construction is feasible numerically. Once completed, then the
above options can be computed by Monte Carlo simulation. However, calibrating
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market models by root search seems to defeat their very purpose. Moreover,
unless the input cap and swaption volatilities are highly coherent, the solution
may be unstable or not exist at all. Also, it does not incorporate directly given
correlations between forward LIBOR and swap rates. For these reasons, we think
some practical improvisation is called for.

We begin with the spread option. Its priceBs.1(0)E' " [max(S (t) — L; (t) —

K, 0)]. The improvisation we suggest is to assume that for &lbth L;(t) and
S(t) areP;., lognormal, although we know this is at odds with the no-arbitrage
principle. Then, forK = 0, we have a robust Margrabe/Black-Scholes formula
for the price. For positive (negativ&), conditioning orL; (S), we get an integral
involving the Black-Scholes formula, which can be quickly integrated numeri-
cally. ForE'*[S (t)], one should incorporate the CMS convexity adjustment, but
E'*YL; (t)] remainsL,; (0).

Consider now the LIBOR-trigger swap. Since the evefitqt) > K} and
{Bi(t) > (1 +6iK)B;.1(t)} are the same, a LIBOR trigger swap is a portfolio of
trigger swaps as in Example 3.3. But the pricing formula there assBmieave
deterministic volatilities, which is applicable to the Gaussian model, but not to
market models. However, the example still provides a formul&fa .y Z] with
X, Y andZ jointly lognormal, on which we can base our improvisation. Indeed,
the price of the trigger swap B »(0)E'"[1, 0>k (§(t) — Ks)]. Therefore, if we
assume that botf (t) andL; (t) areP'" lognormally distributed, we can at once
write down a simple Black-Scholes type formula.

For index amortizing swaps an improvisation consistent with the preceding
two would basically regard the spot rategT;) andS(T;) as jointly lognormal
state variables, while treating discount factors deterministically. But, since Monte
Carlo simulation is still to be used, one may as well use the “proper” calibrated
market model constructed above if the solution is adequately stable.

Finally, let us mentiorcallable reverse floaterswhich fits into none of the
categories discussed so far. These are (European or Bermudan) callable notes
whose coupon paid afj+; is maxK — Li(T;),0). The swap version is more
general: one pays mak(— L;(T;),K’), receivesL;(T;), and has the right to
cancel. WherK — K’ is much larger thark;(0) (e.g., twice as large), this is
essentially a swaption with a coupon & ( K’)/2 and twice the notional. In
this case, which is fortunately the usual case, it can be priced using the swap
market model. However, in general, this product exhibits both cap and swaption
characteristics, but unlike the above examples, they cannot be “separated”. We
have not yet come up with a sensible improvisation for this product in general.

13. Conclusion

The general theory that we described is consistent and reasonably elegant, but
it does not provide a perfect solution to all the issues and product range that
practitioners are faced with day-to-day. For one thing, we ignored transaction
costs, default risk, and process jumps. To be sure, there are theories that address
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theset! But, the problem is not just theoretical imperfections. The very principle
of arbitrage by dynamic trading can be questioned as a practical proposition.
This had significant bearing on our attitude to modelling, and leads us to treat
the theory only as a guide, making sensible improvisations when useful.

We started out based firmly on the principle of no-arbitrage, but when it
came to actual securities, we violated it by recommending mutually inconsistent
models for different securities, some of which were not even arbitrage-free. We
defend this stance on the grounds that all option models are at best rough approx-
imations of reality, from their assumption on the market mechanism (frictionless
and perfect markets, continuous trading, infinitely divisible prices, etc.) to their
statistical specifications (number of factors, distribution, estimated parameters,
etc.). Assumptions and approximations are to be judged by their reasonableness
and usefulness, and this depends on the product and the trading environment.

For example, according to the theory, the event that the underlying price
ends up right at the option strike has zero probability. This is innocuous for most
options. But for an at the money digital or trigger swap near expiration, it is the
event of most concern to traders. Model choice also depends on the purpose of
the trade. Market makers in LIBOR and swap derivatives are normally interested
in preserving the initial margin by hedging all market risk. It is therefore impor-
tant for their valuation to be calibrated to liquid caps and European swaptions,
which serve as natural hedge instruments. However, for proprietary trading, one
intends to keep certain exposures unhedged, and, it may therefore be better to use
more stationary and equilibrium-like models, which imply what cap and swaption
prices (or even, the rates themselves) should be in the first place.

The bottom line is that model choice should reflect the intended hedge instru-
ments. For different products the model should be adjusted to keep this depen-
dency as intimate and robust as possible. It is better to use well-adapted but mu-
tually inconsistent models for different products, than to use a uniform model ill
adapted to all. Traders use the Black-Scholes formula to inconsistently price both
an option on S&P500 and options on the individual stocks. It would certainly be
foolhardy to attempt to arbitrage this inconsistency by using a 500-factor option
model for the index. Likewise, quarterly and semiannual tenor LIBOR market
models are inconsistent, and both are inconsistent with the swap market model.
But this engenders no more practical arbitrage opportunity than does the S&P500
option. The assumption that quarterly volatility is deterministic is no more em-
pirically compelling than semiannual LIBOR volatility being deterministic. One
considers using one in favour of another only because it is more convenient and
natural to the product in question.

Endnotes
1 Afunction f(xq, ..., X) is homogeneous of degree if f(xq,..., X)) = a™ (axy, ... ax,) for

all « > 0.

A function f (t, x) is locally Lipschitz inx if V¥ integern, 3K, > 0 s.t. if |Xx| < n and|y| < n,
then|f (t,x) — f(t,y)| < Kn|x —y|, Vt. Some textbooks assume the global Lipschitz condition
for existence, but it is known that the local condition together with linear growth suffices.

2.
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10.

11

Examples of SFTS involving forward and futures contracts can be found in Cox et al. (1981),
and including exchanges rates, in Jamshidian (1994).

The term “arbitrage-free model” is usually reserved for models that do not admit “free lunches”
in an appropriate sense. This is then related to the existence of an equivalent martingale measure
(See Harrison and Pliska (1981), and for recent general results in this direction, Delbaen and
Schachermayer (1997).). However, this relationship is not the central topic of this paper, and the
less usual terminology adopted here is more convenient for our purposes.

Indeed, seB’ = B/X, and¢’ = £X/X(0). Theng’B! = £B; /X(0) is aP-martingale. In particular,

if X represents a foreign a currency, so tBatis the price system in the units of the foreign
currency, we see tha& = £X/X(0) represents a state price deflator with respect to the foreign
economy. The relative prices are however independent of the currB|’1¢Bi’ =B;j/Bj. So is

the i-th numeraire measure; defined bydP, /dP = M;(T), whereM; = £B;/B;(0), because

M/ = ¢'B//B/(0) =M;.

We note that for ad-dim processs adapted toj with [ |o[2dt < oo, fJ odw = [ odw,

where fJ denote stochastic integration with respectjto Consequently also covariation with
respect to the two filtrations coincide fa§t( wt) Ito processes. And these are also the same for
the measureP andP,. So, we need not distinguish between the four possible combinations.
Equation (5) is the discrete tenor version of the “forward-rate drift restriction” in Heath et al.
(1992). In the continuous tenor limit, the sum is replaced by an integrabjairdthe numerator

is replaced bydT. But the denominator then becomes 1, and because of this, when the absolute
forward rate volatility 3 _; has linear growth, the drift term will have quadratic growth (as
opposed to linear growth in the discrete tenor case), and the solution explodes.

We could similarly construct an arbitrage-frBesuch thatB; (T;) = b; for any given.74; mea-
surable random variablds, by choosingBn such thatBn(Ti) = by /Yi(Ti).

The linear interpolation was also mentioned by the referee, whom | thank.

Here we have assumed 16+ 1S > 0, which will be the case if for examplB; > B, or

bn—1 > 6i—_1. Otherwise, we can still write down the same formula, but in a more complex
form.

Some recent papers on these topics are: Cvitanic and Karatzas (1996) on transaction@ists; Bj
et al. (1997) on jumps; Duffle and Singleton (1994) on defaultable interest rates. The latter's
framework indicates that market models may still be applicable in the presence of default risk,
provided LIBOR and swap rates represent default-free rates plus a default spread.
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