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Abstract—Given a global specification contract and a system
described by a composition of contracts, system verification
reduces to checking that the composite contract refines the
specification contract, i.e. that any implementation of the com-
posite contract implements the specification contract and is able
to operate in any environment admitted by it. Contracts are
captured using high-level declarative languages, for example,
linear temporal logic (LTL). In this case, refinement checking
reduces to an LTL satisfiability checking problem, which can
be very expensive to solve for large composite contracts. This
paper proposes a scalable refinement checking approach that
relies on a library of contracts and local refinement assertions. We
propose an algorithm that, given such a library, breaks down the
refinement checking problem into multiple successive refinement
checks, each of smaller scale. We illustrate the benefits of the
approach on an industrial case study of an aircraft electric power
system, with up to two orders of magnitude improvement in terms
of execution time.

I. INTRODUCTION

Contract-Based Design (CBD) has recently emerged as a
paradigm for the design of complex systems, emphasizing the
concept of interface and requirement formalization to facilitate
system integration and provide formal support to the whole
design flow, including stepwise refinement of specifications
and reuse of pre-designed components [1].

The notion of contracts originates in the context of com-
positional assume-guarantee reasoning, which has been known
for a long time as a verification method for the design of
hardware and software, but has been advocated only recently in
the context of embedded system design. In CBD, components
are specified by contracts and systems by compositions of
contracts. In general terms, a contract denotes both a set
of components that implement a specification and a set of
environments in which it can operate. The ultimate objective
is to be able to infer “global” properties of complex system
by appropriately combining “local” properties of components
and their environments. Several rigorous contract theories have
then been developed over the years, for instance, assume-
guarantee (A/G) contracts [2] and interface theories [3], each
using a different formalism to represent the sets of contract
implementations and environments. However, the development
of efficient algorithms and tools that can support the algebra
of contracts and its concrete application to system design is
still at its infancy.

This work was partially supported by the NSF Expeditions in Computing
project ExCAPE: Expeditions in Computer Augmented Program Engineering,
by IBM and United Technologies Corporation (UTC) via the iCyPhy con-
sortium, by TerraSwarm, one of six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and DARPA, by the
Academy of Finland, and by the NSF via project COSMOI: Compositional
System Modeling with Interfaces.

An important task for the successful deployment of a
contract-based methodology is refinement checking. In all
contract frameworks, given a global specification contract and
a system, also described by a composition of contracts, system
verification reduces to checking that the composite contract
refines the specification contract, i.e. that any implementation
of the composite contract implements the specification contract
and is able to operate in any environment admitted by it. Even
if refinement checking can be carried out compositionally,
it can still be very expensive to solve for large composite
contracts. For instance, in several applications, contracts can be
captured using high-level declarative languages, such as linear
temporal logic (LTL). In this case, refinement checking reduces
to an LTL satisfiability checking problem, which is PSPACE-
complete [4]. Even if contracts are not captured in LTL but
instead are expressed directly in an automata-based formalism
such as interface automata, for which refinement checking is
polynomial [3], the method still suffers from scalability issues
due to state explosion. Indeed, the size of the system automaton
is often prohibitive, as the system is formed by composing
several sub-systems.

In this paper, we took inspiration by the strong growth
of library-based design approaches in VLSI where, according
to a recent market survey, more than 50% of components at
the macro-level come from pre-designed Intellectual Property
blocks (IP) that are fully characterized, pre-verified, and fully
documented. The cost of building a library of IPs is non trivial
but is highly compensated by the saving in design time and cost
(International Business Strategies (IBS) estimates that design
costs for a chip implemented in the latest technology will
exceed 200Million US$ if IP libraries are not used to the fullest
extent). Indeed the market for IP blocks is now above 2Billion
US$. Motivated by this trend in semiconductor companies,
system companies share a growing interest in design re-
use both for hardware and software. To make it possible to
utilize pre-designed blocks with confidence, providing strong
collateral documentation and models is necessary. Along these
lines, we show how refinement checking can be made more
efficient when a system is described by contracts out of a pre-
characterized library of components that carry as collateral
a characterization in terms of a set of refinement assertions,
which we call a contract library. We propose an algorithm
which, given such a library, breaks down the refinement
checking problem into multiple successive refinement checks,
each of smaller scale. While our algorithm is not bound to
any specific contract framework, to be concrete, we instantiate
and demonstrate it by using A/G contracts to describe both
the system and the property to be satisfied. A/G contracts
specify the behavior of a component by defining what the
component guarantees, provided that its environment obeys
some given assumptions. We formulate both the component
guarantees and the environment assumptions using LTL for-
mulas, a widespread formalism to reason about reactive sys-
tems and perform analysis and synthesis of embedded control978-3-9815370-2-4/DATE14/ c�2014 EDAA



software [5], [6], [7]. We illustrate the benefits of the approach
on a case study of industrial relevance, i.e. the verification of
an embedded controller for an aircraft electric power system,
showing up to two orders of magnitude improvement in terms
of execution time.

As in traditional assume-guarantee proof strategies, we
decompose the main verification task into smaller sub-tasks,
where an aggregation of components is replaced by a more
abstract representation [8]. However, in most cases, finding the
appropriate abstraction is an issue, since no general guidelines
are available to the verification engineer. A few approaches
have been proposed, which use learning algorithms to automat-
ically build such abstractions, e.g., see [9], [10]. In this paper,
the abstraction process is instead guided by the contract library,
which systematically encodes the available information on both
the structural decomposition of the system architecture and the
relevant system domain knowledge. Based on the library, we
provide a mechanism to automatically build abstractions on the
fly, as we solve the problem by successive refinements. In this
respect, our solution is inspired by the platform-based design
paradigm [11], where a design at each abstraction layer is also
regarded as a platform instance, i.e. a legal interconnection
of component out of a pre-characterized library, which also
includes composition rules. However, in this paper, the concept
of library is further extended to also include refinement rules.
As in [12], we exploit the relation between decomposition of
component contracts and system architecture and provide a
concrete framework to verify a system architecture relying
on temporal logic formulas. However, in addition to auto-
matically generate proof obligations, the contribution of our
work is twofold: (i) we propose an algorithm to improve the
performance of refinement checking, the core verification task
underlying any proof obligation in CBD; (ii) we illustrate
the benefits of a library-based approach for contract-based
verification on a case study of industrial relevance.

II. BACKGROUND ON A/G CONTRACTS

In this Section, we provide an overview of the assume-
guarantee contract framework, based on the theory in [2],
[1], which we use to instantiate the algorithms in this paper.
An assume-guarantee (A/G) contract is a pair C = (A,G)
where A and G are sets of behaviors defined on a set of
variables V . A represents the assumptions that a component
makes on its environment, and G represents the guarantees
provided by the component. In several applications, such as
the specification of reactive controllers, it is also useful to
distinguish between input and output variables of a component.
We denote a variable as output variable if it is controlled
by the component. Otherwise it will be an input variable,
under the responsibility of the environment [1]. We concretely
express the sets A and G as formulas in linear temporal logic
(LTL) [13], each denoting the set of all traces (behaviors) that
satisfy it. Each LTL A/G contract can then be represented as
a pair of LTL formulas ('

e

,'

s

), which implicitly refer to a
set of propositional variables, used in both the assumption and
the guarantee formulas.

In what follows, we also assume that contracts are in
saturated form, meaning that they satisfy A ✓ G, where A

is the complement of A. For an LTL contract, this translates
into (¬'

e

) ! '

s

, which is not a restrictive assumption, since
it can always be satisfied by setting '

s

:= '

e

! '

s

. We
then recall two fundamental operations widely used in our
verification algorithm, i.e. parallel composition and refinement.
The parallel composition of two contracts C1 = ('

e1,'s1)
and C2 = ('

e2,'s2) can be directly defined in terms of LTL
formulas as

C1 ⌦ C2 = (('
e1 ^ '

e2) _ ¬('
s1 ^ '

s2),'s1 ^ '

s2).

Contract composition preserves the saturated form, that is,
if C1 and C2 are in saturated form, then so is C1 ⌦ C2.
Moreover, ⌦ is associative and commutative and generalizes
to an arbitrary number of contracts. We therefore can write
C1 ⌦ C2 ⌦ · · · ⌦ C

n

. Refinement is instead a preorder on
contracts, which formalizes a notion of substitutability. We
say that contract C1 = ('

e1,'s1) refines contract C2 =
('

e2,'s2), written C1 � C2, if formulas '

e2 ! '

e1 and
'

s1 ! '

s2 are both valid, or equivalently, if ¬('
e2 ! '

e1)
and ¬('

s1 ! '

s2) are both unsatisfiable.

In our framework, we aim to specify systems that are
built as aggregation and interconnection of components. To
do so, we also define a set of operations that manipulate
contract variables. A first operation on contract variables is
instantiation. Given a set of contracts C, defined on a set of
variables VC an instance of a contract C = ('

e

,'

s

) 2 C
is a contract C

0 = ('0
e

,'

0
s

) obtained by C by renaming its
variables so that all the variable names v1, ..., vn in '

0
e

_'0
s

are
unique in VC , i.e. they are not used by any other contract in C.
We will indicate the instantiation of a contract C as inst(C).
Given three contracts C, C1 and C2, where C1 = inst(C)
and C2 = inst(C), C, C1 and C2 will not share any variable.
We then define a renaming operator. Given a contract C =
('

e

,'

s

), where '

e

,'

s

are defined on variables v1, ..., vn, then
a renaming for C is a set M of pairs of the form (v

i

, u

j

), where
u

j

is a new variable or an existing variable v

k

. The renaming
operator ren

M

(C) returns a new contract C 0 = ('0
e

,'

0
s

) where
variables in '

e

,'

s

are renamed according to M . We will say
that two contracts C1 and C2 are isomorphic if there exists a
renaming M such that ren

M

(C1) = C2. With the exception of
their variable names, isomorphic contracts represent the same
contract. Finally, given a contract C, we define the operations
input(C) and output(C), which return, respectively, the list
of input and output variables of C.

III. PROBLEM FORMULATION

A. The Refinement Check Problem (RCP)

Given a set of contracts C, a composition of contracts
specifying a system C

s

= ren

M

(inst(C1)⌦ inst(C2)⌦ · · ·⌦
inst(C

n

)), where C1, . . . , Cn

2 C and M is a renaming,
and a property expressed as a contract C

p

, to ensure that
any implementation of C

s

satisfies C

p

and can operate in
all environments admitted by C

p

, we need to verify that
C

s

� C

p

. We denote this verification task as the refinement
check problem (RCP).

For LTL A/G contracts, RCP can be solved using LTL satis-
fiability solving techniques, which suffers from the well-known
state-explosion problem. In subsequent sections, we will refer
to RCP indicating a routine that solves the refinement problem
using such techniques. To perform such task more efficiently,
we recur to a different problem formulation, which relies on
a library of contracts as an additional input.

B. Library of contracts and library verification problem (LVP)

Formally, a library of contracts L is a pair (C,R) where:

• C = {C1, ..., Cn

} is a finite set of contracts.

• R is a finite set of refinement relations be-
tween contracts in C. Every refinement relation has
the form R

i

= (C
Ri

, C

Ai

,M

i

), where C

Ri

=
ren

Mi(inst(Ci1)⌦ · · ·⌦ inst(C
ik)) and C

Ri

� C

Ai

for k > 1, C
i1 , ..., Cik , CAi

2 C, and M

i

a renaming
for contract inst(C

i1)⌦ · · ·⌦ inst(C
ik). If k = 1, we

require C

Ri

� C

Ai

, that is, C
Ri

strictly refines C

Ai

,
meaning that the two contracts cannot have equivalent
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Figure 1. Example contract library with refinement assertions.

formulas. This constraint is introduced to avoid, in
the library, the presence of circular dependencies,
and therefore ensure termination of the algorithms
presented below. We will call the contract C

i1 the root
of R

i

.

Refinement relations are assertions made by library designers
based on their knowledge of the system architecture at hand.
We say that the library L is valid if all its refinement relations
are true. The library verification problem (LVP) is the problem
of checking whether a given library is valid.

Figure 1 shows an example of a contract library and
its refinement relations. In this case, L

ex

= (C
ex

,R
ex

)
where C

ex

= {A,B,C,D}, and R
ex

= {R1, R2} with
R1 = (ren

M1(inst(A) ⌦ inst(D)), C,M1) and R2 =
(ren

M2(inst(A)⌦ inst(B)), D,M2).

C. The Refinement Check Problem with Library (RCPL)

When a library of contracts defined as in Section III-B is
available as an additional input, a refinement check problem
with library (RCPL) can be formulated as follows. Given a
property contract C

p

, a contract library L = (C,R) and a
system contract C

s

= ren

M

(inst(C1) ⌦ inst(C2) ⌦ · · · ⌦
inst(C

n

)), for a renaming M , and such that C1, C2, . . . , Cn

2
C, check whether C

s

� C

p

.

IV. SCALABLE CONTRACT REFINEMENT CHECKING

A. Library Verification

Given a library defined as in Section III-B, the library
verification process ensures that all its refinement assertions are
correct. If any of such refinement relations is not verified, the
returned value of the algorithm will be false. A description
of the library verification process is given in Algorithm 1.

Algorithm 1: Library Verification Problem.
Input: A library of contracts, L = (C,R).
Output: true, if all refinement relations in the library are
true, false otherwise.

1) For each tuple (C
Ri

, C

Ai

,M

i

) 2 R, C

Ri

=
ren

Mi(inst(Ci1) ⌦ · · · ⌦ inst(C
ik)), k � 1,

C

i1 , ..., Cik , CAi

2 C, and M

i

a renaming
a) if k > 1 and C

Ri

6� C

Ai

then return an error.
b) if k = 1 and C

Ri

6� C

Ai

then return an error.
2) If no errors are found, then return true.

Each refinement check in Algorithm 1 is performed by
solving an RCP instance as described in Section III-A, which is
reasonable in terms of computation time, since aggregations of
library contracts are expected to have a small size. Moreover,
the overall efficiency of the LVP is deemed to be less critical
since it is performed only once, outside of the main verification
flow.
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Figure 2. Pictorial representation of the RCPL algorithm.

B. Refinement check with library

Our refinement checking procedure is described in Algo-
rithms 2, 3 and 4. We start with a valid library L = (C,R),
defined as in Section III-B, a property contract C

p

(where
possibly C

p

/2 C), and a system contract C

s

, obtained as
the composition of a set of contracts S = {C1, . . . , Cn

},
C1, . . . , Cn

2 C, after instantiation and renaming, as defined
in Section III. The system contract C

s

represents the spec-
ification of a complex system, while the property contract
C

p

captures a requirement that must be satisfied by the
system. We further assume that, given a variable v such that
v 2 output(C

i

), C

i

2 S , then v /2 output(C
j

), C

j

2 S and
j 6= i, meaning that each variable is controlled only by one
contract in S or by a legal environment of C

s

.

We solve the RCPL using the algorithm represented in
Figure 2 and consisting of two nested loops. In the inner loop,
the procedure ABSTRACTCONTRACT tries to create a maximal
abstraction for C

s

given the refinement assertions in L and
an indication about which contracts can be abstracted. As a
result, some of the contracts in S will be replaced by an equal
or smaller number of more abstract contracts, resulting in a
composition that we will denote as C

abstr

. Since, in general, a
more abstract contract is expressed by smaller formulas, C

abstr

will be simpler and more compact than C

s

. The indication on
which contracts can be abstracted is provided via the outer
loop by the routine PROPAGATENOABSTRACTION.

In the outer loop, refinement between C

abstr

and C

p

is
checked by the RCP routine. If C

abstr

� C

p

holds, then
C

s

� C

p

will also hold since, by construction, we have
C

s

� C

abstr

and the RCPL routine terminates. If the property
is not verified at the current level of abstraction, subsequent
iterations will use a less and less abstracted representation
of C

s

. In the worst case, no abstraction is performed and
RCPL reduces to an instance of RCP with the not abstract
contract. The outer loop of the RCPL procedure is illustrated in
Algorithm 2. To control the level of abstraction, each contract
(including C

p

) has an associated Boolean flag that corresponds
to a no-abstraction constraint. If the flag is true, the contract
will not be substituted by a more abstract one, even this is
available in the library. As shown in line 6 in Algorithm 2, the
main loop terminates when C

abstr

� C

p

or when the function
ABSTRACTCONTRACT cannot return a more abstract contract.

Algorithm 2: RCPL
Input: A contract C

p

, a library of contracts L = (C,R), a
contract C

s

obtained by composition of C1, . . . , Cn

2 C.
Output: true, if C

s

� C

p

, false otherwise.

1) Let S = [C1, . . . , Cn

, C

p

].
2) Build hashtable A such that A[C

p

] = true and 8i,
A[C

i

] = false.
3) S

0 := ABSTRACTCONTRACT(A,L,C

s

)
4) C

abstr

:= ⌦{C
i

| C
i

2 S

0}
5) If C

abstr

� C

p

return true.
6) Create a copy C

s

0 = C

s

.



7) While C

abstr

� C

p

and C

abstr

6= C

s

0

a) C

s

0 := C

abstr

,
b) A := PROPAGATENOABSTRACTION(A,S),
c) S

0:=ABSTRACTCONTRACT(A,L,C

s

)
d) C

abstr

:= ⌦{C
i

| C
i

2 S

0}
8) If C

abstr

� C

p

return true, otherwise false

Algorithm 3: ABSTRACTCONTRACT

Input: A library of contracts L = (C,R), a composite contract
C

s

(obtained by composition of C1, . . . , Cn

2 C), a hashtable
A as in Algorithm 2.
Output: A list of contracts S = [C

a1 , . . . , Cam ], such that
C

s

� C

a1 ⌦ · · ·⌦ C

am .

1) Create S := [C1, . . . , Cn

].
2) Create C

abstr

:= null.
3) Create a copy C

s

0 := C

s

.
4) While C

abstr

6= C

s

0

a) assign C

s

0 = C

abstr

,
b) create copy S

0 := S;
c) for each contract C

k

2 S \ S

0 that satisfies
abstraction-acceptance-condition then
i) S

0 := (S0 � [C
k

, C

k1 , . . . , Ckm ]) ·
[ren

N

(C
Ai

)];
ii) C

abstr

:= ⌦{C
i

| C
i

2 S

0}.
d) S := S

0;
5) return S

The procedure ABSTRACTCONTRACT in Algorithm 3 im-
plements the inner loop of RCPL. It accepts as inputs a library
L = (C,R), a contract C

s

composed of contracts in C, and a
list of flags A built as described in Algorithm 2. The algorithm
tries to abstract C

s

by using the information in L until no
progress is made. Line 4 describes how the abstraction is
performed in terms of the operations defined in Section II.
At each iteration, a copy of the current list of contracts S

is maintained in S

0 and the abstraction-acceptance-condition
is checked on each contract C

k

2 S \ S

0. If it evaluates to
true, a subset of contracts is matched to an aggregation of
contracts C

Ri

in L and then replaced by its abstraction C

Ai

.
The abstraction-acceptance-condition requires the following
sub-conditions to hold:

• C

k

is not flagged by a no-abstraction constraint, that
is A[C

k

] = false;
• 9R

i

= (C
Ri

, C

Ai

,M

i

) 2 R such that C
k

and the root
of R

i

are isomorphic;
• 9C

k1 . . . Ckm 2 S \ S

0, such that A[C
k1 ] = · · · =

A[C
km ] = false, and a renaming N such that

ren

N

(C
Ri

) = C

k

⌦C

k1 ⌦ · · ·⌦ C
km , i.e. there exists

a subset of contract that can be abstracted and such
that, when composed with C

k

, generate a contract that
is isomorphic with C

Ri

;
• (output(ren

N

(C
Ri

)) \ output(ren
N

(C
Ai

))) \
input(C

r

) = ;, C

r

2 S

0 \ {C
k

, C

k1 , . . . , Ckm},
i.e. no substitution is made if there is some other
contract in C

s

, which is not in {C
k

, C

k1 , . . . , Ckm},
and such that at least one of its input variables is
missing in the abstract contract.

The replacement of the contracts in the original list as well
as the selection of candidate abstractions from the library are
currently performed in a random order. More sophisticated
heuristics will be considered in future implementations.
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Figure 3. Representation of a composite contract obtained from the library
in Figure 1 (a) and its abstraction (b).

Termination of ABSTRACTCONTRACT is guaranteed since
contract C

abstr

will not change after a certain number of
iterations. In fact, the number of matchings of contracts in
R performed in line 4.c) is finite. Therefore, since the library
is finite, we just need to prove the absence of circular de-
pendencies between contract relations in R. To show this, we
observe that for each matching relation R

i

= (C
Ri

, C

Ai

,M

i

),
with C

Ri

= ren

Mi(inst(Ci1) ⌦ · · · ⌦ inst(C
ik)), there are

two possible cases. If k > 1, after replacing C

Ri

with C

Ai

, the
number of contracts in S decreases. Obviously, this operation
can only be performed a finite number of times. On the other
hand, if k = 1, since we requires C

Ri

� C

Ai

, we will always
have C

Ai

⌃ C

Ri

. Therefore, it is impossible to find in the
library a relation R

0
i

= (C
Ai

, C

Ri

,M

i

), which would represent
a circular dependency between R

i

and R

0
i

.
The runtime of ABSTRACTCONTRACT is mostly deter-

mined by the time it takes to find a matching between a set
of library contracts and a subset of the contracts composing
C

s

. Such a matching problem can be reduced to a graph
isomorphism problem, which can be efficiently solved [14],
[15]. In our case, graphs can be built to represent contract
compositions, while incorporating information on the names
of the variables of the component contracts and their isomor-
phism.

Algorithm 4: PROPAGATENOABSTRACTION

Input: A list of contracts S = [C1, . . . , Cn

], a hashtable A as
in Algorithm 2.
Output: A new hashtable A.

1) Create list M := ;
2) For each contract C

k

2 S such that A[C
k

] = true
a) for each contract C

h

2 S such that
(input(C

k

)[output(C
k

))\output(C
h

) 6= ;
i) add C

h

to M ,
3) For each contract C

i

2 M , assign A[C
i

] = true
4) return A.

The heuristic used in the propagation of the no-abstraction
constraint is finally detailed in Algorithm 4. We propose
an incremental propagation of the constraint according to
the syntactical dependence between contracts. The algorithm
receives as a parameter the list of contracts that compose
C

s

, extended with the addition of the property contract C

p

(the first to receive the no-abstraction mark). Each time
PROPAGATENOABSTRACTION is called, the no-abstraction
mark will be propagated to all contracts that share at least
one of their output variables with a marked contract. This
approach is similar to the concept of “cone of influence” used
in Counterexample-Guided Abstraction Refinement [16].

We provide an example of execution of our algorithm in
Figure 3. The contract in Figure 3 (a) is obtained by compo-
sition of contracts from the library in Figure 1. The arrows
denote a renaming operation. We assume that the property
contract C

p

involves only variables B.a and D.c. We then



Figure 4. Aircraft electric power system plant architecture used in the case
study.

call the RCPL algorithm using C

p

, C
s

in Figure 3 (a), and L

ex

from Section III-B. At the first execution of ABSTRACTCON-
TRACT, all contracts can be potentially abstracted. However,
there are only two possible matchings between portions of
the architecture in Figure 1 and the refinement relations in
R

ex

. In particular, the composite contract B ⌦ A2 can be
abstracted as D1, an instance of D, while A1 ⌦ D can be
abstracted as C. However, B ⌦ A2 does not satisfy the last
condition for the abstraction-acceptance-condition to hold in
line 4.c) of Algorithm 3. In fact, replacing B ⌦ A2 with
D1 would cause the loss of a variable (B.b) that should be
shared with A, hence an incorrect abstraction. Conversely, the
substitution of A1⌦D with C is legal and the resulting contract
composition, C

abstr

, is shown in Figure 3 (b). If C
abstr

� C

p

,
the algorithm would terminate by executing an instance of the
RCP on a more compact representation of the system contract.
Otherwise, if C

abstr

� C

p

, PROPAGATENOABSTRACTION
would mark D with a no-abstraction annotation. At this point,
no contract aggregation can be further abstracted, and the
algorithm terminates by solving an instance of the RCP on
the original composition.

V. APPLICATION EXAMPLE

The proposed algorithm was implemented in Python and
applied on the verification of a controller for an aircraft electric
power system (EPS). To solve the LTL satisfiability problems,
we used NUSMV [17]. All tests were performed on a 2.3-GHz
Intel Core i7 machine with 8 GB of RAM.

Figure 4 shows the architecture of the EPS plant. The set of
components includes primary generators (G

L

, G

R

), auxiliary
generators (A

L

, A

R

) on both the left and right side of the dia-
gram, contactors (c1, ..., c12), buses (B1, ..., B5), high-voltage
rectifier units (HVRU

i

) and loads. The EPS controller must
appropriately open or close the contactors (electromechanical
switches) to ensure that loads are always adequately powered
by accommodating the highest possible number of failures in
the components. In our example, we assume that failures can
only affect generators and rectifiers.

Each contract in our library specifies a “local” controller
for a portion of the EPS plant, i.e. a subset of its components.
In addition to sensing (input) and actuation (output) variables,
contracts can include a set of communication variables to
propagate information on error conditions and component
health status. Figure 5 shows some of the EPS subsystems
supported by our library. A contract for the subsystem in
Figure 5.a) specifies that the contactor should be opened and
the failure variable asserted if the generator fails; otherwise
the contactor must be closed. For the subsystem in Figure
5.c), the same requirement as for Figure 5.a) will hold, with
the addition that both generators should never be connected
at the same time to avoid paralleling AC sources. For the
subsystem in Figure 5.e), we require that the contactor on
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Figure 5. Subsets of components of the EPS plant and number of variables
associated with the related contracts, including communications variables
and variables related to the health status of plant components (e.g. buses,
contactors).

one side should be closed upon reception of a failure signal
from a component connected to the opposite side. The contract
for the subset in Figure 5.b) specifies that the load should
be isolated in case of failures in one of the interconnected
portions of the plant, or in the HVRU. Finally, the subsystem
in Figure 5.d) is associated to a contract similar to the one
in Figure 5.e), while handling one additional bus and only
two interconnection branches. For each portion of the plant,
the library can provide multiple contracts to specify different
sets of behaviors. Moreover, we provide contracts that specify
abstractions of controllers for specific portions of the plant.
For example, a contract may represent the behavior of the
controller associated to an idealized generator, which abstracts
both the sub-systems in Figure 5.a) and 5.c). Overall, the
library includes 17 contracts and 9 refinement assertions. The
verification of the refinement assertion using NUSMV required
1.55 s.

A controller for the EPS has been assembled out of 5 dif-
ferent contracts from the library, associated to the subsystems
shown in Figure 5. The composite contract has a total of 46
variables. On the other hand, the most compact abstraction of
the design based on the available library had only 12 variables.
On this design, we checked the following properties expressed
as LTL A/G contracts:

• C

p1, ..., Cp4: If generator G 2 {G
L

, A

L

, A

R

, G

R

}
fails, the closest contactor c 2 {c1, ..., c4} must be
opened;

• C

p5: If generators G

L

and G

R

are healthy, contactors
c5 and c6 must be opened;

• C

p6: Contactors c2 and c3 cannot be both closed at
the same time;

• C

p7, ..., Cp10: If at least one generator is healthy, bus
B 2 {B1, ..., B4} cannot stay unpowered for more
than three clock cycles;

• C

p11: If all generators are healthy, bus B5 must not
be powered;

• C

p12, Cp13: If at least one generator is healthy, c11
and c12 cannot stay opened for more than three clock
cycles.

This set of property contracts has been verified using
both the RCPL and the RCP algorithms. The total ex-
ecution time was 123.1 s for RCPL, and 638.82 s for
RCP. Figure 6 shows the execution times required by
each verification task. For more than half of the properties
(C

p1, Cp2, Cp3, Cp4, Cp5, Cp6, Cp11), RCPL allows to obtain
a performance improvement of two orders of magnitude, by
using an abstraction of the controller with only 12 variables.
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For C

p7 and C

p8 RCPL shows a performance improvement
of one order of magnitude, while for the other properties,
the execution times are comparable to the one obtained with
plain RCP. C

p10 produced the worst execution time, using an
abstraction with 37 variables. Figure 7 shows the difference in
terms of formula sizes, computed as the ratio between the non-
abstract EPS contract size and the one of its maximal abstrac-
tion obtained at the first iteration of the ABSTRACTCONTRACT
algorithm. Formulas in abstract contracts are indeed smaller
than the original ones, which provides an explanation of the
performance improvement obtained using RCPL.

To test the scalability of the algorithm, the same properties
have been checked on an extended plant architecture, including
one more generator, 7 contactors, 2 rectifier units, 2 AC loads,
2 DC loads and one bus. The contract specifying a controller
for the new plant includes 66 variables. Verification of the
whole property set was performed in 1724.43 s with RCPL and
8371.01 s with RCP. Also in this example, an execution time
two orders of magnitude smaller for RCPL has been observed.
In the best case, the generated abstract contract included only
16 variables.

VI. CONCLUSION

We addressed the problem of performing scalable re-
finement checks for contract-based design. We presented an
algorithm that leverages a pre-characterized library of contracts
enriched with refinement assertions to break the main verifica-
tion task into a set of smaller tasks. We applied the proposed
algorithm to verify controllers for aircraft electrical power
systems, with up to two orders of magnitude improvement
with respect to a standard implementation based only on LTL
satisfiability solving. A full-fledged theoretical study of its
complexity is challenging, since its runtime is highly depen-
dent on the characteristics of the library, in addition to the
structure of the system and the property under consideration.
A characterization of the role of the library via domain-
related benchmarks will be object of future work. We here
anticipate that the benefits of having a richer library in terms
of refinement assertions will largely repay the overhead of
building it. In fact, we recall that the library verification
process must be performed only once, outside of the main
verification flow. Moreover, the proposed algorithm already
offers a way of automatically proving new refinement relations
that can be effectively used to further populate the original
library so as to enrich it for future verification tasks.

Possible extensions of this paper include investigating

algorithms for automatic mapping of library contracts to plant
architectures, the adoption of learning algorithms for library
optimization, and the definition of benchmarks and quality
metrics to estimate the effectiveness of a library.
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