
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2011-027 May 2, 2011

Library Cache Coherence
Keun Sup Shim, Myong Hyon Cho, Mieszko Lis, 
Omer Khan, and Srinivas Devadas



Library Cache Coherence
Keun Sup Shim1, Myong Hyon Cho1, Mieszko Lis, Omer Khan and Srinivas Devadas

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract—Directory-based cache coherence is a popular
mechanism for chip multiprocessors and multicores. The
directory protocol, however, requires multicast for inval-
idation messages and the collection of acknowledgement
messages, which can be expensive in terms of latency and
network traffic. Furthermore, the size of the directory
increases with the number of cores. We present Library
Cache Coherence (LCC), which requires neither broad-
cast/multicast for invalidations nor waiting for invalidation
acknowledgements. A library is a set of timestamps that
are used to auto-invalidate shared cache lines, and delay
writes on the lines until all shared copies expire. The
size of library is independent of the number of cores. By
removing the complex invalidation process of directory-
based cache coherence protocols, LCC generates fewer
network messages. At the same time, LCC also allows
reads on a cache block to take place while a write to
the block is being delayed, without breaking sequential
consistency. As a result, LCC has 1.85X less average
memory latency than a MESI directory-based protocol
on our set of benchmarks, even with a simple timestamp
choosing algorithm; moreover, our experimental results
on LCC with an ideal timestamp scheme (though not
implementable) show the potential of further improvement
for LCC with more sophisticated timestamp schemes.

I. INTRODUCTION

With the demise of Dennard scaling, the increase in
processor clock frequencies from 1980-2003 has slowed
down significantly [1]. To improve performance, archi-
tects are exploring many parallel architectures includ-
ing manycore architectures in academia (e.g., Raw [2],
TRIPS [3]) and industry (e.g., Tilera [4], Intel Ter-
aFLOPS [5]). In a manycore or multi-core architecture,
cores with relatively low complexity are connected to
memory and each other via high-bandwidth on-chip
interconnect.

How will these multicores be programmed? Amongst
many different types of parallel programming models,
message passing and shared memory are the most dom-
inant ones. Some multicores, for example, the Tilera
Tile-Gx 100 provide a shared memory abstraction to
the programmer, while other architectures like Intel

1equal contributors

TeraFLOPS rely on message passing. Message passing
is a very efficient programming model for certain types
of applications, such as scientific computation. However,
many programs and operating systems are based on
the shared memory abstraction, so it is indispensable
for general-purpose multicores to support the shared
memory abstraction.

On-chip cache memory cannot be directly imple-
mented as a single large cache primarily because the
energy consumption of caches grows quadratically with
cache size, and because the number of read and write
ports do not scale with the number of cores. To maintain
performance, we need distributed caches that behave like
a logically shared cache.

A. Directory-Based Cache Coherence (DirCC) Architec-
ture

When we consider a two-level on-chip cache hierar-
chy for a tiled multicore architecture, there are many
choices in implementing a logically shared cache. One
of the most common approaches in modern multicore
processors is to implement a private L1 cache and a
shared L2 cache slice for each core (e.g., Tilera’s 64-
core processor [4], Cavium Octeon 32-core processor).
A shared L2 cache architecture unifies the per-core L2
cache slices into one large logically shared cache, and a
memory address has a unique location where it can be
cached on-chip, which is termed the home cache for the
address. Therefore, data can be replicated in L1 but not
in L2. On an L1 miss, the home L2 cache, where the
data block may be located, needs to be looked up; the
home can be a local L2 cache if the address is mapped
to the requesting core’s cache (core hit), or a remote
L2 cache if the core is not the home for the address
(core miss). While these remote accesses may lead to a
higher average L2 hit latency, the on-chip cache is better
utilized by not replicating any data in L2, reducing the
number of expensive off-chip accesses when compared
to a private L2 design.

The common shared memory abstraction model re-
quires data coherence between cores. In this example of
the shared L2 cache architecture, private L1 caches need



2

to be kept coherent. When the number of cores is large
(> 32), snoopy caches are no longer viable [6], and we
are left with directory-based cache coherence [7]. There
are difficulties in scaling directories to hundreds of cores,
since the directory sizes grow with the number of cores.
A fullmap directory is a directory that keeps track of
all the sharers of each cache block [8]. If, say, we have
256 cores on the chip, we will require a 256-bit vector
for each shareable cache block, unless compression tech-
niques, e.g., [9], [10], are applied, which may degrade
performance.

Moreover, directory protocols that maintain sequen-
tially consistent operation may require up to four net-
work messages, that include broadcast (multicast) to
all (a subset of) cores, and return acknowledgements.
Broadcast/multicast can be expensive in terms of latency
and network traffic and therefore many techniques have
been developed to alleviate this expense (e.g., [11], [12]).

B. Our contribution: Library Cache Coherence Protocol
(LCC)

We propose Library Cache Coherence (LCC), a novel
cache coherence protocol which 1) does not require
broadcast/multicast of invalidations (and therefore, no
collection of invalidation acknowledgements), 2) is scal-
able to any number of cores, and 3) guarantees sequential
consistency.

There are several points worth of note before we
describe the LCC protocol:
• We assume a global timer that is available to all

cores and caches. (This timer does not have to
increment with the processor clock, and can be
significantly slower.)

• Each memory address has a unique home L2 loca-
tion.

• Each line in the L1/L2 cache has an additional
timestamp. This timestamp is interpreted in two
different ways. If the data block is not in its home
L2 location, the timestamp indicates the time until
when the line is valid (i.e., can be read), and if it is
at its home L2, the timestamp holds the maximum
value of timestamps among all the copies of the data
block.

• A line can only be written at its home location, i.e.,
writes requested by a processor have to be sent to
the home L2 cache.

We will describe the protocol informally here and
more formally in Section III. A high-level example
of LCC with a shared L2 cache is also illustrated in
Figure 1. While a data block can only be written in its
home L2 location, when a processor makes a request

for a word in the data block, read-only copies of data
blocks with timestamps can be stored in L1 caches.
The timestamp assigned to the data block is assigned
by the home L2 cache when it sends the block to the
requesting core (cf. Figure 1a,1b). The requested word
from the block is loaded into a register, and a copy
of the block is stored in the local L1 cache provided
that its timestamp has not expired. The home L2 cache
keeps the information about the timestamps assigned to
each data block that is stored in it, for those blocks that
have been shared. Crucially, for any given data block,
the home cache needs to just keep information about the
maximum value of the timestamp assigned to any copy
of the data block. Any write request to the data block in
the home cache will not occur until the timestamp has
expired. In other words, we delay writes to a block until
all the read copies of the data block have expired in their
respective locations to maintain sequential semantics (cf.
Figure 1c,1d).

C. Comparing the Library and the Directory Protocol

The library protocol does not require broad-
cast/multicast of invalidation messages, and therefore
it need not wait for invalidation acknowledgements to
arrive, when writing to a shared cache line. However,
as writes are only done at the L2 cache of the home
core, they do not exploit spatio-temporal locality and
may be delayed if the cache line being written has an
unexpired copy elsewhere. This implies that the choice
of the timestamps is crucial to performance and we show
how it affects the performance of LCC in Section IV-A.

For the directory-based protocol, directories are stored
at L2 caches combined with cache blocks, and lines in
L1 caches have state information on whether the line
is shared or exclusive. On the other hand, the library
protocol requires per-cache-line timestamps for both the
L1 and L2 caches. In terms of scalability, the area
overhead of directory-based protocols becomes greater
as the number of cores grows, as the sharer information
grows linearly with the number of cores in a full-map
directory scheme, whereas the library protocol incurs
only a constant overhead independent of the number of
cores by storing timestamps of fixed size in the L1 and
L2 caches.

II. RELATED WORK

Reducing coherence overhead in distributed shared
memory (DSM) has been widely explored over decades.
Dynamic Self-Invalidation (DSI) [13] eliminates inval-
idation messages by having a processor self-invalidate
its local copy of a cache block before a conflicting



3

L2 : Tag(X), 860 

A

Remote read 
at t = 1000 L2 : Tag(X), 1150 

A

New timestamp 
= t + 150 = 1150

A

B C

A

B C
L1 : Tag(X), 860 L1 : Tag(X), 860 L1 : Tag(X), 1150 

Write at t = 1100 is Write performedL2 : Tag(X), 1150 

A

Write at t = 1100 is 
delayed until 1150 L2 : Tag(X), 1150 

A

Write performed 
at t = 1150

L1 : Tag(X) 860 L1 : Tag(X) 1150

B C
L1 : Tag(X) 860 L1 : Tag(X) 1150

B C
L1 : Tag(X), 860 L1 : Tag(X), 1150 L1 : Tag(X), 860 L1 : Tag(X), 1150 

(a) Suppose core B has a copy
of address X in its L1 and its
timestamp is 860. Core C wants
to read X, but misses in its
L1 cache, resulting in a remote
read to the L2 cache at core
A. The remote read arrives at
supposedly, t = 1000.

L2 : Tag(X), 860 

A

Remote read 
at t = 1000 L2 : Tag(X), 1150 

A

New timestamp 
= t + 150 = 1150

A

B C

A

B C
L1 : Tag(X), 860 L1 : Tag(X), 860 L1 : Tag(X), 1150 

Write at t = 1100 is Write performedL2 : Tag(X), 1150 

A

Write at t = 1100 is 
delayed until 1150 L2 : Tag(X), 1150 

A

Write performed 
at t = 1150

L1 : Tag(X) 860 L1 : Tag(X) 1150

B C
L1 : Tag(X) 860 L1 : Tag(X) 1150

B C
L1 : Tag(X), 860 L1 : Tag(X), 1150 L1 : Tag(X), 860 L1 : Tag(X), 1150 

(b) Tdelta, 150, is added to the
current clock, 1000, and data
is sent back to core C (L1
cache) with this new timestamp
of 1150. The timestamp at core
A’s L2 cache is also updated.

L2 : Tag(X), 860 

A

Remote read 
at t = 1000 L2 : Tag(X), 1150 

A

New timestamp 
= t + 150 = 1150

A

B C

A

B C
L1 : Tag(X), 860 L1 : Tag(X), 860 L1 : Tag(X), 1150 

Write at t = 1100 is Write performedL2 : Tag(X), 1150 

A

Write at t = 1100 is 
delayed until 1150 L2 : Tag(X), 1150 

A

Write performed 
at t = 1150

L1 : Tag(X) 860 L1 : Tag(X) 1150

B C
L1 : Tag(X) 860 L1 : Tag(X) 1150

B C
L1 : Tag(X), 860 L1 : Tag(X), 1150 L1 : Tag(X), 860 L1 : Tag(X), 1150 

(c) When core B wants to write
on X, it needs to perform a
remote write to the home core
A, and suppose it arrives at t =
1100. Since the current time has
not past the timestamp (1150)
yet, it should wait until t be-
comes greater than 1150.

L2 : Tag(X), 860 

A

Remote read 
at t = 1000 L2 : Tag(X), 1150 

A

New timestamp 
= t + 150 = 1150

A

B C

A

B C
L1 : Tag(X), 860 L1 : Tag(X), 860 L1 : Tag(X), 1150 

Write at t = 1100 is Write performedL2 : Tag(X), 1150 

A

Write at t = 1100 is 
delayed until 1150 L2 : Tag(X), 1150 

A

Write performed 
at t = 1150

L1 : Tag(X) 860 L1 : Tag(X) 1150

B C
L1 : Tag(X) 860 L1 : Tag(X) 1150

B C
L1 : Tag(X), 860 L1 : Tag(X), 1150 L1 : Tag(X), 860 L1 : Tag(X), 1150 

(d) Once the timestamp has ex-
pired (i.e., t ≥ 1150), the write
can be performed and the ac-
knowledgement is sent back.

Fig. 1. An example of LCC for the private L1 and shared L2 configuration : assume core A to be the home core for memory address X,
and we add a constant Tdelta of 150 to the system time to decide a new timestamp. Each box in the figure consists of Tag and Timestamp
of the cache line for address X. Note that the entry in the home L2 cache always keeps the maximum value of timestamps given out by the
home core, and other cores can hold the block only in their L1 caches.

memory request by another processor, and the directory
needs to identify the blocks to be self-invalidated. DSI,
however, still requires invalidation acknowledgements
to maintain sequential consistency. Last-Touch Predictor
(LTP) [14] predicts the ”last touch” to a memory block
by one processor before the block is accessed and
subsequently invalidated by another using trace-based
correlation. This, however, comes at a high cost; to learn
a last-touch, all the invalidation messages for a processor
must be exposed to the corresponding LTP, and the
DSM controller needs to be integrated in the processor.
Moreover, both DSI [13] and LTP [14] are built on top of
a directory-based protocol since blocks that are not self-
invalidated still need to be explicitly invalidated in the
conventional manner. This necessitates directories and
sharer information; LCC eliminates the need for sharer
information and therefore, is more scalable.

Timestamp-based approaches for self-invalidation
were also proposed, but in the context of software cache
coherence. Min and Baer [15] proposed a timestamp-
based software-assisted cache coherence scheme which
detects and invalidates the possibly incoherent cache
entry, essentially reassigning the entire burden of
maintaining cache coherence to the compiler/software.
Timestamp-based Selective Invalidation Scheme (TB-
SIS) [16] explicitly invalidates stale cache copies using
a special invalidation instruction if the corresponding
variable is modified in the current epoch. Again, the
compiler must insert this instruction at the proper place
at compilation time. Unlike these schemes, library cache
coherence is a full hardware coherence scheme and does
not require additional compiler or software support.

Nandy and Narayan [17] proposed a hardware-based,
auto-invalidate cache coherence protocol. They assume a
fixed life-time tc for each cache line that begins with the
load of the data in the requesting cache (cf. Figure 3b

in [17]). The scheme in [17] is not sequentially consis-
tent, and only supports a weaker notion of consistency,
namely release consistency. In order to be sequentially
consistent, we need to maintain a library of timestamps at
the home cache, which also assigns timestamps for data
requested. Our timestamps have two different meanings,
and unlike in the scheme of [17], it is quite possible for
a cache block to have expired by the time it arrives at
the requesting core because of interconnect delays; we
can, however, still use the word that was requested by
the processor.

III. LIBRARY CACHE COHERENCE

A. Baseline Architecture

dircc_arch

Network
Node

Core Switch

Private L1Private L1

Shared L2 Dir.

(a) Directory-based

lcc_arch

Network
Node

Core Switch

Private L1 T/SPrivate L1 T/S

Shared L2 T/S

(b) Library
Fig. 2. Baseline architectures for DirCC and LCC (T/S = timestamp)

Figure 2 shows the baseline architecture for directory-
based CC (DirCC) and LCC. Although LCC can be
implemented on either the private L2 or the shared L2
organization, we choose the shared L2 architecture (with
private L1) as a baseline, and use the same architecture
for both DirCC and LCC for a fair comparison.

As shown in Figure 2a, directories and L2 caches
are integrated for DirCC, so the sharer information is
contained together with each cache line. LCC does not
require directories, but instead requires per-cache-line
timestamps for both the L1 and L2 caches (Figure 2b).

Under the shared L2 architecture, each memory ad-
dress has a unique home location. In this paper, we



4

use a static data placement scheme, striping, at page
granularity, which allows the computation of the home
core from the memory address using simple logic.

Since data cannot be replicated in shared L2 caches,
each L2 slice can maintain only the home data, and the
data fetched from remote L2 caches can only be cached
in L1. For the library protocol, it is important to note
that the timestamp of L1 and that of L2 have different
meanings. A timestamp in the L1 cache line indicates the
time until when the block can be read. A timestamp in
the L2 cache, on the other hand, keeps the maximum
value of timestamps that have been assigned by the
home L2 cache, until when the L2 cache must prevent
writing on the block. As all read copies at L1 caches
will be discarded when their timestamps expire, the
home L2 cache can write to the block when the system
time becomes larger than the maximum timestamp value
stored at the L2 cache.

B. Baseline Protocol

Below is the full description of library cache coher-
ence protocol:
• Read operations

1) At the requesting core : The requesting core
first looks up its local L1 cache, and proceeds
to the L2 cache of the home location if it
misses in its L1. The request to the L2 cache
will be a local access if the request gets a core
hit, and a remote access if it gets a core miss.
Note that an L1 cache block will be invalid
when its timestamp expires, so it won’t get a
cache hit on an expired cache line.

2) At the home L2 cache : If the data does
not exist in the L2 cache, it will first be
brought to the cache from the DRAM. Once
the cache block is ready, it is returned to
the requester core along with a timestamp.
Timestamp choosing logic is used to decide
whether to use the old timestamp which was
previously given to other L1 caches, or to use
a new timestamp. The maximum timestamp
among all timestamps issued to L1 caches is
kept in the L2 cache.

• Write operations
1) At the requesting core : A write request is

directly forwarded to its home L2. L1 caches
do not have to be looked up for writes, since
writes can be only done in home L2 locations
and L1 caches only maintain read-only copies.

2) At the home L2 cache : If the data does not
exist in the L2 cache, it will be first brought

to the cache from the DRAM. Once the cache
block is ready, the L2 cache checks if its times-
tamp has expired. If it has not expired yet, the
write is delayed until the current system time
reaches the timestamp value and the line has
expired; this is a write delay. When a cache
block is brought in from DRAM, it has a null
timestamp (cf. Section III-E.)

C. Request Scheduling at the L2 Cache (Home)

Multiple requests on the same cache line may arrive
at an L2 cache at the same time. Scheduling of these
requests is very important in order to provide functional
correctness and to prevent starvation. The library proto-
col processes one request at a time, serializing both read
and write requests on the cache block. Read requests
and write requests are treated the same, and we assume
a fair scheduling between requests from the local L1
cache and remote L1 caches. When a write request is
being delayed due to an unexpired timestamp, however,
the protocol holds the blocked write request until the
timestamp expires and processes other read requests if
available. This may cause a read request that arrived
later to be processed before a blocked write request.
However, this still maintains sequential consistency since
the reordered execution sequence is yet another se-
quential interleaving of programs. We have assumed in-
order cores that have a single outstanding write request
to simplify the requirements for sequential consistency.
However, this assumption is not strictly required for
LCC as conventional techniques to support sequential
consistency for multi-issue or out-of-order cores can be
applied to LCC as well without significant modifications.

D. Choosing Timestamps

As shown in the protocol, timestamps affect whether
memory reads in L1 caches result in hits or misses, and
also affect the amount of write delays at L2 caches. If a
timestamp is too small, a core gets more L1 read misses
as its read copy is invalidated too soon. If it is too large,
on the other hand, the write delays will compromise
system performance. Thus, timestamp choosing logic
plays a critical role in determining the performance of
library cache coherence.

Here, we present the simplest timestamp strategy,
namely a FIXED-DELTA scheme. FIXED-DELTA uses a
constant value Tdelta to decide timestamps. When a read
request for block X is being processed at its home L2
cache:

1) if there is a write request on the same block X
waiting to be served, the current timestamp of the



5

L2 entry is returned without any change to prevent
increasing write delay.

2) otherwise, a new timestamp for the read request is
calculated as (current clock + Tdelta) at the home
L2 cache, and is returned to the requesting core’s
L1 cache with the data block.

We also implement and evaluate an IDEAL scheme; in
IDEAL, home L2 caches are assumed to know when the
next write request on each cache line will arrive, and/or
when each cache line will be evicted by a capacity miss.
Timestamps are set to the time when the earlier event will
happen, so read requests get the maximum timestamp
values that do not delay any writes or evictions. Although
IDEAL is not implementable in real hardware, the per-
formance of IDEAL tells us the performance potential
for LCC, provided we have a smart timestamp choosing
scheme that can predict close to optimal timestamp
values. While relegating the development of such a
scheme to future work, we sweep the value of Tdelta

for scheme FIXED-DELTA, and show how close the best
FIXED-DELTA scheme can perform when compared to
the IDEAL scheme (cf. Section IV).

E. Cache Replacement Policy

The library protocol can be implemented with any
conventional cache replacement scheme with one modi-
fication to ensure the correctness of the protocol. While
L1 cache evictions can be done anytime, an L2 cache
entry with unexpired copies should not be evicted until
all the copies expire. If the cache entry gets evicted, we
lose track of the timestamp for the corresponding entry,
and thus, we cannot fetch the correct timestamp value
when the entry is restored from memory — this will
break sequential consistency. This restriction may result
in cache eviction delays if all the entries in multiple ways
of the L2 cache happen to have unexpired copies.

IV. EVALUATION

Using Pin [18] and Graphite [19], we first gener-
ate memory instruction traces for a set of SPLASH-
2 benchmarks [20]: FFT, LU CONTIGUOUS, OCEAN,
RADIX and WATER. Then, we feed these traces to
HORNET [21], a cycle-level multicore simulator, which
models the interconnect behavior (e.g., congestion) in a
cycle-accurate manner. The important system parameters
used in the experiments are listed in Table I.

A. FIXED-DELTA with varying Tdelta

We first swept the value of Tdelta for the FIXED-
DELTA scheme, and Figure 3 shows a tradeoff between

TABLE I
SYSTEM CONFIGURATIONS

Parameter Settings

Cores 64 in-order, single issue cores
L1 cache/ core 8KB, 2-way set associativity
L2 cache/ core 128KB, 4-way set associativity
L1/L2 Replacement
Policy

LRU/LRU

L1/L2 Access Latency 2 cycles/4 cycles
Cache Line Size 32 bytes
Electrical network 2D Mesh, XY routing, 64-bit

flits
Data Placement STRIPE, 4KB page size
Directory Coherence MESI, Full-map distributed di-

rectory
DRAM Acess Latency 50 cycles
One-way Off-chip La-
tency

150 cycles

Simulated Cycles 5,000,000 cycles

(a) FFT (b) LU CONTIGUOUS
Fig. 3. Average memory latency for varying Tdelta. Other bench-
marks are not shown for lack of space, but have the same trends.

the read latency and write latency. As we increase
Tdelta, the L1 cache hit rate for reads increases because
the entry becomes valid for a longer period of time,
resulting in lower average memory latency for reads.
For writes, however, the average latency increases with a
larger Tdelta due to the write delays. The combination of
these two factors determine the optimal range of Tdelta

which minimizes the overall memory latency; for our
experiments, Tdelta between 50 and 100 showed the best
performance depending on the benchmark, but without
a big difference in performance within the range.

B. Performance Comparison with DirCC and LCC-
IDEAL

Figure 4 shows the performance of the best FIXED-
DELTA LCC and the IDEAL LCC, both normalized to the
MESI directory protocol. For all the benchmarks we run
except for OCEAN, LCC shows better performance than
DirCC, and on average (geometric mean), the best LCC-
Fixed outperforms DirCC by 1.85x. This performance
gain mainly comes from the fact that 1) LCC does



6

Fig. 4. Average overall memory latency for the LCC-Ideal and the
best LCC-Fixed normalized to the MESI directory protocol.

not send out invalidation requests and wait for their
acknowledgements, and 2) LCC can serve subsequent
read requests while delaying a write on the same line
maintaining sequential consistency. Moreover, the per-
formance of the ideal LCC is much better (outperforms
DirCC by 5.5x), showing the potential for further im-
provement of LCC. For example, since each cache line
has a different access pattern, a timestamp choosing
scheme that captures such patterns and assigns different
Tdelta’s for each line at runtime may provide better
performance.

V. CONCLUSIONS

We presented a library cache coherence protocol that
can replace conventional directory-based cache coher-
ence protocols in manycore architectures. LCC outper-
forms a directory-based MESI protocol as it avoids
expensive invalidations before a write on a shared cache
line. Also, it serves read requests first when a write is
pending because it is not allowed to write on a cache
line, which further increases the memory access perfor-
mance while maintaining sequential consistency. LCC
is also more scalable than directory-based coherence
since library size does not grow with the number of
cores. We believe that the performance of LCC can
be improved further with more sophisticated schemes
of choosing timestamps, which provides an interesting
research problem to the community. Finally, while we
have focused on sequential consistency in this paper,
LCC can also improve performance for weaker memory
consistency models.

REFERENCES

[1] S. Borkar, “Thousand core chips: a technology perspective,” in
DAC, 2007, pp. 746–749.

[2] E. Waingold, M. Taylor, D. Srikrishna et al., “Baring it all to
Software: Raw Machines,” in IEEE Computer, September 1997,
pp. 86–93.

[3] K. Sankaralingam, R. Nagarajan, H. Liu et al., “Exploiting ILP,
TLP, and DLP using polymorphism in the TRIPS architecture,”
in International Symposium on Computer Architecture (ISCA),
June 2003, pp. 422–433.

[4] David Wentzlaff et al, “On-Chip Interconnection Architecture
of the Tile Processor,” IEEE Micro, vol. 27, no. 5, pp. 15–31,
Sept/Oct 2007.

[5] S. R. Vangal, J. Howard, G. Ruhl et al., “An 80-Tile Sub-100-
W TeraFLOPS processor in 65-nm CMOS,” IEEE J. Solid-State
Circuits, vol. 43, no. 1, pp. 29–41, 2008.

[6] A. Agarwal, R. Simoni, J. Hennessy et al., “An evaluation
of directory schemes for cache coherence,” in In Proceedings
of the 15th Annual International Symposium on Computer
Architecture, 1988, pp. 280–289.

[7] A. Gupta, W. Weber, and T. Mowry, “Reducing memory and
traffic requirements for scalable directory-based cache coher-
ence schemes,” in International Conference on Parallel Pro-
cessing, 1990.

[8] D. Chaiken, C. Fields, K. Kurihara et al., “Directory-based
cache coherence in large-scale multiprocessors,” in COM-
PUTER, 1990.

[9] J. Zebchuk, V. Srinivasan, M. K. Qureshi et al., “A tag-
less coherence directory,” in Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO 42, 2009, pp. 423–434.

[10] H. Zhao, A. Shriraman, and S. Dwarkadas, “Space: sharing
pattern-based directory coherence for multicore scalability,” in
Proceedings of the 19th international conference on Parallel
architectures and compilation techniques, 2010, pp. 135–146.

[11] N. Eisley, L.-S. Peh, and L. Shang, “In-network cache coher-
ence,” in Proceedings of the 39th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2006, pp. 321–332.

[12] J. A. Brown, R. Kumar, and D. Tullsen, “Proximity-aware
directory-based coherence for multi-core processor architec-
tures,” in Proceedings of the nineteenth annual ACM symposium
on Parallel algorithms and architectures, 2007, pp. 126–134.

[13] A. R. Lebeck and D. A. Wood, “Dynamic self-invalidation: Re-
ducing coherence overhead in shared-memory multiprocessors,”
in In Proceedings of the 22nd Annual International Symposium
on Computer Architecture, 1995.

[14] A.-C. Lai and B. Falsafi, “Selective, accurate, and timely self-
invalidation using last-touch prediction,” in Proceedings of the
27th Annual International Symposium on Computer Architec-
ture, ser. ISCA ’00, 2000.

[15] S. L. Min and J. L. Baer, “Design and analysis of a scalable
cache coherence scheme based on clocks and timestamps,”
IEEE Trans. Parallel Distrib. Syst., vol. 3, pp. 25–44, January
1992.

[16] X. Yuan, R. Melhelm, and R. Gupta, “A timestamp-based selec-
tive invalidation scheme for multiprocessor cache coherence,”
International Conference on Parallel Processing, vol. 3, p.
0114, 1996.

[17] S. K. Nandy and R. Narayan, “An Incessantly Coherent Cache
Scheme for Shared Memory Multithreaded Systems,” in Pro-
ceedings of the First International Workshop on Parallel Pro-
cessing, 1994.

[18] M. M. Bach, M. Charney, R. Cohn et al., “Analyzing parallel
programs with pin,” Computer, vol. 43, pp. 34–41, 2010.

[19] J. E. Miller, H. Kasture, G. Kurian et al., “Graphite: A dis-
tributed parallel simulator for multicores,” in HPCA, 2010, pp.
1–12.

[20] S. Woo, M. Ohara, E. Torrie et al., “The SPLASH-2 programs:
characterization and methodological considerations,” in ISCA,
1995, pp. 24–36.

[21] M. Lis, P. Ren, M. H. Cho et al., “Scalable, accurate multicore
simulation in the 1000-core era,” in International Symposium on
Performance Analysis of Systems and Software (ISPASS 2011),
April 2011.




