
 Open access  Posted Content  DOI:10.1101/592154

Library preparation and sequencing platform introduce bias in metagenomics
characterisation of microbial communities — Source link 

Casper Sahl Poulsen, Sünje Johanna Pamp, Ekstrøm Ct, Frank MÃ¸ller Aarestrup

Institutions: Technical University of Denmark, University of Copenhagen

Published on: 28 Mar 2019 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Metagenomics

Related papers:

 Sample storage conditions significantly influence faecal microbiome profiles.

 Two-Target Quantitative PCR To Predict Library Composition for Shallow Shotgun Sequencing.

 The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies

 Direct PCR Offers a Fast and Reliable Alternative to Conventional DNA Isolation Methods for Gut Microbiomes.

 Environmental Sequencing of Microbes in Water Samples

Share this paper:    

View more about this paper here: https://typeset.io/papers/library-preparation-and-sequencing-platform-introduce-bias-
hz6inhafeb

https://typeset.io/
https://www.doi.org/10.1101/592154
https://typeset.io/papers/library-preparation-and-sequencing-platform-introduce-bias-hz6inhafeb
https://typeset.io/authors/casper-sahl-poulsen-51tqyf7epw
https://typeset.io/authors/sunje-johanna-pamp-21glw4unwa
https://typeset.io/authors/ekstrom-ct-5g4p0t9gk1
https://typeset.io/authors/frank-ma-ller-aarestrup-567bvolurl
https://typeset.io/institutions/technical-university-of-denmark-1d4srdmh
https://typeset.io/institutions/university-of-copenhagen-9wj8wm2p
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/metagenomics-vio6yh04
https://typeset.io/papers/sample-storage-conditions-significantly-influence-faecal-ga871upurp
https://typeset.io/papers/two-target-quantitative-pcr-to-predict-library-composition-2wwzd10ccp
https://typeset.io/papers/the-truth-about-metagenomics-quantifying-and-counteracting-4qq4jf9u2t
https://typeset.io/papers/direct-pcr-offers-a-fast-and-reliable-alternative-to-2odialdznc
https://typeset.io/papers/environmental-sequencing-of-microbes-in-water-samples-2kgpedpe0o
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/library-preparation-and-sequencing-platform-introduce-bias-hz6inhafeb
https://twitter.com/intent/tweet?text=Library%20preparation%20and%20sequencing%20platform%20introduce%20bias%20in%20metagenomics%20characterisation%20of%20microbial%20communities&url=https://typeset.io/papers/library-preparation-and-sequencing-platform-introduce-bias-hz6inhafeb
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/library-preparation-and-sequencing-platform-introduce-bias-hz6inhafeb
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/library-preparation-and-sequencing-platform-introduce-bias-hz6inhafeb
https://typeset.io/papers/library-preparation-and-sequencing-platform-introduce-bias-hz6inhafeb


1

1

2 Library preparation and sequencing platform introduce bias in 

3 metagenomics characterisation of microbial communities 
4

5

6 Casper S. Poulsen1*, Sünje J. Pamp1, Claus T. Ekstrøm2 and Frank M. Aarestrup1 

7 1Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 

8 Kongens Lyngby, Denmark.

9 2Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark. 

10

11 * Corresponding author

12 cspoulsen@hotmail.com (CP)

13

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/592154doi: bioRxiv preprint 

https://doi.org/10.1101/592154
http://creativecommons.org/licenses/by/4.0/


2

14 Abstract
15 Next generation sequencing technologies have become increasingly used to describe microbial communities. 

16 Metagenomics characterization of microbiomes is associated with minimal manipulation during sample 

17 processing, which includes sampling, storage, DNA isolation, library preparation and sequencing, before the 

18 raw data are obtained. Here we assess the effect of library preparation using a kit with a polymerase chain 

19 reaction (PCR) step (Nextera) and two PCR-free kits (NEXTflex and KAPA), and the effect of sequencing 

20 platform (HiSeq and NextSeq) on the description of microbial communities in pig feces and sewage. Two pig 

21 fecal samples were obtained from different farms and two sewage samples were collected as inlet water at 

22 a local wastewater treatment facility. Samples were processed to both perform DNA-isolation immediately 

23 upon arrival in the lab and after storage for 64 hours at -80°C, DNA isolation was performed in duplicate.

24 We find that both library preparation and sequencing platform had systematic effects on the microbial 

25 community description. The effects were at a level that made differentiating between the two pig fecal 

26 samples difficult. The sewage samples represented two very different communities and were at all times 

27 distinguishable from each other. We find that library preparation and sequencing platform introduced more 

28 variation than freezing the samples. The community changes did not seem associated with contamination 

29 during processing and distinct patterns connected specific types of organisms with a processing method, but 

30 it was difficult to generalize between samples. This highlights the need for continuous validation of the effect 

31 of sample processing in different types of samples and that all processing steps need to be considered when 

32 comparing between studies. We believe standardization of sample processing is key to generate comparable 

33 data within a study and that comparisons of differently generated data, e.g. in a meta-analysis, should be 

34 performed cautiously. 

35

36 Introduction
37 Microbes are omnipresent and inhabit even the most extreme environments on earth. Metagenomics has 

38 provided unprecedented detail into these microbial communities, but the application is extending beyond 

39 environmental ecology. Metagenomics is applied heavily to human microbiomes and is being implemented 

40 to understand disease state (1–4) for diagnostic purposes (5) and surveillance (6–9). Data are a growing 

41 resource that can be utilized in meta-analysis and data-mining, revolutionizing the epidemiology of microbial 

42 diseases (6,9–12). 

43 Findings from research related to human health and disease can be difficult to replicate as observed in 

44 different meta-analyses of 16S rRNA gene amplicon studies (13–16). Considering the large number of 

45 features (functional or taxonomic) under investigation in metagenomics, it is not surprising that studies never 

46 seem to lack significant results (17). Data dredging is a real concern in metagenomics, which brings to mind 

47 the “replication crisis” that has been highlighted in the field of psychology (18,19). Due to the challenge of 

48 replicating results, one must not over-emphasize the results from exploratory research and keep in mind 

49 with the maturation of metagenomics, that there is a need to continually validate the robustness and ability 

50 to replicate results. (20,21). With the improvement of reference databases and bioinformatics tools, the 

51 validation is an ongoing process (22–25).
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52 Technical variation due to sample processing is an important factor that researchers have to minimize to 

53 make proper inferences in metagenomics studies. The effect of DNA isolation has been investigated in papers 

54 emphasizing the importance of this parameter (26–28). The effect of library preparation and sequencing 

55 platform has been investigated in metagenomics, primarily on human fecal samples. Library preparation 

56 affects taxonomic and functional characterization of human fecal samples and in silico constructed mock 

57 communities (21,29). However, in a study by Costea et al. (26), the effect of library preparation was lower 

58 compared with DNA isolation and intra- and inter-sample variation in general. The possibility that the 

59 sequencing platform could also have an effect on the characterization of microbiomes is highlighted in a 

60 study utilizing both metagenomics and 16S rRNA gene amplicon sequencing (30).

61 The aim of the present study is to assess the effect of library preparation (KAPA PCR-free, NEXTflex PCR-free 

62 and Nextera) and sequencing platform (Illumina HiSeq and NextSeq) on the metagenomics based description 

63 of two different microbiomes that includes two different sewage and pig fecal samples. We show that library 

64 preparation and sequencing infer systematic bias to the microbial characterization and that this effect is 

65 important when comparing similar samples, highlighting the need for consistent sample processing and 

66 demonstration of cautiousness when comparing data from different studies.

67   

68 Methods

69 Sample processing

70 A subset of DNA samples was selected from an ongoing investigation of the effect of different aspects of 

71 sample processing. The DNA samples were from two pig fecal samples (P1 and P2) and two sewage samples 

72 (S1 and S2). The two pig fecal samples were collected on different occasions from different conventional pig 

73 production farms near the laboratory. The pig fecal samples were collected immediately after observed 

74 defecation, transferred to a cooling box and delivered to the laboratory for further processing within 3 hours. 

75 The two sewage samples were collected at a local wastewater treatment facility on different occasions. The 

76 sewage samples were  20 L inlet water, transported in cooling boxes and delivered for further processing 

77 within 20 mins. The sewage samples were centrifuged immediately upon arrival in the laboratory. Each pig 

78 fecal sample and sedimented sewage sample was processed in the same way by first homogenizing the 

79 samples then performing DNA isolation immediately  and after 64 hours of storage at -80°C. DNA isolation 

80 was performed in duplicate with a modified QIAamp Fast DNA Stool Mini Kit (Qiagen) protocol including an 

81 initial bead beating step (MoBio garnet beads) (27) (S1 Fig). A negative DNA isolation (blank) control was 

82 included at each time of DNA isolation. The concentration of DNA samples was measured with the Qubit 

83 dsDNA High Sensitivity (HS) assay kit on a Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA) before storing the 

84 DNA at -20 °C.  

85 Library preparation and sequencing

86 Library preparation and sequencing were performed in the order described below and the DNA was frozen 

87 between the sequencing runs: 

88 NEXTflex PCR-free on the HiSeq (NFHI). Sequencing was performed at an external provider (Oklahoma 

89 Medical Research Foundation, Oklahoma, USA). The DNA (500 ng) was fragmented mechanically (Covaris 
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90 E220 evolution, aimed insert size=350bp, additional information was not possible to obtain from the 

91 provider) using ultrasonication. The NEXTflex library preparation was run PCR-free according to the 

92 manufacturer’s recommendations. Sequencing was performed on the HiSeq 4000 (2x150 cycles, paired end).

93 KAPA PCR-free on the HiSeq (KAHI). Sequencing was performed at an external provider (Admera Health, 

94 New Jersey, USA). The DNA (500 ng) was fragmented mechanically (Covaris E220 evolution, aimed insert 

95 size=350bp, additional information was not possible to obtain from the provider) using ultrasonication. The 

96 KAPA library preparation was run PCR-free according to the manufacturer’s recommendations. Sequencing 

97 was performed on the HiSeq 4000 (2x150 cycles, paired end).

98 NEXTflex PCR-free on the NextSeq (NFNS). The DNA (500 ng) was fragmented with mechanical 

99 fragmentation (Covaris E210, aimed insert size=350bp, Duty cvd=10 %, Intensity=5, Cycle burst = 200, 

100 Treatment time=240 sek) using ultrasonication. The NEXTflex library preparation was run PCR-free with 

101 Nextflex barcodes (NEXTflex-96 DNA barcodes) and sequenced in-house. The NEXTflex protocol was run 

102 according to the manufacturer’s recommendations. Sequencing was performed on the NextSeq 500 (Mid 

103 output v2, 2x150 cycles, paired end).

104 Nextera 1 and 2 on the NextSeq (NX1NS, NX2NS). The Nextera XT library preparation was performed twice 

105 and sequenced in-house. The Nextera XT protocol was carried out according to the manufacturer’s 

106 recommendations. This included a tagmentation step that fragments the DNA (1 ng) and ligates adaptors, 

107 and a PCR step amplifying DNA and adding indexing primers. Library cleanup was performed with AMPure 

108 XP beads and normalized before sequencing on the NextSeq 500 (Mid output v2, 2x150 cycles, paired end). 

109 The bioanalyzer results revealed that the aimed insert size of 350 bp was larger than expected (S1 File).

110 Bioinformatics and statistical analysis

111 Pre-processing of raw reads included trimming (Phred quality score = 20) and removal of reads shorter than 

112 50bp (BBduk2) (31). Mapping was performed with a Burrows-Wheeler aligner (BWA-mem) as implemented 

113 in MGmapper (22). Mapping was performed in the default “best mode” to 11 databases, first filtering against 

114 the human database then extracting the number of raw reads mapping to the genomes of bacteria, fungi, 

115 archaea, viruses and Cryptosporidium. A read count correction was implemented to adjust large hit counts 

116 to specific contigs as implemented in Hendriksen et al. (9). All counts in the count table were divided by two 

117 to account for reads were mapping as proper pairs and then aggregating to genus level. The processed count 

118 table, metadata and feature data are available as S2 (File) and the raw reads are deposited at the European 

119 Nucleotide Archive (ENA) (Project acc.: PRJEB31650).   

120 All statistical analyses adhered to the compositional data analysis framework and were performed in R 

121 version 3.5.2 (32–34). Initial filtering of the count matrix was performed in all analyses, removing all genera 

122 below an average count of 5. The estimation of zeroes was performed using simple multiplicative 

123 replacement (35). Isometric log-ratio transformation (ILR) was used in: The principal component analysis 

124 (PCA), heatmaps to perform complete-linkage clustering analysis of the samples, boxplots to calculate 

125 pairwise Euclidean distance between samples and in multivariate analysis of variances testing which 

126 parameters that significantly influence the multivariate outcome the most using permutation tests 

127 (32,34,36,37). Centered log-ratio transformation (CLR) was used in: Sparse partial-least-squares discriminant 

128 analysis (sPLS-DA) and constrained ordination with redundancy analysis (rda), where it was important to keep 
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129 genera information after the transformation (32,34,38). Analyses performed are included in the publication 

130 as S3 (File) and the code is available from 

131 https://github.com/csapou/LibraryPreparationandSequencingPlatform.         

132

133 Results

134 Quality control of sequencing output

135 The number of raw reads from the different library preparations and sequencing platforms were similar with 

136 about a factor 2 difference when comparing the medians. The highest number of reads were obtained from 

137 the NEXTflex HiSeq run (median: 12.1, range: 6.3 – 30.8 million reads) and the lowest from the NEXTflex 

138 NextSeq run (median: 7.6, range: 2.7 – 9.4 million reads). The outputs from the KAPA HiSeq run (median: 9.4, 

139 range: 7.8 – 17.4 million reads) and the Nextera NextSeq runs (median: 10.2, range: 6.5 – 16.5 million reads) 

140 were about the same. More reads were obtained from the pig fecal samples compared with the sewage, but 

141 a larger proportion of the sewage reads mapped to the reference databases. The microbial community of the 

142 sewage samples exhibited a higher α-diversity (Simpson) than the pig feces (Table S1). However, the number 

143 of mapped reads were higher for the sewage samples, and many of the samples had reached a plateau as 

144 observed when creating a rarefaction curve (S2 Fig). Similar results were obtained when comparing percent 

145 of unmapped reads across the different library preparation and sequencing platform runs (S1 Table). 

146 Sample processing impact on microbial characterization

147 The pairwise Euclidean distance was calculated between all of the samples and visualized using PCA (S3A Fig). 

148 The sample type explained the most variance and pig feces and sewage samples were clearly separated on 

149 the first axis.  Separation of the two sewage samples was observed on the second axis. However, the two pig 

150 fecal samples formed a single group. Ordination of the pig feces and sewage samples separately revealed 

151 that the two pig fecal samples seemed to belong to two separate groups (S3B Fig), and a clear separation of 

152 the two sewage samples was still observed (S3C Fig). Creating boxplots of the pairwise distances revealed 

153 that both library preparation, sequencing platform and storage did not hamper the ability to differentiate 

154 between the two sewage samples as observed in the PCA (Fig 1). However, a large degree of overlap was 

155 observed between pig feces 1 and 2 comparisons relative to comparing within the two samples representing 

156 the effect of the different sample processing parameters. In general, larger distances were calculated for the 

157 comparisons of sample processing parameters in pig fecal samples compared with sewage. The shortest 

158 distances were observed when comparing the DNA isolation replicates and the replicates of the Nextera 

159 NextSeq runs. The distances between samples that only differed in library preparation and sequencing 

160 platform were greater compared with samples that differed in whether they were processed directly or after 

161 freezing at -80°C for 64 hours. The sequencing platform seemed to be the major contributor of variation 

162 when comparing the samples that were prepared with NEXTflex and sequenced on the HiSeq and NextSeq 

163 (Fig 1). To investigate the effect of sample processing further, PCAs were created for the individual samples 

164 (P1, P2, S1 and S2). Similar patterns were observed in all samples indicating that there was a systematic effect 

165 from storage, library preparation and sequencing platform. In general, the DNA isolation replicates were 

166 similar as well as the two Nextera NextSeq runs (Fig 2). Investigating how large an effect the different 

167 parameters had by partitioning sums of squares of the Euclidean distance matrix revealed that all of the 
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168 parameters had a significant effect when assessing uncorrected p-values except for storage when comparing 

169 all of the samples and in pig feces 2. Comparing the percent variation in pig feces attributed to sample (P1 

170 and P2) (21.1 %) library preparation (32.7 %) and sequencing platform (19.1 %) were at a similar level, further 

171 emphasizing the importance of sample processing when comparing communities that are more similar in 

172 general (Table 1). 

173 Fig 1. Boxplots of pairwise distances between different groupings of samples. Within the different groups, 

174 dots representing the distances were colored according to which sample the comparison was made in. Black 

175 dots represent a distance between two different samples. 

176 Fig 2. Principal component analysis (PCA) subset to the different sample matrices. Variance explained by 

177 the two first axes are included in their labels. The unique DNA samples processed differently are connected 

178 with dotted lines.   

179 Table 1: Comparing the effect of sample (P1, P2, S1 and S2) and different parameters in sample processing. 

180 Statistical test were performed by multiple permutations partitioning sum of squares. The P-value as well as 

181 the percent of variation explained by the parameters is reported testing different inclusions of samples (All, 

182 pig feces, sewage, P1, P2, S1 and S2). 

Samples included Sample 

P-value (%)

Storage 

P-value (%)

Library preparation 

P-value (%)

Sequencing platform

P-value (%)

All <10-5 (81.9) 6.6×10-2 (0.5) 7.2×10-4 (2.6) 3.6×10-4 (1.8)

Pig feces <10-5 (21.1) 3.8×10-3 (3.3) <10-5 (32.7) <10-5 (19.1)

Sewage <10-5 (61.7) 2.5×10-2 (2.9) 1.1×10-2 (5.1) 4.3×10-3 (4.5)

Pig feces 1 Na* 3.1×10-3 (9.7) <10-5 (40.6) <10-5 (26.2)

Pig feces 2 Na 0.17 (2.7) 2×10-5 (50.3) 2×10-5 (25.3)

Sewage 1 Na <10-5 (15.1) 4×10-5 (16.9) <10-5 (12.8)

Sewage 2 Na <10-5 (14.0) 2×10-5 (20.6) <10-5 (19.6)

183 * No statistics were obtained when subsetting to a single sample (P1, P2, S1 and S2).

184 Sample processing impact on indicator organisms

185 To investigate the effect of library preparation and sequencing platform on specific organisms, an initial 

186 overview was obtained for the 30 most abundant genera in heatmaps of pig feces and sewage separately. As 

187 highlighted above, the importance of sequencing platform in differentiating pig feces was observed by being 

188 the first branching of the samples (P1 and P2) in the dendogram (Fig 3A). Clustering was also observed for 

189 the storage condition and library preparation. The pig feces contained both Gram–negative and –positive 

190 bacteria, and the third cluster exclusively consisted of Gram–negatives. There were a few Gram–negatives in 

191 the other clusters, indicating that sample processing shifts the abundance profiles for specific types of 

192 organisms, in this case, it seemed associated with cell wall structure (Fig 3A). A similar pattern was observed 

193 in sewage that mainly consisted of Gram–negatives, but the majority of Gram–positives were part of cluster 

194 four including Clostridium, Faecalibacterium and Roseburia. However, this cluster also contained Gram–

195 negative genera (Figure 3B).

196 Fig 3. Heatmaps of pig feces and sewage samples separately with the 30 most abundant genera. Complete-

197 linkage clustering was performed to create dendograms for both genera and samples. Pearson correlation 

198 was used to cluster the genera and Euclidean distances were calculated on the isometric log-ratio 
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199 transformed count matrix were used to cluster the samples. (A) Heat map of all pig feces samples, where the 

200 first branching was according to sequencing platform. The third cluster of genera exclusively contained 

201 Gram–negatives. (B) Heat map of all sewage samples. The fourth cluster mainly consisted of Gram–positives. 

202 A few Gram–positives were also present in the other clusters.   

203 One explanation for the community differences observed by sample processing could be a possible 

204 contamination during the library preparation and sequencing steps. To elucidate this, sPLS-DA was 

205 performed, assessing which genera best characterize the library preparation and sequencing platform 

206 processing methods. Component 1, 2 and 3 were included in the model containing 5, 50 and 20 different 

207 genera, respectively (S4 Fig). The majority of microorganisms were the highly abundant organisms observed 

208 across all of the sample processing methods. However, a few were clear indicators of contamination during 

209 library preparation and sequencing and were mainly present in a single processing method. This included 

210 Methylobacterium in the KAPA HiSeq run that has previously been associated with kit contamination and 

211 Cutibacterium in the second Nextera NextSeq run, a typical bacterium inhabiting the skin (39). A heat map of 

212 the 30 most abundant genera in the blank controls additionally revealed a high abundance of Ralstonia in 

213 the Nextera NextSeq runs that where performed with the same kit reagents (S5 Fig). The separation of the 

214 samples according to the different processing parameters therefore seemed to be real changes to the relative 

215 abundances between organisms inherently present in the communities and not due to contamination. A 

216 constrained ordination, also subsetted according to if samples were processed directly or after freezing, was 

217 performed to assess if groups of organisms at a taxonomic higher level were associated with a specific library 

218 preparation and sequencing method. In the pig feces, Proteobacteria seemed associated with the HiSeq runs. 

219 However, this was not observed in sewage. In sewage, Archaea were associated with the HiSeq runs, but also 

220 Eukaryotes consisting of Fungi and Cryptosporidium seemed associated with the HiSeq runs in sewage 1 (S6 

221 Fig). Overall, it was difficult to observe a pattern when assessing this grouping of genera, highlighting that it 

222 might be difficult to generalize the effect of sample processing in different sample types and different 

223 samples of the same type. 

224

225 Discussion 
226 With the increasing amount of metagenomics data in public repositories; meta-analysis and cross-study 

227 analysis based on data from different studies are exciting new opportunities to gain further insight into the 

228 microbial world (10–12,24,40). Data generation is usually not performed with a standard procedure across 

229 studies, and sample processing is an important factor to be aware of when trying to make inferences in these 

230 cross study investigations (21,26). In the present study, both library preparation and sequencing platform 

231 had a significant effect on explaining the variance in the data (Table 1). That these parameters infer changes 

232 to the community description has also been observed previously (21,29,30). In the study by Costea et al. (26), 

233 DNA isolation had the largest effect compared with other technical variations. In the first phase of the study 

234 by Costea et al. (26) samples were sent out for DNA isolation and sequenced centrally. In the present study, 

235 DNA isolation was performed centrally by the same person and library preparation and sequencing in-house 

236 or at external providers, but not in any of the cases by the same person, possibly increasing variation due to 

237 DNA shipping and handling in this specific step. When performing a validation study assessing the technical 

238 variation of sample processing, the large number of methodologies and variations thereof make it impossible 
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239 to test all parameters. It is likely that selecting methods that are based on different principles and for specific 

240 purposes yield results that highlight the importance of this specific step. Bowers et al. (29) investigated 

241 community changes using different amounts of input DNA, and observed that this modification had a 

242 significant effect on community description. In the present study, investigation of sequencing platforms were 

243 limited to the NextSeq and HiSeq, which are both Illumina platforms resembling each other in technology, 

244 and which were selected due to their popularity in metagenomics with low cost relative to output (41). 

245 Nonetheless, a very large effect was attributed to the sequencing platform and that was also observed when 

246 using the same library preparation kit (NEXTflex PCR-Free) (Fig 1). The library preparation included two 

247 methods that required pre-fragmented DNA that was prepared PCR-free (KAPA and NEXTflex). It was decided 

248 to include the Illumina Nextera library preparation as well to compare with a technique that does not 

249 resemble the others in having enzymatic fragmentation and which involved a PCR step that is commonly 

250 applied when too little DNA is available to prepare DNA for sequencing PCR-free. However, the two Nextera 

251 runs were relatively similar compared with the NEXTflex run when sequenced on the NextSeq (Fig 2). The 

252 present study was not a full factorial experiment and this should be emphasized when comparing the effect 

253 sizes of specific processing parameters.         

254 One explanation for the differences observed between the processing runs can be contamination bias. When 

255 designing a metagenomics study, it is to some extent possible to remove kit contaminations or carry-over 

256 between sequencing runs from the data in-silico, if for instance, blank controls are included or by rotating 

257 indexing primers between adjacent runs, respectively (42). In the present study, comparing the sPLS-DA 

258 results with the blank controls rarely identified the same genera, indicating that the genera reported to 

259 explain the specific sample processing the most were not due to contamination during DNA extraction. The 

260 general variation associated with redoing the library preparation and sequencing was low when comparing 

261 the two Nextera sequencing runs (Figs 1 and 2). The differences observed are therefore most likely true 

262 technical variation associated with the sample processing. Furthermore, it was possible to detect that these 

263 patterns were systematic in the different samples (Fig 2), and that this could partly be explained with some 

264 crude features such as distinguishing between Gram-negative and -positive bacteria or at a higher taxonomic 

265 classification (Fig 3 and S6 Fig). The grouping of genera were selected before analysis to be investigated, but 

266 they might be confounders of the underlying explanation that could be associated with DNA characteristics 

267 such as fuanine-cytosine percent (GC%) or other specific DNA patterns. Another possibility is that DNA 

268 fragmentation during sampling, storage and DNA isolation provide DNA of different quality for specific 

269 organism groups. A shift in community structure is then reflected in the selection of different fragment sizes 

270 during the library preparation and sequencing.      

271 The Euclidean distances obtained from comparing within the two pig fecal samples separately relative to the 

272 two sewage samples also revealed that storage, library preparation and sequencing platform has a larger 

273 effect in pig feces (Fig 1). Since, the distances between the two pig fecal samples were smaller relative to the 

274 distances between the two sewage samples, it was difficult to discern the two pig fecal samples when 

275 samples were processed differently (Fig 3). It is concerning that the variation due to sample processing 

276 hampers the ability to differentiate between two different pig fecal samples, and this might hamper the 

277 ability to draw meaningful conclusions when technical variations cannot be distinguished from “true” 

278 changes. These results should on the other hand not be overstated; the two pig fecal samples were obtained 

279 from an in-bred race raised under very similar conditions including feeding, even though they were obtained 

280 from two different healthy pigs at two different farms, the two communities are relatively similar. The finding 
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281 highlights that the importance of technical variation depends on the differences that one is trying to detect 

282 (16). If sewage samples were the only sample matrix investigated, the technical variation did not hamper the 

283 ability to differentiate between the two sewage samples. These findings suggest that library preparation and 

284 sequencing are important parameters to keep constant when a study is trying to detect small changes in 

285 community structure.  
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