
Library for Systematic Search for Expressions

SUSUMU KATAYAMA
Department of Computer Science and Systems Engineering

University of Miyazaki
1-1 W. Gakuenkibanadai

Miyazaki, Miyazaki 889-2155
JAPAN

skata@cs.miyazaki-u.ac.jp http://nautilus.cs.miyazaki-u.ac.jp/˜skata

Abstract: - In our previous work we showed that systematic search approach to inductive functional program-
ming automation makes a remarkably efficient algorithm, but the applicability of the implemented program was
limited by the very poor interpreter incorporated. In this paper, we present a library-based implementation of our
systematic search algorithm which is supposed to be used with a well-known Haskell interpreter.

Key-Words: - inductive program synthesis, functional programming, library design, metaprogramming, Template
Haskell, artificial intelligence

1 Introduction

MagicHaskeller is our inductive programming automa-
tion system by (exhaustively-and-efficiently-)generate-
and-filter scheme for the lazy functional language
Haskell. Until our previous work[1][2] it has been im-
plemented as a stand alone program including a cheap
interpreter for filtration of the generated programs. In
this research we implemented its API library package
which is supposed to be used with Glasgow Haskell
Compiler interactive (GHCi) version 6.4 and higher.

The library implementation enjoys the following ef-
fects (some of which will be discussed further in Sec-
tion 4):

• user-defined data types can be used;

• the full language features and libraries that GHC
provides are supported for processing generated
expressions;

• the usability when one wants to choose from differ-
ent primitive sets has improved; for example, users
can predefine reusable chunks of primitives such
as list-related one, nat-related one, etc. and append
them to obtain a suitable primitive set for the syn-
thesis to be conducted.

• it has become easier to investigate the properties of
the set of all the expressions that can be generated
from the given type and the given primitive com-
ponent set.

2 Background

2.1 MagicHaskeller

MagicHaskeller[1][2] is a project which emerged from
our question: “Is genetic programming really more

efficient than elaborated systematic exhaustive search
for type-correct programs? If so, when and how is
it? Has someone ever compared them?” In order to
do the right things in the right order, in this project
we first elaborate on optimized implementation of
systematic exhaustive search for type correct programs,
and then, if we become certain that we need heuristic
approaches and that they really help improving the
efficiency, we will build heuristic approaches on the
top of our research on efficient systematic search
algorithms under type constraints. Using techniques
from software science such as monad for breadth-first
search[3], generalized trie[4], monad transformer[5],
and memoization using lazy data type[2], we have
already shown that systematic exhaustive search
for type-correct programs is a powerful alternative
to genetic programming. The implemented pro-
gram and library can be downloaded and tried from
http://nautilus.cs.miyazaki-u.ac.jp/~skata/
MagicHaskeller.html.

2.2 Template Haskell

Template Haskell (TH) [6] brings template metapro-
gramming to Haskell. In TH, expressions, sets of dec-
larations, and types to be spliced have type ExpQ,
Q [Dec], and TypeQ respectively, where ExpQ = Q Exp
and TypeQ = Q Type, where monad Q is a wrapper to
avoid name collision. A code block can be spliced by us-
ing $(.). An expression, a set of declarations, and a type
can be quoted by using [|.|], [d|.|], and [t|.|] respectively.

For each of the primitive components we need the in-
formation of both of its semantics and its syntax, i.e., the
value of the component which is used for interpretation
and the name of the component which is used to print
the generated expression. The most important role of
TH in our library is to generate both of them without re-

quiring users to write the same name twice, which will
be explained further in the definition of function p in
the next section.

3 Library specification

This section is devoted to the documentation of the im-
plemented library. For each of the exported functions,
its type and its short description are given.

3.1 Re-exported modules

This library implicitly re-exports the entities
from module Language.Haskell.TH as TH and
module Data.Typeable from the Standard Hierarchical
Library of Haskell. Please refer to their documentations
on types from them — in this documentation, types
from TH are all qualified and the only type class used
from module Typeable is Typeable.Typeable.

The following types are assigned to our internal data
representations: type Primitive representing each prim-
itive combinator and type Memo representing the mem-
oization table.

3.2 Setting up the synthesis

Before synthesis, you have to define at least a memo-
ization table (or you may define one once and reuse it
for later syntheses). Other parameters are memoization
depth and time out interval, which have default values.
You may elect either to set those values to the ‘global
variables’ using ‘set*’ functions, or hand them explicitly
as parameters.

Note that the functions related to global variables are
supposed to be used within the GHCi environment, and
are not tested on other environments. They are imple-
mented in the same way as GHCi implements global
variables. For example, the global memoization table is
implemented as:
{-# NOINLINE refmemodeb #-}

refmemodeb :: IORef Memo
refmemodeb = unsafePerformIO (newIORef defaultMD)
defaultMD = mkMemo []

Functions for creating memoization tables from the
primitive components You can set your primitives
like, e.g.,
setPrimitives

$(p [|(+) :: Int → Int → Int, 0 :: Int, ’A’, [] :: [a]|])
where the primitive set is consisted of (+) special-
ized to type Int, 0 specialized to type Int, ’A’ which
has monomorphic type Char, and [] with polymor-
phic type [a]. As primitive components one can in-
clude any variables and constructors within the scope
unless data types holding functions such as [a → b],
(Int → Char, Bool), etc. are involved. However, be-
cause currently ad hoc polymorphism is not supported
by this library, you may not write

setPrimitives $(p [|(+) :: Num a ⇒ a → a → a|])
Also, you have to specify the type unless you are us-
ing a monomorphic component (just like when using
the dynamic expression of Concurrent Clean), and thus
you may write setPrimitives $ (p [|’A’|]), while you
have to write setPrimitives $(p [|[] :: [a]|]) instead of
setPrimitives $(p [|[]|])

p :: TH.ExpQ → TH.ExpQ
type Primitive = (HValue, TH.Exp, String)

p is used to convert your primitive component set
into its internal form. Usually its argument is the quasi-
quote of a tuple of primitive components, but when it is
not, singleton list will be generated.

The internal representation of each item of the
primitive component set has type Primitive =
(HValue, TH.Exp, String), where newtype HValue =
HV (forall a.a) is a universally quantified value rep-
resenting the semantics of the primitive component,
TH.Exp represents its syntactic aspect, and String is a
string representation of its type. For example, p [|((+) ::
Int → Int → Int, 0 :: Int, ’A’, [] :: [a])|] reduces to1

[(HV (unsafeCoerce#((+) :: Int → Int → Int)),
TH.VarE (TH.mkName "+"),
"(((->) Int) (((->) Int) Int))"),

(HV (unsafeCoerce#(0 :: Int)),
TH.LitE (TH.IntegerL 0),
"Int"),

(HV (unsafeCoerce#’A’),
TH.LitE (TH.CharL ’A’),
show (typeOf ’A’)),

(HV (unsafeCoerce#([] :: forall a 0.[a 0])),
TH.ConE (TH.mkName "[]"),
"([] a_0)")]

Use of HValue and unsafeCoerce# for such purposes is
taken from the source code of GHCi. The type consis-
tency will not be assured statically by GHC but dynam-
ically by our library. When the type is not given, it will
be obtained via typeOf method as is seen in the ’A’ case
of the above example, although that will cause ambigu-
ity error if the value is polymorphic.

setPrimitives :: [Primitive] → IO ()
setPrimitives = setMemo.mkMemo
mkMemo :: [Primitive] → Memo
setMemo :: Memo → IO ()

Memoization depth

setDepth :: Int → -- memoization depth
IO ()

1Here we stripped some of the qualifications by module names in
order to avoid clutter.

setDepth can be used to set the memoization depth.
(Sub)expressions within this size are memoized, while
greater expressions will be recomputed (to save the
heap space).

Functions related to time out Because the library gen-
erates all the expressions including those with non-
linear recursions, you should note that there exist some
expressions which take extraordinarily long time.[2]
Imagine a function that takes an integer n and incre-
ments 0 for 22n

times. Another example that has smaller
program size is blah in
blah :: Int → Int → Int
blah 0 i = i
blah k i = foo (blah (k − 1)) i
foo h 0 = 2
foo h s = h (f h (s − 1))
Giving small values in your examples is a good policy,
but even then, time out is useful. For this reason, time
out is by default taken after 1 second since each invo-
cation of evaluation. This default behavior can be over-
ridden by the following functions.

setTimeout :: Int → -- time in seconds
IO ()

unsetTimeout :: IO ()

Defining generator functions automatically In this
case ”automatically” does not mean ”inductively” but
”deductively using TH”.

define ::
String → Integer → TH.ExpQ → TH.Q [TH.Dec]

define eases use of this library by automating some
function definitions. For example,
$(define "Foo" 15 (p [|(1 :: Int, (+) :: Int → Int → Int)|]))
is equivalent to
memoFoo = mkMemo (p [|(1 :: Int, (+) :: Int → Int → Int)|])
everyFoo :: Everything
everyFoo = everything 15 memoFoo
filterFoo :: Filter
filterFoo pred = filterThen pred everyFoo
where
type Everything = Typeable a ⇒ [[(TH.Exp, a)]]
type Filter =

Typeable a ⇒ (a → Bool) → IO [[(TH.Exp, a)]]

3.3 The synthesizers

Now is the time for defining the synthesizer functions.
Most of the functions here just filter everything with the
predicates you provide.

Quick starters

findOne :: Typeable a ⇒ (a → Bool) → TH.Exp
printOne :: Typeable a ⇒ (a → Bool) → IO ()
printAny :: Typeable a ⇒ (a → Bool) → IO ()

findOne pred finds an expression e that satisfies
pred e ≡ True, and returns it in TH.Exp. printOne prints
the expression found first. printAny prints all the ex-
pressions satisfying the given predicate.

Incremental filtration Sometimes you may want to
filter further after synthesis, because the predicate
you previously provided did not specify the function
enough. The following functions can be used to filter
expressions incrementally.

filterFirst :: Typeable a ⇒
(a → Bool) → IO [[(TH.Exp, a)]]

filterThen :: Typeable a ⇒
(a → Bool) → [[(TH.Exp, a)]] → IO [[(TH.Exp, a)]]

filterFirst is like printAny, but by itself it does not print
anything. Instead, it creates a stream of lists of expres-
sions represented in tuples of TH.Exp and the expres-
sions themselves. The stream contains expressions con-
sisted of n primitive components at the nth element
(n = 1, 2, ...), and thus can be viewed as Spivey[3]’s
Matrix data type.

filterThen may be used to further filter the results.

Expression generators These functions generate all
the expressions that have the type you provide.

everything :: Typeable a ⇒
Int → -- memoization depth.
Memo → -- memo table
[[(TH.Exp, a)]]

getEverything :: Typeable a ⇒ IO [[(TH.Exp, a)]]

everything generates all the expressions that fit the
inferred type, and their representations in the TH.Exp
form.

getEverything is like everything, but uses the global
values set with set* functions.

unifyable, matching ::
Int → Memo → TH.Type → [[TH.Exp]]

These two functions are like everything, but take
TH.Type as an argument, which may be polymorphic.
For example, printQ ([t|forall a.a → a → a|] >>=
return.unifyable 10 memo) will print all the expressions
using memo whose types unify with forall a.a → a → a.

Pretty printer These are utility functions for pretty
printing the results:

pprs :: [[(TH.Exp, a)]] → IO ()
printQ :: Ppr a ⇒ Q a → IO ()

4 Use cases

This section presents many interesting results our li-
brary implementation has brought around. Unless oth-
erwise specified, we assume that the Haskell source file
in Table 1 is preloaded into GHCi.

User defined data types From its birth our algorithm
is designed to be able to deal with user-defined data
types, but such ability had been suppressed by our poor
interpreter in our previous work. Now that we can use
the full power of GHCi, this potential ability is uncov-
ered.

Suppose you have a Haskell source file shown in Ta-
ble 2. You may synthesize programs by using it. Table 3
shows a sample interaction.

Actually the first two of the generated expressions
implement different functions. You may want to use
QuickCheck[7] for random testing in order to con-
firm this fact. You define instance Arbitrary a ⇒
Arbitrary (Tree a) and reload the source. Then, you fil-
ter further, as shown in Table 4. Of course, you may
use QuickCheck to automatically filter the results further,
though in this case you have to write a driver.

Using predicates in general other than examples Un-
like programming by example approaches, our library
accepts any predicate as well as I/O example pairs. Ta-
ble 5 shows an example of finding recursive form def-
initions of the Fibonacci function from its closed-form
solution.

Managing your primitive set Selecting your primi-
tive set has also become easier. Access to your source
file is required less frequently now, as shown in Table 6.

Browsing everything Just browsing all the expres-
sions having the given type is also interesting (Table 7).

It has become easier to tell some properties that the
syntheses have. The example in Table 8 counts the num-
ber of expressions with each size. 2

2Note that these are not the ‘exact’ numbers of all the expressions,
because our algorithm suppresses some of the duplicate expressions
doing the same thing having different syntaxes, but still there remains
such redundancy. Rather, you should interpret these numbers sug-
gesting the ability of our algorithm.

5 Conclusions

We presented a library-based implementation of our
systematic program generator algorithm which is sup-
posed to be used with Glasgow Haskell Compiler inter-
active. By using several use cases we showed that this
library expands the applicability of our algorithm.

Still, however, there are things to be done in order to
enhance the usability of our algorithm:

• this algorithm can enhance Hoogle[8], that is a
Haskell API search engine, by providing the abil-
ity to generate expressions;

• desirable set of primitive components (e.g. con-
structors and paramorphisms) for predefined types
and their (better) pretty printers should be prede-
fined, and those for user-defined types should be
auto-generated;

• there could be a wrapper that automatically curry
and uncurry tuple arguments

Also, support of type classes and further efficiency
improvement could improve our algorithm.

References

[1] Susumu Katayama. Power of brute-force search in
strongly-typed inductive functional programming
automation. In PRICAI 2004: Trends in Artificial In-
telligence, 8th Pacific Rim International Conference on
Artificial Intelligence, LNAI 3157, pages 75–84, Au-
gust 2004.

[2] Susumu Katayama. Systematic search for lambda
expressions. In Trends in Functional Programming,
volume 6. Intellect, Bristol, UK, in preparation.

[3] M. Spivey. Combinators for breadth-first search.
Journal of Functional Programming, 10(4):397–408,
2000.

[4] Ranf Hinze. Generalizing generalized tries. Journal
of Functional Programming, 10(4):327–351, 2000.

[5] Sheng Liang, Paul Hudak, and Mark P. Jones.
Monad transformers and modular interpreters. In
POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 1995.

[6] Tim Sheard and Simon Peyton Jones. Template
metaprogramming for Haskell. In Haskell Workshop
2002, October 2002.

[7] Koen Claessen and John Hughes. QuickCheck: a
lightweight tool for random testing of Haskell pro-
grams. In International Conference on Functional Pro-
gramming, pages 268–279. ACM, 2000.

[8] Neil Mitchell. Hoogle, http://www-
users.cs.york.ac.uk/˜ndm/projects/hoogle.php.

Table 1: Default primitive component library
{-# OPTIONS -fth #-}

module LibTH (module LibTH, module MagicHaskeller) where
import MagicHaskeller
initialize = do

setPrimitives (list ++ nat ++ mb ++ bool ++ $(p [|(hd :: [a] → Maybe a, (+) :: Int → Int → Int)|]))
setDepth 15
-- Specialized memoization tables. Choose one for quicker results.

mall :: Memo
mall = mkMemo (list ++ nat ++ mb ++ bool ++ $(p [|(hd :: [a] → Maybe a, (+) :: Int → Int → Int)|]))
mlist :: Memo
mlist = mkMemo list
mnat :: Memo
mnat = mkMemo (nat ++ $(p [|(+) :: Int → Int → Int|]))
mlistnat :: Memo
mlistnat = mkMemo (list ++ nat ++ $(p [|(+) :: Int → Int → Int|]))
hd :: [a] → Maybe a
hd [] = Nothing
hd (x :) = Just x
mb = $(p [|(Nothing :: Maybe a, Just :: a → Maybe a, caseMaybe :: Maybe b → a → (b → a) → a)|])
caseMaybe :: Maybe b → a → (b → a) → a
caseMaybe Nothing x f = x
caseMaybe (Just y) x f = f y
nat = $(p [|(0 :: Int, succ :: Int → Int, nat para :: Int → a → (Int → a → a) → a)|])

-- Nat paramorphism
nat para :: Int → a → (Int → a → a) → a
nat para 0 x f = x
nat para i x f = f (i − 1) (nat para (i − 1) x f)
list = $(p [|([] :: [a], (:) :: a → [a] → [a], list para :: [b] → a → (b → [b] → a → a) → a)|])

-- List paramorphism
list para :: [b] → a → (b → [b] → a → a) → a
list para [] x f = x
list para (y : ys) x f = f y ys (list para ys x f)
bool = $(p [|(True, False, iF :: Bool → a → a → a)|])
iF :: Bool → a → a → a
iF True t f = t
iF False t f = f

Table 2: Component library file with a data declaration
import MagicHaskeller
data Tree a = Leaf a | Branch (Tree a) (Tree a) deriving (Eq, Typeable, Show)
tree para :: Tree a → (a → r) → (Tree a → Tree a → r → r → r) → r
tree para (Leaf x) f g = f x
tree para (Branch t u) f g = g t u (tree para t f g) (tree para u f g)
$(define "Tree" 10 (p [|(Leaf :: a → Tree a, Branch :: Tree a → Tree a → Tree a,

tree para :: Tree a → (a → r) → (Tree a → Tree a → r → r → r) → r)|]))

Table 3: Sample interaction with a user-defined type

> ghci -v0 -fth -package MagicHaskeller TreeExample.hs

*Main> x <- filterTree (\f -> f (Branch (Branch (Leaf 1) (Leaf 2)) (Leaf (3::Int))) == Branch

(Leaf 3) (Branch (Leaf 2) (Leaf (1::Int))))

*Main> pprs x

\a -> tree_para a (\b -> Leaf b) (\b c d e -> Branch e d)

\a -> tree_para a (\b -> Leaf b) (\b c d e -> Branch c d)

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch c (e (d b))) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch c (d (e b))) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch (e c) (d b)) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch c (e (e (d b)))) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch c (e (d (e b)))) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch c (e (d (d b)))) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch c (d (e (e b)))) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch c (d (e (d b)))) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch c (d (d (e b)))) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch (e c) (e (d b))) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch (e c) (d (e b))) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch (e c) (d (d b))) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch (e (e c)) (d b)) a

Interrupted.

*Main>

Table 4: Filtering further based on the results from QuickCheck

*Main> :reload

*Main> quickCheck (\a -> tree_para a (\b -> Leaf (b::Int)) (\b c d e -> Branch e d) ==

tree_para a (\b -> Leaf (b::Int)) (\b c d e -> Branch c d))

Falsifiable, after 29 tests:

Branch (Leaf (-1)) (Branch (Leaf (-2)) (Leaf 2))

*Main> (\a -> tree_para a (\b -> Leaf (b::Int)) (\b c d e -> Branch e d)) $ Branch (Leaf (-1))

(Branch (Leaf (-2)) (Leaf 2))

Branch (Branch (Leaf 2) (Leaf (-2))) (Leaf (-1))

*Main> (\a -> tree_para a (\b -> Leaf (b::Int)) (\b c d e -> Branch c d)) $ Branch (Leaf (-1))

(Branch (Leaf (-2)) (Leaf 2))

Branch (Branch (Leaf (-2)) (Leaf 2)) (Leaf (-1))

*Main> y <- filterThen (\f -> f (Branch (Leaf (-1)) (Branch (Leaf (-2::Int)) (Leaf 2))) ==

Branch (Branch (Leaf 2) (Leaf (-2))) (Leaf (-1::Int))) x

*Main> pprs y

\a -> tree_para a (\b -> Leaf b) (\b c d e -> Branch e d)

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch (e c) (d b)) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch (e c) (d (d b))) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch (e (e c)) (d b)) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch (e c) (d b)) (Branch a a)

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch (e c) (d (d (d b)))) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch (e (e c)) (d (d b))) a

\a -> tree_para a (\b c -> c) (\b c d e f -> Branch (e (e (e c))) (d b)) a

Interrupted.

Table 5: Finding recursive definitions from closed-form solution

LibTH> initialize

LibTH> let phi = (1 + sqrt 5)/2

LibTH> printAny (\f -> all (\n -> (f :: Int->Int) n == round ((phi^n - (1-phi)^n) / sqrt 5)) [0..9])

\a -> nat_para a (\b c -> b) (\b c d e -> c e ((+) d e)) 0 (succ 0)

\a -> nat_para a (\b c -> b) (\b c d e -> c e ((+) e d)) 0 (succ 0)

\a -> nat_para a (\b c -> b) (\b c d e -> c ((+) d e) d) 0 (succ 0)

\a -> nat_para a (\b c -> b) (\b c d e -> c ((+) e d) d) 0 (succ 0)

\a -> nat_para a (\b c -> b) (\b c d e -> c (succ e) ((+) d e)) 0 0

\a -> nat_para a (\b c -> b) (\b c d e -> c (succ e) ((+) e d)) 0 0

Interrupted.

Table 6: Selecting your primitive set
(example cont’d from Table 5)

*LibTH> -- elect to use specialized primitive set to make your synthesis quicker

*LibTH> setPrimitives (nat ++ $(p [| (hd :: [a] -> Maybe a, (+) :: Int -> Int -> Int) |]))

*LibTH> printAny (\f -> all (\n -> (f :: Int->Int) n == round ((phi^n - (1-phi)^n) / sqrt 5)) [0..9])

\a -> nat_para a (\b c -> b) (\b c d e -> c e ((+) d e)) 0 (succ 0)

\a -> nat_para a (\b c -> b) (\b c d e -> c e ((+) e d)) 0 (succ 0)

\a -> nat_para a (\b c -> b) (\b c d e -> c ((+) d e) d) 0 (succ 0)

\a -> nat_para a (\b c -> b) (\b c d e -> c ((+) e d) d) 0 (succ 0)

\a -> nat_para a (\b c -> b) (\b c d e -> c (succ e) ((+) d e)) 0 0

\a -> nat_para a (\b c -> b) (\b c d e -> c (succ e) ((+) e d)) 0 0

Interrupted.

Table 7: Browsing all the expressions

*LibTH> initialize

*LibTH> printQ ([t| forall a. a->a->a |] >>= return . unifyable 10 mall)

\a b -> b

\a b -> a

\a b -> 0

\a b -> True

\a b -> False

\a b -> []

\a b -> Nothing

\a b -> succ 0

\a b -> succ b

\a b -> succ a

\a b -> hd []

\a b -> Just 0

\a b -> Just True

\a b -> Just False

\a b -> Just []

\a b -> Just Nothing

\a b -> succ (succ 0)

\a b -> succ (succ b)

\a b -> succ (succ a)

Interrupted.

Table 8: Counting the number of expressions with each size

*LibTH> initialize

*LibTH> runQ [t| forall a. a->a->a |] >>= print . map length . unifyable 10 mall

[7,9,34,76,223,651,2249,8053,31169,Interrupted.

