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Abstract

Intrinsically disordered regions serve as molecular recognition elements, which play an important role in the control of
many cellular processes and signaling pathways. It is useful to be able to predict positions of disordered regions in protein
chains. The statistical analysis of disordered residues was done considering 34,464 unique protein chains taken from the
PDB database. In this database, 4.95% of residues are disordered (i.e. invisible in X-ray structures). The statistics were
obtained separately for the N- and C-termini as well as for the central part of the protein chain. It has been shown that
frequencies of occurrence of disordered residues of 20 types at the termini of protein chains differ from the ones in the
middle part of the protein chain. Our systematic analysis of disordered regions in PDB revealed 109 disordered patterns of
different lengths. Each of them has disordered occurrences in at least five protein chains with identity less than 20%. The
vast majority of all occurrences of each disordered pattern are disordered. This allows one to use the library of disordered
patterns for predicting the status of a residue of a given protein to be ordered or disordered. We analyzed the occurrence of
the selected patterns in three eukaryotic and three bacterial proteomes.
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Introduction

Prediction of protein structure and function is one of the general

directions in structural genomics. Of special interest is prediction

of the so-called disordered regions of protein chain (regions having

no fixed spatial structure in the native state). Such disordered

regions often play an important functional role ([1–6]). It should

be emphasized that one type of disordered regions are structured

only when they bind (bound) to other molecules [3,7,8], or under

changing the conditions of biochemical medium [9,10], but the

other kinds of disordered regions are always disordered and never

become structured. Disordered regions of protein chains often

cause complications upon expression, purification and crystalliza-

tion of such proteins.

At present, more than 500 proteins with disordered regions are

described in the Disprot database [11]. These proteins and

domains are either entirely unstructured in the native state (the so-

called natively-unfolded proteins) or have lengthy disordered

regions. At that functionally important protein regions in such

proteins are outside of globular domains, i.e. just in the disordered

regions [9,11].

Since disordered regions of the protein chain play an important

role in the protein functioning, much attention is being paid to

their examination and prediction [12,13]. Indeed it has been

shown that disordered proteins have certain properties which

distinguish them from proteins with well-defined structures [14].

Abundance of intrinsic disorder in PDB was discussed in a recent

study [14]. Typically, disordered regions have a low aromatic

content and high net charge as well as low sequence complexity

and high flexibility [15–19].

Prediction methods aim to identify disordered regions through

the analysis of amino acid sequences using mainly the physico-

chemical properties of the amino acids [20–29] or evolutionary

conservation [30–33].

It can be suggested that if one and the same pattern corresponds

to disordered regions in the protein structures then it is highly

probable that such a pattern will be disordered in other proteins..

Search for disordered patterns is an important task for prediction

of disordered regions and search for the functioning of the

considered motifs. The identification of essential features within

protein domains can greatly facilitate their functional character-

ization. There are well established databases on protein motif

or domain information, such as PROSITE, InterPro and Pfam

[34–36].

Creation of a library of disordered patterns is one of the primary

tasks in this respect. There is no information about such a library.

Until now we have known the PEST motif (i.e., regions locally

enriched in proline, glutamic acid, serine, and threonine and, to a

lesser extent in aspartic acid) which in most cases is a degradation

motif [37] and the RGD motif which can be found in extracellular

matrix proteins such as fibronectin, fibrinogen, prothrombin,

tenascin, thrombospondin, vitronectin, and etc. [38,39]. The

exposed RGD motif constitutes a major recognition site for

integrin binding [40].

In this work we have been interested in stretches of disordered

residues (a minimal length is six residues). As a rule such stretches
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are short loops inside globular domains and present only one type

of disorder, because disordered proteins range from molten

globules to chains having no structural preferences whatsoever

(in terms of flexibility) and from 2–3 residues to several hundreds

or even thousands of residues (in terms of length) [3,11–13]. We

have analyzed disordered regions and have created a library of

disordered motifs and their positions in protein chains from the

entire Protein Databank (PDB version from 28 June 2010) [41].

Taking into account the consideration of the library of disordered

patterns will help in improving accuracies of predictions for

residues to be structured or unstructured inside the given region.

Moreover, our new statistics on the occurrence of unstructured

residues will be useful for those who are dealing with prediction of

the status of residues to be ordered or disordered.

Combining the motif discovery and disorder protein segment

identification in the PDB is a new and promising approach for

further studying and understanding the functional role of the

obtained patterns in different proteomes. The question about

specificity of these patterns is more important for biological

functioning. We have analyzed the occurrence of the obtained

patterns in some eukaryotic proteomes (humans, the fruit fly, and

the nematode worm proteomes) and in some bacterial proteomes

(E.coli, Lactococcus lactis, and Mycobacterium tuberculosis).

Materials and Methods

Preprocessing of data
We have considered all protein structures determined by X-ray

analysis with a resolution better than 3 Å, published in the PDB

(version from June 28, 2010); the structures contain 116 997

protein chains. Approximately 4.5% of their residues (see below)

are disordered, i.e., are not resolved by X-ray analysis. To identify

such residues, we have compared (for each protein chain) the

records SEQRES and the records ATOM in the corresponding

PDB-file. Residues which are present in the record SEQRES, but

their coordinates are absent in the record ATOM (namely, the

coordinates of the Ca-atom are absent in the record ATOM), are

considered as unstructured ones.

These 116 997 chains can be divided into 34 464 classes, the

chains from the same class have the same amino acid sequences,

the sequences of chains from the different classes are different i.e.

differ at least at one position. In total these 34 464 different

sequences contain 9 085 893 residues.

We have created the Disordered Residues Data Base (DRDB),

its elements are 34 464 sequences from the PDB (version from

June 28, 2010). For the i-th residue of a given sequence S we have

calculated fraction DF(i, S) of the corresponding PDB chains

where the residue is disordered. Figure 1 illustrates the definition

of DF(i, S). It shows 14 chains with the same sequence (given at the

top). ‘D’ means that the corresponding residue is disordered, while

‘+’ means that the residue is resolved. For example, C-terminal

glycine (position 81) is not determined in nine cases from 14

(chains A, B, E, etc). Therefore, the weight DF(81, S) for glycine-

81 and the sequence S shown in Figure 1 is 9/14. The database

DRDB stores values DF(i, S) for all residues of all sequences.

8 592 356 residues (94.57%) are perfectly ordered (DF(i, S) = 0)

and 376 644 (4.15%) are perfectly disordered (DF(i, S) = 1); the

intermediate cases comprise 1.29% of all residues. Below it is

stated that residue i of sequence S is disordered if DF(i, S)$0.5.

The total number of such residues is 449 584 which makes

Author Summary

In this work we have studied the statistics of disordered
amino acid residues in the Protein Data Bank (PDB). It has
turned out that 42% of disordered residues are near the N-
terminus of proteins, 30% are near the C-terminus, and the
remaining 28% are in the middle part of protein chains. It
has been shown that the relative frequencies of occur-
rence of disordered residues at the termini of protein
chains differ from the ones in the middle part of protein
chains. We have compiled the first and largest database of
disordered patterns from the PDB (version from 28 June
2010). Pattern analysis of the distribution of disordered
regions in the PDB demonstrated that the disordered
patterns are length and position dependent. The results of
these analyses help to further our understanding of the
physicochemical and structural determinants of intrinsical-
ly disordered regions that serve as molecular recognition
elements. As expected, the occurrence of patterns in the
bacterial proteomes is considerably less than in the
eukaryotic proteomes.

Figure 1. Illustration of definition of disordered fraction. The given protein chain occurs in two PDB files: 1i8f and 1lnx. The C-terminal glycine
is disordered in nine out of 14 cases. Therefore, for glycine the weight to be disordered is 9/14 and to be ordered is 5/14, correspondingly. For this
example, there are 8.7 average disordered residues.
doi:10.1371/journal.pcbi.1000958.g001

Library of Disordered Patterns

PLoS Computational Biology | www.ploscompbiol.org 2 October 2010 | Volume 6 | Issue 10 | e1000958



4.95%. The average value SDFT~

P

i,S

DF (i,S)

Nresidues

~0:0473 over all

residues.

Below we consider only elements of the DRDB, thus words

‘‘chain’’ and ‘‘sequence’’ are synonyms, each of them denotes an

element of the DRDB.

Disordered regions and estimation of their quality
Our goal is to create a database of disordered patterns, i.e.

amino acid sequences that are likely to be found in disordered

parts of protein chains. Let P be a protein chain and A be a pattern

of length L. The database was compiled using a two-stage

procedure. At the first stage we created a list of candidate patterns.

Then the desired disordered patterns were selected from the

candidate list.

We say that pattern A matches chain P at position s if

1) there are at most L/5 positions r in which

2)
A r½ �=P szr½ �
A 1½ �~P sz1½ �, A 2½ �~P sz2½ �, A L-1½ �~P szL-1½ �,
A L½ �~P szL½ �:

Protein P has an occurrence of pattern A if A matches P at

position s.

Let TP(A) be the number of disordered residues in all

occurrences of pattern A (‘‘true positives’’) and TN(A) be the

number of all ordered residues that do not belong to any

occurrence of A (‘‘true negatives’’). To estimate the ‘‘disorder

quality’’ of region A, we use the following measures [42]:

Sn~TP=Nd , ð1Þ

Sp~TN=No: ð2Þ

Sw~
W1TP{W2FPzW2TN{W1FN

W1NdzW2No

:SnzSp{1: ð3Þ

Here Sn is the sensitivity, Sp is the specificity, Nd is the total number

of disordered residues in the DRDB, and No is the total number of

ordered residues in the DRDB. Thus, sensitivity is a fraction of

correctly predicted unstructured residues, and specificity is a fraction

of correctly predicted structured residues [42]. Sw is an integral

measure used in the CASP competition (‘‘Community Wide

Experiment on the Critical Assessment of Techniques for Protein

Structure Prediction’’ is a competition devoted to the evaluation of the

quality of prediction of 3D protein structure) in the category devoted

to the evaluation of the quality of prediction of unstructured residues

[43,44]. Note that in [43] the formula for Sw is given as follows:

Sw~
W1TP{W2FPzW2TN{W1FN

W1NdzW2No

, ð4Þ

where FP (‘‘false positives’’) is the number of false positive

predictions (the number of residues predicted as unstructured

although these residues are in fact structured), FN (‘‘false negatives’’)

is the number of false negative predictions: the number of residues

predicted as structured although these residues are in fact

unstructured, and W1 and W2 are coefficients calculated as

follows: W1~
No

N
� 100%, W2~

Nd

N
� 100% (N=Nd+No is the total

number of amino acid residues).

However, the definitions are equivalent. As seen, the equation

for calculation of Sw can be rewritten using a smaller number of

symbols than that in [43]. Substituting equations instead of W1

and W2, we obtain:

Sw~
No TP{FNð ÞzNd TN{FPð Þ

2NdNo

: ð5Þ

Taking into account, that FN~Nd{TP, and FP~No{TN , we

have:

Sw~
No 2TP{Ndð ÞzNd 2TN{Noð Þ

2NdNo

~
TP

Nd

z
TN

No

{1: ð6Þ

Or, using the definitions for sensitivity and specificity given above,

we obtain:

Sw~SnzSp{1: ð7Þ

Compilation of database of disordered patterns in
globular protein
We have designed the database using a two-stage procedure. At

the first stage we form the list of candidate patterns. Then the

desired disordered patterns are selected from the candidate list.

Fragment A=Pj[k, l] of chain Pj is considered as a candidate

disordered pattern if it meets the following conditions:

C1) all residues of the fragment are disordered;

C2) the length of a fragment is at least 6;

C3) fragment A has occurrences in at least 5 other

unique chains from DRDB.

We select disordered patterns from the candidate list using the

following iterative greedy procedure. Let C be a chain, and C[k,
k+l-1] be an occurrence of pattern A. The occurrence is terminal if

it belongs to the first 40 residues (‘‘N-terminal’’) or last 40 residues

(‘‘C-terminal’’) of the chain. The other occurrences are called

internal ones.

Let DD be a set of candidate patterns. Residue r of chain C is

called the DD-residue if

N it belongs to the occurrence of the pattern from DD, or

N r lies between the N-terminus and the N-terminal occurrence of

the pattern from DD, or

N r lies between the C-terminus and the C-terminal occurrence of

the pattern from DD.

Let TP(DD) be the sum of disorder coefficients DF for all DD-

residues; TN(DD) be the sum of 1-DF for all non DD-residues.

Let candidate patterns D1, …. Dk be already included in the

database; B={D1, …. Dk}. Let T be a candidate pattern that does

not belong to B. We denote:

DTP B,Tð Þ~TP(B|T){TP Bð Þ

DTN B,Tð Þ~TN(B|T){TN Bð Þ

DSw B,Tð Þ~DTP B,Tð Þ=NdzDTN B,Tð Þ=No

Library of Disordered Patterns
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The next candidate to be added to the database is candidate T
having the maximal value DSw(B, T) among the candidates

meeting the following conditions:

S1) DTP B,Tð ÞzDTN B,Tð Þ§0:

S2)
DTP(B,T)

Nd

z
DTN(B,T)

No

§
6L

Nd

or DSw§
6L

Nd

, where

L is the size of the pattern.

If there are no patterns meeting the conditions S1 and S2 then

the procedure stops.

There are 856005 regions meeting conditions C1 and C2. The

number of regions that also meet condition C3 and conditions S1,

S2 with empty set B is 40 411 (here DTP(B, T) =TP(T) and

DTN(B, T) =TN(T)). As a result of the iterative algorithm 426

patterns were identified. The given procedure allows us to choose

the minimal set of patterns in such a way as to these patterns

included the maximal number of disordered residues.

At last, we are interested in the patterns which will occur in

nonhomologous proteins. Therefore, we define a group of proteins

as a set of proteins having the same disordered pattern and with

identity between protein chains exceeding 20%. Identity between

proteins from different groups is less than 20%, correspondingly.

We decided to consider only the patterns which appear at least in

six groups (with SDFTin groupw0:5). The number of disordered

residues in the pattern for proteins from the above mentioned six

groups (or larger number of groups) is more than a half.

Considering such conditions we want to guarantee that our

patterns will occur in nonhomologous proteins. After such a

procedure we obtained 109 patterns (see Dataset S1). This

procedure allows us to eliminate the patterns occurring only in

homologous proteins. Probably, the unstructured conformation of

the above patterns connected with the three dimensional structure

of these homologous proteins (for example the linker between two

domains, a full disordered domain, and etc.).

Statistical significance of patterns
We have studied statistical significance of the selected patterns

from two points of view. First, we have been interested whether the

patterns are overrepresented in the database (see #1) and second,

whether the disordered fragments are overrepresented among the

occurrences of each pattern (see #3).
#1 Number of occurrences. To evaluate the statistical

significance of the observed number of occurrences of pattern A we

have calculated the probability p(A, N) that pattern A matches a

random sequence of length N. Here N is an average length of a

protein (264 in our case). The probability distribution on protein

sequences is assumed to be Bernoullian, the probabilities of amino

acids are taken from our PDB data set.

The statistical significance of pattern A is estimated with the Z-

score

Zoccur~Z(A,N)~
S{R:p(A,N)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R:p(A,N):(1{p(A,N))
p , ð8Þ

where

S is the number of sequences containing at least one

occurrence of pattern A.

R=34 464 is the number of proteins in the database;

N=264 is the average length of proteins in the database.

To compute the p(A, N) value, we have used two different

approaches depending on length L of pattern A. For patterns of

length 15 and less we have computed the probability using

algorithm SufPref [45]. Unfortunately, the algorithm cannot

process efficiently a long pattern due to the large number of words

having at most 20% mismatches with the pattern. To overcome

this problem for patterns with the length greater than 15, we have

calculated an upper bound

q(A, N)~ N{Lð Þ:p Að Þ, ð9Þ

where L is the length of pattern A; p(A) is the probability that A

matches a random sequence of length L (see Dataset S1).

This formula means that we ignore possible overlapping

occurrences.

Computer experiments with short words show that the

normalized difference

0ƒ(q(A, N){p(A, N))=p(A, N)ƒ0:0001 ð10Þ

if 10,L#15.

The details of computation of p(A) are given below (see #2).

The distribution of Z-scores can be approximated by a normal

distribution. We think that a pattern is significant if its Z-score

exceeds a proper q-quantile. We have considered 99-quantile and

95-quantile. For a normal distribution 99-quantile and 95-quantile

are equal to 2.33 and 1.65, respectively.

#2 Approximate calculation of p(A). To describe the

computation of p(A), we need an additional notation. Consider

pattern A of length L. If A matches word V then A and V have the

same two first and two last letters, therefore all mismatches are

possible only at positions {3, …, L-2}. Consider partition {g1,..,gs}
of positions {3, …, L-2} into groups defined as follows: positions k,

j belong to the same group if they are occupied with the same

amino acid. Let d be a number of mismatches; 0#d#r where

r = L/5 is the maximal allowed number of allowed mismatches.

Definition. A vector T= {d1,…, ds} is a mismatch partition vector for

pattern A and d mismatches if

1) dkƒDgk D;

2) d1z::zds~d .

Informally speaking, dk is the number of mismatches within the

positions of group gk.

Example. Consider pattern SHHHHHHSQDP of length L= 11.

After removal of two first and two last letters we obtain the word

HHHHHSQ of length 7 (the word occupies positions from 3 to L-

2=9 of the initial pattern). The allowed number of mismatches is

r= [11/5] = 2. According to the amino acid probabilities the set of

positions {3, 4, …, 9} can be divided into three groups: g1={3, 4,

5, 6, 7} (corresponds to H); g2={6} (corresponds to S); g3={7}

(corresponds to Q). Let d = r = 2. Then the following vectors T are

possible:

T1~ 2, 0, 0f g, T2~ 1, 1, 0f g;T3~ 1, 0, 1f gT4~ 0, 1, 1f g:

The sum of the elements for each of the vectors is equal to 2, i.e.

to the total number of mismatches. Vector T1={2, 0, 0}

corresponds to the words where both mismatches are mismatches

of H (in other words belong to group g1), e.g. as in

SHAHHAHSQDP. Vector T2={1, 1, 0} corresponds to the

words where one mismatch is a mismatch of H and the other is a

mismatch of S, e.g. as in SHHHHHATQDP.

For the case d = 1 we have only 3 mismatch partition vectors:

Library of Disordered Patterns
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{1, 0, 0}, {0, 1, 0} and {0, 0, 1}. End of example.

Definition. Let d be a number of mismatches and T={d1,…, ds}
be a mismatch partition vector. Then F(A, d, T) is the set of all

words W of length L-4 such that

1) W differs from A exactly in the d positions;

2) Exactly the di mismatches are situated in positions from group

gi.

Proposition. Let d be a number of mismatches and T={d1,…, ds}
be a mismatch partition vector and M be the number of all

mismatch partition vectors for pattern A and the number of

mismatches d. Let pi be the frequency of amino acid at the i-th

position of pattern A.

Then

1)

p(A)~p1:p2:pL{1
:pL:

X

r

d~0

X

M

k~1

Pr ob(F (A,d,T)), ð11Þ

2)

Pr ob(F (A,d,T))~ P
i~1,ivs

C
dk
i

Dgi D
:(pi)

Dgi D{dk
i :(1{pi)

dk
i : ð12Þ

Proof. Follows from elementary combinatorial calculations and is

omitted.

Remark. Note that number M can be calculated by the formula,

where M~Cs{1
dzs{1 and s is the number of groups. In the above

example s = 3; value M=4 for d = 2 and M=3 for d = 1 (d is the

number of mismatches).
#3 Significance of disordered occurrences. We say that

residue r of chain C is disordered if it is disordered in the majority

of representatives of C in the considered set of structures (see

section Materials and Methods, preprocessing of the data).

Fragment F of chain C from the DRDB database (see section

Materials and Methods, preprocessing of the data) is disordered if

at least half of its residues are marked as disordered. To estimate

the significance of the number of disordered occurrences of

pattern P we have implemented the following procedure. First, the

list of all occurrences of pattern P was compiled. Second, we

excluded from the list disordered occurrences having intersection

with

(i) an ordered occurrence of the pattern;

(ii) another disordered occurrence of the pattern that is closer to

the N-terminus than the occurrence under consideration.

Among the remaining N(A) fragments we consider the number

of disordered fragments Nd(A). The significance of disordered

occurrences is estimated with the Z-score:

Zdisorder~
Nd (A){N(A):p(L)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N(A):p(L): 1{p(L)ð Þ
p : ð13Þ

Here L is the length of pattern P; p(L) is the fraction of

disordered fragments within the set of all fragments of length L in

the database.

Results/Discussion

Statistical analysis of distribution of disordered amino
acid residues in protein chains
We have analyzed the distribution of disordered residues in the

obtained database DRDB, see Materials and Methods. The

statistics of the occurrence of disordered regions of different

lengths has been calculated. The N-terminal disordered regions

and the C-terminal ones, and internal disordered loops (disordered

regions at the both termini of which there are ordered regions)

have been considered separately. The distribution of disordered

regions by their lengths is shown in Figure 2. As seen, the

disordered regions in one residue occur more frequently at the N-

and C-termini of proteins. Disordered regions in four residues

occur most frequently in the middle part of the protein chain.

The statistics of distribution of disordered residues in protein

chains is given in Table 1. It is interesting that 72% of all

disordered amino acid residues are near the termini of protein

chains (at a distance less than 40 residues from the N- or C-
terminus of the protein chain), these terminal regions including

only 28% of amino acid residues of protein molecules. Therefore

for further studying the occurrence of disordered residues we

considered separately the terminal regions and the middle part of

the protein chain (all the other residues).

The fraction of disordered amino acid residues for each of the

20 types in the middle part of protein chain is presented in

Figure 3. As seen from the presented histogram, the fraction of

disordered residues in the middle part of a protein chain varies

from 0.009 (for tryptophan) to 0.029 (for serine). As should be

expected, the fraction of disordered amino acid residues is lower

for hydrophobic residues and higher for the hydrophilic ones. It is

interesting that serine is more often disordered than any other type

of amino acid residues (including glycine and proline which, at

least one of them, are usually chosen [20,25,46] as residues with a

higher ‘‘predisposition’’ to be in disordered regions). The errors

indicated on the histogram show that the difference is reliable. The

probability to be disordered for the given amino acid residue is

calculated according to equation: p(a)~
Nd (a)

N(a)
+

ffiffiffiffiffiffiffiffiffiffiffiffi

Nd (a)
p

N(a)
, where

Nd(a) is the number of disordered residues, N(a) is the number of

the given amino acid residue in our database. We can consider

Nd(a) as the value which is distributed on the binomial law with

probability p(a) and N(a) is the number of trials. Then, the

dispersion is equal to s2(a)~
Nd (a)

N(a)
�
N(a){Nd (a)

N(a)
�N(a)&Nd (a).

The probabilities of the occurrence of disordered residues in the

middle part of a protein chain and through whole proteins are

given in Table 2. As can be seen from the table, serine has a high

probability to be disordered both in the middle part of a protein

chain and in the whole protein. On the contrary, the probability of

methionine to be disordered in the middle part of a protein chain

is only a little higher than that of hydrophobic residues, whereas in

the whole protein methionine has the highest probability, as

compared to the other 20 types, to be disordered (0.093).

Construction of a library of disordered patterns
Following the procedure described in the Materials and

Methods section, we obtained a library of disordered patterns.

To our knowledge this is currently the first and the largest

database of disordered patterns constructed from the PDB. The

dataset includes 109 patterns. The distribution of the patterns on

lengths demonstrates that the patterns occur more often as short

fragments (75 from 109 are patterns of 6 amino acid residues). The

largest pattern consists of 22 amino acid residues. We suggest that

Library of Disordered Patterns
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these patterns will be disordered when they appear in new protein

chains because more than half of residues in these patterns are

disordered (see the following section). The shorter the considered

pattern the larger the number of groups of proteins with identity

lower than 20% among proteins from different groups we

obtained where such a pattern appears (see Dataset S1).

Such a rather small size of patterns can be explained by the

methodology of extraction of patterns from the DRDB, since we

consider the residues situated more closely to the end than the

pattern as disordered residues (see section Compilation of database

of disordered patterns in globular protein in Materials and

Methods).

Some patterns appear in protein together with other patterns.

We say that two patterns are ‘‘correlated’’ if there are at least 4

proteins containing both patterns and the identity between the

proteins is no more than 20%. The cutoff 4 (4 = 6/2+1)

corresponds to the cutoff 6 (the number of groups with identity

between proteins from different groups less than 20%, see

Materials and Methods, Compilation of database of disordered

patterns in globular protein). We found 363 pairs of correlated

patterns (that is 6.2% of all possible pairs of 109 patterns). The list

of the pairs of correlated patterns is given in the Dataset S2.

In particular for each pair we give the average distance between

the pattern occurrences. One can see that approximately in half

pairs ,d. ,0 that corresponds to the intersecting patterns. For

example, HHHHHH appears together with 70 other patterns and

intersects with 36 of 70 patterns (see Figure 4 and Dataset S2).

Pattern LVPRGS occurs 627 times of 828 together with pattern

HHHHHH (GSSHHHHHHSSGLVPRGS). On the other hand,

pattern HHHHHH intersects with pattern LEHHHH. We

consider that many of the 70 patterns including poly H fragments

are artificial parts of proteins which have been added for better

purification of proteins. However, poly H fragments appear often

in eukaryotic proteomes and likely it has a functional role in

comparison of their role in PDB. Moreover, the other 39 patterns

can be considered as biologically important; so we found several

appearances of these patterns in human proteome (see Table 3

and Dataset S1). The question about specificity of these patterns is

more important for biological function and will be considered

below. A detailed analysis of the patterns correlation is a subject of

future work.

Statistical significance of the obtained patterns
We have studied the statistical significance of the selected

patterns from two points of view. First, we have been interested

whether the disordered fragments are overrepresented among the

occurrences of each pattern, and, second, whether the patterns are

overrepresented in the database. The features are described with

Figure 2. Length distribution of disordered regions in protein chains from the DRDB.
doi:10.1371/journal.pcbi.1000958.g002

Table 1. Distribution of disordered amino acid residues in protein structures from the DRDB.

Fraction of all residues Fraction of disordered residues

Terminal parts 30% 72%

40 residues near the N-terminus 15% 42%

40 residues near the C-terminus 15% 30%

Middle part (all the other residues) 70% 28%

doi:10.1371/journal.pcbi.1000958.t001
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the proper Z-scores (see Materials and Methods), called Zdisorder and

Zoccur respectively.

All 109 patterns have Zdisorder.9 that corresponds to P-value

10219, which is in good agreement with the procedure of the

disordered patterns determination. What is more surprising, the

majority of the patterns are overrepresented in the database (89 of

109 have Zoccur.5 which corresponds to P-value 3?1027). For a

normal distribution 99-quantile and 95-quantile are equal to 2.33

and 1.65, respectively. There are only 7 and 3 patterns with

validation less than 2.33 and 1.65, respectively.

Occurrence of patterns in three eukaryotic and three
bacterial proteomes
After creating the library of disordered patterns taken from the

PDB, another interesting question arises: how often the obtained

patterns will occur in some proteomes. Since the eukaryotic

proteomes include more disordered regions than other proteomes

[30,47,48] we chose for this purpose three eukaryotic proteomes:

human (50104 protein sequences), the fruit fly (Drosophila

melanogaster, 14455 protein sequences), and the nematode worm

(Caenorhabditis elegans, 23507 protein sequences) proteomes. For

Figure 3. Fraction of disordered amino acid residues for each of the 20 types in the middle part of a protein chain. The dashed line
shows the total fraction of disordered residues in the middle part of the protein chain.
doi:10.1371/journal.pcbi.1000958.g003

Table 2. Fraction of disordered amino acid residues for each of the 20 types in the termini, in the middle part of protein chains,
and in the whole proteins.

a.a. TRP ILE PHE CYS TYR LEU VAL MET ALA HIS

N-40 0.032 0.054 0.061 0.044 0.055 0.077 0.069 0.351 0.134 0.427

C-40 0.029 0.046 0.045 0.047 0.038 0.063 0.054 0.065 0.090 0.376

middle 0.009 0.011 0.011 0.011 0.011 0.011 0.013 0.015 0.019 0.020

whole 0.015 0.022 0.022 0.022 0.021 0.028 0.027 0.093 0.046 0.166

a.a. THR ARG ASN PRO GLN ASP LYS GLU GLY SER

N-40 0.110 0.108 0.115 0.143 0.121 0.108 0.105 0.112 0.167 0.219

C-40 0.079 0.087 0.092 0.107 0.100 0.097 0.104 0.117 0.114 0.123

middle 0.021 0.021 0.022 0.023 0.023 0.024 0.025 0.025 0.027 0.029

whole 0.043 0.044 0.046 0.053 0.051 0.046 0.050 0.054 0.060 0.075

doi:10.1371/journal.pcbi.1000958.t002
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Figure 4. Number of the correlated patterns with the considered pattern in the DRDB. Two patterns are correlated if there are at least 4
proteins containing both patterns and the identity between the proteins is no more than 20%.
doi:10.1371/journal.pcbi.1000958.g004

Table 3. Occurrence of patterns in the eukaryotic proteomes.

Pattern

Number of

groups,

identity inside

group .20%

Fraction of

disordered residues

in the patterns

from the DRDB

Probability of

occurrence of

the patterns

in protein

Occurrence in

the human

proteome/in

the DRDB

Occurrence in

the fruit fly

proteome/in

the DRDB

Occurrence in

the nematode

worm proteome/

in the DRDB

PPPPPP 15 0.70 0.00017 703/32 304/32 247/32

QQQQQQ 11 0.66 0.00004 331/17 869/17 249/17

EEEDEE 55 0.65 0.00015 242/55 42/55 54/55

QPPPPP 9 0.74 0.00013 163/16 66/16 32/16

APAPAP 17 0.51 0.00067 121/30 44/30 34/30

HHHHHH 1227 0.93 0.00002 99/5423 133/5423 57/5423

EDEDEE 23 0.64 0.00014 97/29 27/29 42/29

DEEEED 12 0.68 0.00014 83/16 26/16 39/16

GGGGGSG 17 0.65 0.00028 78/29 80/29 8/29

GSSGSS 66 0.68 0.00120 67/93 35/93 19/93

PPPPPK 18 0.81 0.00027 62/31 24/31 32/31

DDEDED 14 0.64 0.00013 53/16 31/16 26/16

SGGGGSG 10 0.82 0.00022 31/29 19/29 2/29

KKKGKK 26 0.55 0.00181 27/56 8/56 13/56

EEEEAP 12 0.66 0.00028 26/21 6/21 9/21

KKRKRK 12 0.54 0.00067 25/19 6/19 7/19

SGGGSGG 12 0.68 0.00024 20/17 17/17 5/17

SHHHHH 558 0.98 0.00005 19/1566 27/1566 12/1566

GGSGSGG 17 0.77 0.00027 14/50 23/50 6/50

NHHHHH 19 0.83 0.00003 10/25 14/25 8/25

doi:10.1371/journal.pcbi.1000958.t003
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comparison we also considered three bacterial proteomes: E.coli

(strains O6-K15-H31, 4605 protein sequences), Lactococcus lactis
(2383 protein sequences), and Mycobacterium tuberculosis (ATCC

25177, 3990 protein sequences). The patterns with the largest

occurrence in the eukaryotic proteomes are given in Table 3. It

should be underlined here that the patterns with low complexity

appear in the eukaryotic proteome more often than others. It

should be noted also that low complexity regions can additionally

include ordered structural proteins or proteins with strong

structural propensity, like collagens, coiled-coils or fibrous proteins

[12]. Recently, it has been demonstrated that increasing perfect

tandem repeats correlates with a stronger tendency to be

unstructured [49]. Moreover, a strong association between

homorepeats and unstructured regions has been shown elsewhere

[50]. Another characteristic of the patterns with low complexity is

that they appear in proteins with different functions. For three

patterns PPPPPP, QQQQQQ, and HHHHHH we found

functional categories in the gene ontology [51] classification (the

GO annotation). This was done as follows. We took eukaryotic

proteomes from the EBI site (ftp://ftp.ebi.ac.uk/pub/databases/

SPproteomes/uniprot/proteomes/). From these proteomes for

each protein with the pattern we took the GO molecular function

classification (GO:F section). We focus our attention only on

molecular functions if there are at least five proteins in human

proteome where the pattern occurs.

Molecular functions for the proteins including the PPPPPP

pattern: actin binding, calcium ion binding, DNA binding, nucleic

acid binding, protein binding, protein serine/threonine kinase

activity, receptor activity, Rho GTPase binding, RNA binding,

SH3 domain binding, signal transducer activity, transcription

coactivator activity, transcription factor activity, tropomyosin

binding, voltage-gated potassium channel activity, and zinc ion

binding.

Molecular functions for the proteins including the QQQQQQ

pattern: DNA binding, nucleic acid binding, protein binding,

RNA binding, transcription factor activity, and zinc ion binding.

Molecular functions for the proteins including the HHHHHH

pattern: protein binding, transcription coactivator activity, tran-

scription factor activity, and zinc ion binding. It should be noted

that poly H fragments are artificial parts of proteins in PDB which

have been added for better purification of proteins, but in the

eukaryotic proteomes (HHHHHH is absent in the bacterial

proteomes at all) such a repeat is likely to have a biological

function. It should be added, that poly H and poly Q patterns

occur in the fruit fly proteome more often than in the human

proteome (see Table 3).

We have found a very interesting example of protein Serine

arginine-rich pre-mRNA splicing factor SR-A1 (including 1312

amino acid residues) with the RNA binding molecular function

where there is compositional bias to regions with low complexity:

Pro-rich, Ser-rich, Glu-rich, Arg-rich, and Lys-rich (the protein

includes six low complexity patterns: EEEEEE, PPPPPP,

RRRRRR, SSSSSS, APAPAP, DRDRDR). Another interesting

example with the same situation is AT-rich interactive domain-

containing protein 1A (including 2285 amino acid residues) with

the DNA and protein binding molecular function (the protein

includes six low complexity patterns: AAAAAA, EEEEEE,

GGGGGG, PPPPPP, QQQQQQ, SSSSSS).

As expected, the number of occurrences of patterns in the

bacterial proteomes is considerably less than in the eukaryotic

proteomes. The appearance of the only pattern PPPPPP more

than 10 times (11 occurrences) we observed in the M. tuberculosis

proteome.

It should be underlined here that expansion of homorepeats is a

molecular cause of at least 18 human neurological diseases [49].

Therefore, studying the functional role of the obtained patterns,

especially homorepeats in the human proteome is one of

important biology tasks.

Combining motif discovery and disorder protein segment

identification in PDB allows us to create the library of the

disordered patterns. At present the library includes 109 disordered

patterns. Such an approach is new and promising for further

studying and understanding the functional role of the obtained

patterns in different proteomes.

Supporting Information

Dataset S1 The list of patterns and their properties.

Found at: doi:10.1371/journal.pcbi.1000958.s001 (0.05 MB XLS)

Dataset S2 The list of correlated patterns.

Found at: doi:10.1371/journal.pcbi.1000958.s002 (0.14 MB XLS)
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12. Dosztányi Z, Mészáros B, Simon I (2010) Bioinformatical approaches to

characterize intrinsically disordered/unstructured proteins. Brief Bioinform 11:

225–243.

13. He B, Wang K, Liu Y, Xue B, Uversky VN, et al. (2009) Predicting intrinsic

disorder in proteins: an overview. Cell Research. pp 1–21.

14. Le Gall T, Romero PR, Cortese MS, Uversky VN, Dunker AK (2007) Intrinsic

disorder in the Protein Data Bank. J Biomol Struct Dyn 24: 325–342.

15. Uversky VN, Gillespie JR, Fink AL (2000) Why are ‘‘natively unfolded’’ proteins

unstructured under physiologic conditions? Proteins 41: 415–427.

16. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, et al. (2001) Sequence

complexity of disordered protein. Proteins 42: 38–48.

17. Smith DK, Radivojac P, Obradovic Z, Dunker AK, Zhu G (2003) Improved

amino acid flexibility parameters. Protein Sci 12: 1060–1072.

18. Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, et al. (2004) Protein

flexibility and intrinsic disorder. Protein Sci 13: 71–80.

19. Garbuzynskiy SO, Lobanov MY, Galzitskaya OV (2004) To be folded or

unfolded? Protein Sci 13: 2871–2877.

Library of Disordered Patterns

PLoS Computational Biology | www.ploscompbiol.org 9 October 2010 | Volume 6 | Issue 10 | e1000958



20. Linding R, Russell RB, Neduva V, Gibson TJ (2003) GlobPlot: Exploring
protein sequences for globularity and disorder. Nucleic Acids Res 31:
3701–3708.

21. Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, et al. (2003) Protein disorder
prediction: implications for structural proteomics. Structure 11: 1453–1459.

22. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the
prediction of intrinsically unstructured regions of proteins based on estimated
energy content. Bioinformatics 21: 3433–3434.

23. Coeytaux K, Poupon A (2005) Prediction of unfolded segments in a protein
sequence based on amino acid composition. Bioinformatics 21: 1891–1900.

24. Galzitskaya OV, Garbuzynskiy SO, Lobanov MY (2006) FoldUnfold: web
server for the prediction of disordered regions in protein chain. Bioinformatics
22: 2948–2949.

25. Galzitskaya OV, Garbuzynskiy SO, Lobanov MY (2006) Prediction of
amyloidogenic and disordered regions in protein chains. PLoS Comput Biol 2:
e177.

26. Schlessinger A, Punta M, Rost B (2007) Natively unstructured regions in proteins
identified from contact predictions. Bioinformatics 23: 2376–2384.

27. Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z (2006) Length-
dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7: 208.

28. Obradovic Z, Peng K, Vucetic S, Radivojac P, Dunker AK (2005) Exploiting
heterogeneous sequence properties improves prediction of protein disorder.
Proteins 61 Suppl 7: 176–182.

29. Obradovic Z, Peng K, Vucetic S, Radivojac P, Brown CJ, et al. (2003)
Predicting intrinsic disorder from amino acid sequence. Proteins 53 Suppl 6:
566–572.

30. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and
functional analysis of native disorder in proteins from the three kingdoms of life.
J Mol Biol 337: 635–645.

31. Hecker J, Yang JY, Cheng J (2008) Protein disorder prediction at multiple levels
of sensitivity and specificity. BMC Genomics 9 Suppl 1: S9.

32. Su CT, Chen CY, Ou YY (2006) Protein disorder prediction by condensed
PSSM considering propensity for order or disorder. BMC Bioinformatics 7: 319.

33. Yang ZR, Thomson R, McNeil P, Esnouf RM (2005) RONN: the bio-basis
function neural network technique applied to the detection of natively
disordered regions in proteins. Bioinformatics 21: 3369–3376.

34. Finn RD, Mistry J, Tate J, Coggill P, Heger A, et al. (2010) The Pfam protein
families database. Nucleic Acids Res 38: D211–222.

35. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, et al. (2009)
InterPro: the integrative protein signature database. Nucleic Acids Res 37:
D211–215.

36. Sigrist CJ, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, et al.

(2010) PROSITE, a protein domain database for functional characterization

and annotation. Nucleic Acids Res 38: D161–166.

37. Tompa P, Prilusky J, Silman I, Sussman JL (2008) Structural disorder serves as a

weak signal for intracellular protein degradation. Proteins 71: 903–909.

38. Brooks PC (1996) Role of integrins in angiogenesis. Eur J Cancer 32a:

2423–2429.

39. Plow EF, Haas TA, Zhang L, Loftus J, Smith JW (2000) J Biol Chem 275:

21785–21788.

40. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu

Rev Cell Dev Biol 12: 697–715.

41. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Jr., Brice MD, et al. (1977)

The Protein Data Bank. A computer-based archival file for macromolecular

structures. Eur J Biochem 80: 319–324.

42. Melamud E, Moult J (2003) Evaluation of disorder predictions in CASP5.

Proteins 53 Suppl 6: 561–565.

43. Jin Y, Dunbrack RL, Jr. (2005) Assessment of disorder predictions in CASP6.

Proteins 61, Suppl 7: 167–175.

44. Bordoli L, Kiefer F, Schwede T (2007) Assessment of disorder predictions in

CASP7. Proteins 69, Suppl 8: 129–136.

45. Regnier M, Kirakosyan Z, Furletova E, Roytberg M (2009) Word counting

graph. In: London algorithmics 2009. Theory and Practice. Chan J, Daykin JW,

Rahman MS, eds. pp 10–43.

46. Campen A, Williams RM, Brown CJ, Meng J, Uversky VN, et al. (2008) TOP-

IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder.

Protein Pept Lett 15: 956–963.

47. Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000) Intrinsic

protein disorder in complete genomes. Genome Inform Ser Workshop Genome

Inform 11: 161–171.

48. Bogatyreva NS, Finkelstein AV, Galzitskaya OV (2006) Trend of amino acid

composition of proteins of different taxa. J Bioinform Comput Biol 4: 597–608.

49. Jorda J, Xue B, Uversky VN, Kajava AV (2010) Protein tandem repeats - the

more perfect, the less structured. FEBS J 277: 2673–2682.

50. Simon M, Hancock JM (2009) Tandem and cryptic amino acid repeats

accumulate in disordered regions of proteins. Genome Biol 10: R59.1–R59.16.

51. Camon E, Magrane M, Barrell D, Lee V, Dimmer E, et al. (2004) The Gene

Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with

Gene Ontology. Nucleic Acids Res 32: D262–266.

Library of Disordered Patterns

PLoS Computational Biology | www.ploscompbiol.org 10 October 2010 | Volume 6 | Issue 10 | e1000958


