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Abstract 

Spatial molecular technologies have revolutionised the study of disease 

microenvironments by providing spatial context to tissue heterogeneity. Recent spatial 

technologies are increasing the throughput and spatial resolution of measurements, resulting 

in larger datasets. The added spatial dimension and volume of measurements poses an 

analytics challenge that has, in the short-term, been addressed by adopting methods 

designed for the analysis of single-cell RNA-seq data. Though these methods work well in 

some cases, not all necessarily translate appropriately to spatial technologies. A common 

assumption is that total sequencing depth, also known as library size, represents technical 

variation in single-cell RNA-seq technologies, and this is often normalised out during 

analysis. Through analysis of several different spatial datasets, we noted that this 

assumption does not necessarily hold in spatial molecular data. To formally assess this, we 

explore the relationship between library size and independently annotated spatial regions, 

across 23 samples from 4 different spatial technologies with varying throughput and spatial 

resolution. We found that library size confounded biology across all technologies, regardless 

of the tissue being investigated. Statistical modelling of binned total transcripts shows that 

tissue region is strongly associated with library size across all technologies, even after 

accounting for cell density of the bins. Through a benchmarking experiment, we show that 

normalising out library size leads to sub-optimal spatial domain identification using common 

graph-based clustering algorithms. On average, better clustering was achieved when library 

size effects were not normalised out explicitly, especially with data from the newer sub-

cellular localised technologies. Taking these results into consideration, we recommend that 

spatial data should not be specifically corrected for library size prior to analysis unless 

strongly motivated. We also emphasise that spatial data are different to single-cell RNA-seq 

and care should be taken when adopting algorithms designed for single cell data. 
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Introduction 

After being crowned method of the year 2020 1, spatial molecular technologies have 

advanced drastically with new platforms boasting greater coverage of transcripts and 

increased spatial resolution of measurements 2-5. Resolutions from these technologies span 

from 100s of cells (e.g., GeoMx) to sub-cellular (e.g., CosMx, Xenium and STOmics); while 

transcript and protein coverage range from 100s of molecules (e.g., CosMx and Xenium) to 

genome-wide measurements (e.g., GeoMx, Visium and STOmics). These approaches detect 

transcripts by either sequencing or imaging, with the latter providing the highest spatial 

resolution. The ability to resolve high-throughput molecular measurements in space has 

enabled the study of diseases in their resident tissue microenvironment, thus, providing a 

more comprehensive view of disease systems 6. 

The added spatial information coupled with the scale of the data poses a significant 

bioinformatics challenge. Since it is difficult to conceptualise analysis of individual molecular 

measurements at sub-cellular spatial resolution, a popular approach has been to abstract 

the measurements at the cellular level 3,4. This is done by segmenting cellular boundaries 

and accumulating individual datapoints within these cellular bins 7. This approach enables 

the >1300 tools developed for the analysis of single-cell RNA sequencing (scRNA-seq) data 

to be applied to spatial molecular data 8. While applying scRNA-seq tools to spatial 

molecular data often works well as a first pass 3,4, it remains underpowered since these 

methods disregard spatial information. Dedicated methods that incorporate spatial 

information are now being developed for analysis tasks such as the identification of spatially 

variable features 9-11, spatially constrained clustering 12-14, and cell type annotation 15,16. 

However, these methods are still built on the foundations of cell-based analysis and 

therefore propagate some of the assumptions inherent to single-cell data. One such 

assumption is that differences in the total number of transcripts detected/sequenced per cell 

represents technical variation that should be normalised out prior to downstream analysis. In 

sequencing-based transcriptomics, this is often referred to as the library size. For imaging-
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based spatial molecular technologies, it is more appropriate to refer to these as the total 

detections per cell. 

The idea of normalisation for library sizes originated from bulk RNA sequencing 

where samples were sequenced at varying depths thus the effect of sequencing depth 

needed to be corrected to enable cross-sample comparison of gene counts 17. The simplest 

method of accounting for library size in RNA-seq data is to divide each count by the total 

sequencing depth for that sample, and multiply by a scalar, such as a million, to obtain 

counts per million (CPM), and this has been adopted by the single cell field 18. However, 

sometimes this adjustment does not mitigate the effect of total sequencing depth in single 

cell experiments and new methods such as regularised negative binomial regression 

(sctransform)19 and the deconvolution of pooled size factors (scran) 20 have been proposed 

to effectively reduce the impact of library size differences. These methods specifically 

account for the sparsity inherent to single-cell sequencing data. Their application to such 

data is warranted as each cell is the unit of measurement in these data. 

The unit of measurement in sub-cellular spatial molecular technologies is either a 

transcript detection (e.g., Xenium, CosMx, and FISH-based assays) or a sub-cellular spot 

(e.g., STOmics) therefore normalisation at the cellular level is not as naturally motivated 

compared to bulk or scRNA-seq. Although cellular binning is not performed in Visium data, 

like other spatial molecular technologies, the proximity of spots/cells to neighbouring 

spots/cells implies spatial autocorrelation resulting from biological dependence when 

spots/cells originate from the same tissue region. This spatial autocorrelation has not been 

previously investigated in the context of normalisation for spatial molecular data and is not 

accounted for in single-cell normalisation methods even though these methods are routinely 

applied to spatial data from both imaging-based 21 and sequencing-based technologies 2. 

Here, we analyse spatial transcriptomic datasets from four different technologies and 

three different tissues to show that library size or total detections per cell is not simply a 

technical artefact that should be corrected for when analysing spatial datasets. Across all 
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four technologies, we show through statistical modelling that library sizes or total detections 

per cell significantly differ across tissue structures, thus representing real biology rather than 

technical variation. Similar observations have been made in scRNA-seq data however, this 

is the first time it has been rigorously tested in spatial molecular data 22. We also show that 

on average, normalising this effect out will negatively impact spatial domain identification. 

Our recommendation when analysing spatial data is to carefully consider when to normalise 

library sizes or total detections per cell. For instance, library size normalisation should not be 

performed prior to spatial domain identification but could be considered for other 

downstream analytical tasks such as cross-sample comparisons. 

While we show that no normalisation outperforms sctransform for clustering tasks, 

there is clearly a need for new normalisation methods that account for the unique properties 

of spatial data, such as differences in capture efficiency across the tissue. Here we have 

specifically evaluated the effect of library size normalisation on clustering, however this could 

impact the performance of other downstream analysis as well. Overall, we recommend that 

care is needed when adopting single cell methods to analyse spatial data, as the 

assumptions of these methods may be violated when applied to spatial data. 

Results 

Library size or total detections per cell captures real biology in spatial 

transcriptomics datasets 

In some single cell datasets with subtle biological signals, library size is often the 

largest source of variability and can lead to the identification of clusters that capture library 

size differences, not biology. To assess this in spatial data, we analysed 23 biological 

samples from 4 different spatial technologies encompassing both imaging- and sequencing-

based spatial technologies that span sub-cellular and region-level spatial resolutions. These 

data are described in Table 1. We began by exploring total detections across space by 

binning transcript detections from Xenium, STOmics and CosMx into a hexagonal 
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tessellation and visualising the density across bins/spots (Figures 1a-d, Additional File 1: 

Supplementary Figure 1). These bins were large enough to contain 10s of cells and 1000s of 

transcripts. To assess library size associations with tissue regions, we independently 

annotated regions in the Xenium, STOmics and CosMx datasets using immunofluorescence 

images (see Methods). This allowed us to annotate 149-155 brain regions in the Xenium 

mouse brain dataset, 118 regions in the STOmics mouse brain dataset and 4 regions in the 

CosMx non-small cell lung cancer (NSCLC) dataset to enable a comparison across tissue 

regions (Figures 1e-h, Additional File 1: Supplementary Figure 2). Mouse brain data were 

annotated using the Allen Brain Atlas 23 while the NSCLC data were annotated using QuPath 

24 to segment regions based on markers. 

Table 1: Spatial transcriptomics datasets used to study library size effects. 

Technology Technology 

type 

# 

samples 

# 

genes 

Total counts/ 

detections 

Organism Tissue Source 

10x Visium Sequencing-

based 

12 33,538 9-22M Homo 

sapiens 

Dorsolateral 

prefrontal cortex 

25,26
 

10x 

Xenium 

Imaging-

based 

3 248 58-62M Mus 

musculus 

Brain 
27

 

NanoString 

CosMx 

Imaging-

based 

7 960 25-40M Homo 

sapiens 

Non-small-cell 

lung cancer 

3
 

BGI 

STOmics 

Sequencing-

based 

1 26,177 134M Mus 

musculus 

Brain 
2
 

 

Tissue structure was apparent across the brain and cancer datasets when visualising 

the total detections/library sizes. With the Visium brain dataset (Figure 1a), we could clearly 

identify the layering of the cortex (Figure 1e) while with the Xenium and STOmics mouse 

brain datasets (Figures 1b-c), we could visually identify the cortex (darker greens in Figures 

1f-g), white matter (pinks in Figures 1f-g) and hippocampus (brighter greens in Figures 1f-g). 

Due to the higher spatial resolution of these datasets, we could also identify substructures of 

the mouse brain such as the dentate gyrus (beak like structure) that had the highest total 

detections/library sizes. There were clear structures with a large detection count in the 
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NSCLC dataset as well (Figure 1d) with tumour regions having the highest total detections 

(Figure 1h). 

Our binning strategy allowed us to investigate total detections/library size without 

delving into cell boundary detection which is still an active area of research. However, this 

meant that each bin contained multiple cells, therefore we had to relate the total 

detections/library sizes back to the number of cells. As expected, the library size linearly 

increased with the number of cells regardless of the technology, although this relationship 

was not as strong for the Visium data (Figures 1i-l, Additional File 1: Supplementary Figure 

3). However, we can also see clustering of points by region, particularly for the Xenium and 

STOmics datasets, indicating that cell density is not the only contributing factor to library 

size. To demonstrate this effect more clearly, we estimated the total detections/library sizes 

per cell for each region by dividing the total detections/counts in the region by the total 

number of cells. Figures 1m-p show each region sorted by these averages across the 4 

technologies. We see a clear region-specific effect in each dataset. For the Xenium and 

STOmics mouse brain datasets, similar brain sub-structures cluster together indicating that 

the average total detections/library size per cell is similar in the higher-order structures 

(Figures 1n-o, Additional File 1: Supplementary Figure 4). We also see that tumour regions 

tend to have higher total detections per cell. This is unsurprising as tumour cells are 

expected to be transcriptionally more active than other cell types 22,28. 

Next, we wanted to assess the relationship between regions, the number of cells and 

total detections/library sizes in a more statistically rigorous manner. To do so, we treated all 

transcript detections, regardless of the gene, as a spatial point process that is a realisation of 

an underlying intensity function. This was done by fitting a Poisson model to the total 

detections/library sizes per bin with the following covariates: cell density, tissue region, and 

other technology-specific variables such as the field-of-view (CosMx) and the number of 

DNA nanoball spots (STOmics). The model was fitted to binned data, where the bins are 

quadrats defined by a hexagonal tessellation. The interaction between all covariates were 
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included in the model. Performing a Type II analysis of variance (ANOVA) 29 on the 

covariates of each model, we found that the number of cells per bin explained the largest 

variance in library sizes followed by the tissue region (tissue region p-values < 2x10-308, 

Table 2, Supplementary Table 1), across all technologies except for STOmics. In STOmics, 

the number of DNA nanoball spots was the strongest predictor, however, this number is 

dependent on the number of cells since nanoball spots not overlapping cells contain no 

measurements and therefore are not included in the analysis. Collectively, these results 

show that even after accounting for the number of cells in each bin, there is a significant 

relationship between spatially defined regions and total detections/library sizes. This effect 

appears to be technology, species, and organ agnostic, and is present across both healthy 

and disease systems. 

Table 2: Results of Type II ANOVA tests on regression models of library size/total 

detections. (Df – degrees of freedom, Pr(>F) – p-value, Sum Sq – sum of squares) 

Sample Sum Sq Df F value Pr(>F) Covariate Platform 

Human_DLPFC_1 34500.725 1 100.683 1.98 x 10
-23

 NCell Visium 

Human_DLPFC_1 117179397 7 48851.871 < 2x10-308 Region Visium 

Human_DLPFC_1 8845.691 6 4.3024 0.00024808 NCell:Region Visium 

mBrain_ff_rep1 4898911.5 1 26560.22 < 2x10-308 NCell Xenium 

mBrain_ff_rep1 408444642 140 15817.478 < 2x10-308 Region Xenium 

mBrain_ff_rep1 836131.428 138 32.849 < 2x10-308 NCell:Region Xenium 

STOmics Brain 5858.959 1 136.689 2.92 x 10
-31

 NCell STOmics 

STOmics Brain 64978830.5 118 12847.026 < 2x10-308 Region STOmics 

STOmics Brain 4230921.64 1 98706.943 < 2x10-308 NSpots STOmics 

STOmics Brain 38476.177 108 8.312 5.20 x 10
-115

 NCell:Region STOmics 

STOmics Brain 62629.932 1 1461.150 3.09 x 10
-288

 NCell:NSpots STOmics 

STOmics Brain 72415.583 109 15.500 1.57 x 10
-245

 Region:NSpots STOmics 

STOmics Brain 58914.306 104 13.216 9.20 x 10
-197

 NCell:Region:NSpots STOmics 

Lung5_Rep3 4346427.84 1 10273.966 < 2x10-308 NCell CosMx 

Lung5_Rep3 2601294.53 4 1537.217 < 2x10-308 Region CosMx 

Lung5_Rep3 1712746.52 29 139.605 < 2x10-308 fov CosMx 

Lung5_Rep3 24695.567 3 19.458 1.40 x 10
-12

 NCell:Region CosMx 

Lung5_Rep3 150009.021 29 12.227 1.03 x 10
-56

 NCell:fov CosMx 

Lung5_Rep3 197636.265 41 11.394 5.18 x 10
-72

 Region:fov CosMx 

Lung5_Rep3 67589.498 40 3.9941 4.19 x 10
-16

 NCell:Region:fov CosMx 
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Normalising out total detections/library sizes reduces clustering 

performance 

Predicated on the region-specific total detections/library size effect, we could infer 

that normalising out total detections/library sizes would result in loss of information when 

attempting to identify spatial domains using clustering. This task is commonly performed on 

Visium data using a standard single-cell clustering pipeline 30. This workflow involves 

normalising out library sizes using sctransform/scran, identifying highly variable genes, 

performing dimension reduction using principal components analysis, using the top principal 

components to build a shared nearest neighbour graph, and finally running community 

detection on these graphs to identify spatial domains. 

We wanted to evaluate the impact of normalisation on this workflow without biases in 

parameter choice. Data normalisation using different methods may mean a different set of 

parameters work best for each normalisation. To remove any parameter-specific effects, we 

set up a benchmark that explores a large parameter space and tests all combinations of 

parameters for each normalisation strategy across 23 samples spanning all four 

technologies (Figure 2a). In total we tested 14076 different combinations. For each 

combination of sample and normalisation strategy, we computed the median and maximum 

Adjusted Rand Index (ARI) representing the average- and best-case scenarios for clustering 

respectively. Figure 2b shows these values when data were unnormalised, normalised with 

scran 20, or normalised with sctransform 19. We see that the median ARI across most 

samples is higher when no normalisation or scran normalisation is performed than when 

library size effects are explicity removed using sctransform. This indicates that on average, 

we are likely to encounter a better clustering without normalisation or when normalising with 

scran (Figure 2b). If parameters are tuned well in the workflow, scran normalisation can 

result in better clustering, primarily for the Visium samples. These results again highlight that 

total detections/library sizes themselves contain region-specific information. Improved 
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number of cells, the region types, and any technology specific technical covariates such as 

the number of DNA nanoball beads (BGI STOmics) and the field of view (NanoString 

CosMx). Generalised linear models with a log link function are used to perform the fit. All 

possible interactions between covariates were included in the models. 

Annotating brain datasets using the Allen Brain Atlas 

Mouse brain data from the Xenium and STOmics technologies were annotated by 

registering our DAPI stained images to the common coordinates framework v3 (CCFv3) of 

the Allen Brain Atlas 23 using the Aligning Big Brains & Atlases (ABBA) plugin (v0.3.7) in Fiji 

(v1.53t) 32. The resultant hierarchical annotation was compressed such that the deepest 

layer of non-missing annotation was used to annotate each detection/DNA nanoball spot. 

Non-small cell lung cancer (NSCLC) data were annotated manually with QuPath (v0.3.2) 24 

using the accompanying PanCK, CD3, CD45 and DAPI stained images. Hexagonal bins 

were then allocated to regions based on the predominant annotation of data points in the 

bin. 

Figures 

Figure 1: Detection density and total detections/library sizes are associated with 

biology consistently across different spatial molecular technologies, organs and 

species. 

a-d) Detection density per bin/spot plot for Visium dorsolateral prefrontal cortex (DLPFC), 

Xenium mouse brain, STOmics mouse brain and CosMx non-small cell lung cancer 

(NSCLC), reveal tissue structure. e-h) Regions annotated for each bin/spot using the Allen 

Brain Atlas for the mouse brain and manual annotation based on immunofluorescence 

markers of CosMx NSCLC. i-l) Number of cells plot against the total detections/library sizes 

per bin/spot, coloured by the tissue region, showing the region-specific relationship between 

cells and detections/counts. m-p) Average detections/library sizes per cell for each region, 
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computed as the sum of detections divided by the number of cells for each region, showing 

that related regions exhibit similar total detections/library sizes per cell. 

Figure 2: Normalisation of total detections/library sizes results in poorer spatial 

domain identification using clustering approaches. 

a) Schematic of the benchmark performed on 12 Visium dorsolateral prefrontal cortex 

(DLPFC) samples showing the parameter space explored when using a single-cell clustering 

pipeline to identify spatial domains. b) The median and maximum Adjusted Rand Index (ARI) 

obtained when no normalisation is performed and when scran and sctransform normalisation 

are applied. On average, as indicated by the median ARI, no normalisation results in best 

performance, however, when finely tuned, scran normalisation can produce a better 

clustering. Specifically, unnormalised data from sub-cellular localised technologies results in 

better or similar clustering to normalised data. 
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