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LIBRATIONIST CLOSURES OF THE PARADOXES

Abstract. We present a semi-formal foundational theory of sorts, akin to
sets, named librationism because of its way of dealing with paradoxes. Its
semantics is related to Herzberger’s semi inductive approach, it is negation
complete and free variables (noemata) name sorts. Librationism deals with
paradoxes in a novel way related to paraconsistent dialetheic approaches,
but we think of it as bialethic and parasistent. Classical logical theorems
are retained, and none contradicted. Novel inferential principles make
recourse to theoremhood and failure of theoremhood. Identity is intro-
duced à la Leibniz-Russell, and librationism is highly non-extensional. Π1

1-
comprehension with ordinary Bar-Induction is accounted for (to be lifted).
Power sorts are generally paradoxical, and Cantor’s Theorem is blocked as
a camouflaged premise is naturally discarded.

Keywords: Bialethism, Burali-Forti Paradox, Cantor’s Theorem, Curry’s
Paradox, Dialetheism, Foundations of Mathematics, Liar’s Paradox, Para-
consistency, Parasistency, Paradoxes, Reverse Mathematics, Russell’s Para-
dox, Second Order Arithmetic, Semantical paradoxes, Set Theoretic Para-
doxes, Set Theory, Theory of Truth.

Introduction

In the following we present some of the main features of the librationist
foundational system, with emphasis upon how it deals with paradoxes
and its provision of an alternative foundation for mathematics. Libra-
tionism takes its name from the word “libration”, which the reader is
asked to look up if unfamiliar. This replaces the term “liberalism”
which was used in some superseded publications and lectures on ac-
count of the theory’s emancipatory feature that all abstraction terms
are allowed. The new name is meant to also remind the reader of the
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oscillating manner of its dealing with paradoxical phenomena. Accord-
ing to recent nomenclature, librationism could be considered a theory of
properties. Consider the influential opening remark of [15]: “Gödel said
to me more than once “There never were any set-theoretic paradoxes,
but the property-theoretic paradoxes are still unresolved”; and he may
well have said the same thing in print.” This author agrees with Gödel’s
attitude that the word “set” should best be reserved for those in the more
iterative, extensional and non-paradoxical sense, and the term “property-
theoretic paradox” is appropriate and useful in the sense that it points
out that there are other objects than iterative and extensional sets which
succumb to triviality when naïve abstraction is brought into play to un-
derstand them. However, it does not follow that the term “property
theory” is an appropriate term for such theories that endeavor to under-
stand objects which are appropriately analyzed by those means which
suggest themselves in approximating naïve abstraction. This is because
there are many properties, like the property of having pain, which for
obvious reasons cannot conceivably be dealt with in such frameworks. On
the basis of such grounds as these we steer a middle way and understand
the theory to be developed in this essay as a theory of sorts. All sorts
may be regarded as properties, but not vice versa. All sets in a more
classical sense, as far as their existence is supported by librationism, are
sorts, but not vice versa. It is not known to what extent librationism
supports the existence of sets. The librationist theory of sorts supports
the existence of non-well founded sorts, and also contains universal sorts;
librationism is a highly non-extensional theory, and it e.g. turns out that
there are infinitely many distinct non-paradoxical empty, and hence also
universal sorts. One should keep in mind that in librationism, all condi-
tions give rise to a corresponding sort. We are able to isolate a sort H
of hereditarily non-paradoxical and iterative sorts. With respect to H
we may in some contexts use bi-simulation to recapture extensionality
and other desirable principles, e.g. concerning ordinals. Results so far
have established that by using manifestation-points (see section 6) we
can establish that librationism gives an interpretation of finitely iterated
inductive definitions ID≺ω plus the Bar-rule; librationism is therefore
stronger than the impredicative subsystem of second order arithmetic
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Π1
1 −CA0 + ordinary Bar-Induction in a sense to be made more precise.1

This will be lifted.

The language of librationism may succinctly but just approximately
be described as that of ordinary set theory extended with a truth oper-
ator T. There are five caveats concerning this which we draw attention
to here. Firstly, the terms of our language are taken to denote sorts.
Secondly, the truth operator is eliminable as concerns the purely sort
theoretic aspects of librationism, but it facilitates presentation and is of
importance e.g. if and when we extend the theory with a truth predicate.
Thirdly, sort brackets are included in what we here take as the language
of ordinary set theory, and these are not eliminable in librationist sort
theory as in extensional set theories. Fourthly, the identity sign “=” is
not taken as a primitive sign in the librationist language, as a Leibnizian
definition of identity with Russell’s simplification can be shown to be
adequate. Fifthly, in the presentation we give below we define the prim-
itive language more austerely in a Polish manner for metalogical and, as
we shall see, philosophical reasons.

Librationism may be understood as an heir both to the semi-inductive
type of approach to semantic paradoxes originating with [11, 12] ([9]
independently suggested the much-related revision theory at the same
time) as well as to some tenets of various paraconsistent points of view.
In our semantics, it is of vital importance that we fix our focus on one
designated model, and in our setup what is usually regarded as free
variables serve as names of sorts via an enumeration of these in the
metalanguage. But then the expression variable in such contexts is very
much misleading indeed, and so we instead opt for using the expressions
noema (singular) and noemata (plural). This is inter alia justified by the
fact that one meaning of the word noema as listed in the Oxford English
Dictionary is: A figure of speech whereby something stated obscurely is

nevertheless intended to be understood or worked out. Also, the Greek
letter ν in the original Greek word νóηµα typographically very much
resembles lower case v.

In the Herzberger process we invoke, all sorts have the empty exten-
sion at the ordinal zero; this is not an essential assumption from a formal
point of view (other consistent beginnings could, so seen, serve as well),

1 Readers unfamiliar with the invoked notions related to reverse mathematics are
advised to consult the now classical [16]. The Wikipedia entry on Reverse Mathemat-

ics is also a good place to start to gain some familiarity with central notions.
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and one may think of the version we develop as minimalist librationism.
The author thinks that minimalistic librationism is preferable to other
variants of librationism for philosophical and, if that is different here,
esthetical reasons. The minimalist policy also has the advantage of jus-
tifying the regularity rule for hereditarily kind and iterative sorts (cfr.
section 9).

Herzberger’s semi inductive semantics was geared towards dealing
with the semantic Liar paradoxes with a self-referential truth predicate.
But he was aware of the possibility of using the same type of semantics
for what we call a sort theory. In footnote 11 of [12] this is stated very
clearly: “Similar questions might be raised in set theory by applying
semi-inductive methods to the construction of the membership relation.”
Our approach may be seen as following this line of research, but as well
extending it: for example by including infinitary inferential principles
(see below).

We take as librationistically valid all those formulas that hold un-
boundedly below the closure ordinal reached in the designated Herzber-
ger process described. This contrasts with what would in this context
have been the standard semi inductive approach, as it would, in this
way of expressing things, have taken as valid all and only those formulas
whose negations are not unbounded under the closure ordinal. If we
assume the ordinals used are von Neumann ordinals, we may state this
alternatively by saying that a formula is librationistically valid iff the
union of the set of those ordinals below the closure ordinal where it
holds is the closure ordinal. With the same assumption, a formula is
valid according to the standard semi inductive approach iff the union
of the set of ordinals where the negation of the formula holds is smaller
than the closure ordinal. We may, as is usual, take a formula to be stably
in (stably out) iff there is an ordinal γ below the closure ordinal such
that it (its negation) holds at all ordinals δ larger than γ and below the
closure ordinal. A formula is unstable iff it is neither stably in nor stably
out. According to a standard semi inductive approach, a formula will
be counted as valid iff stably in. From the librationist viewpoint put
forward here, a formula is counted as valid iff stably in or unstable; only
formulas stably out are discounted in librationism.

We will at this point illustrate the difference with a couple of exam-
ples, and we first consider predicate logic tautologies. Classical logical
theorems hold at all ordinals in the Herzberger process, and negations
of such theorems fail at all ordinals. So theorems of classical logic are
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librationistically valid, and negations of theorems of classical logic are
not. In the standard semi inductive approach, classical logical theorems
are valid because the set of ordinals where the negation of any such
theorem holds in the Herzberger process is just the empty set, and nega-
tions of classical theorems are not valid because the set of ordinals in the
Herzberger process where their negations hold is unbounded under the
closure ordinal. We next consider r ∈ r, with r = {x : x /∈ x}. Given our
semantic setup with our alethic comprehension principle, we here have
that if r ∈ r holds at an ordinal then r /∈ r holds at its successor, and
r /∈ r holds at an ordinal only if r ∈ r holds at the next ordinal. So
both the set of ordinals where r ∈ r holds below the closure ordinal as
well as the set of ordinals where r /∈ r holds below the closure ordinal
are unbounded under the closure ordinal, and so both r ∈ r and r /∈ r
are librationistically valid. According to the standard semi inductive
approach, neither r ∈ r nor r /∈ r is valid.

We write  A for the statement that A is librationistically valid,
and call the symbol “” the roadstyle when referred to. As pointed out,
if A is a theorem of classical logic then  A and not  ∼ A, whereas,
for r = {x : x /∈ x}, we have that  r ∈ r as well as  r /∈ r. On
account of this, we distinguish between maxims that are theorems whose
negations are not theorems, and minors which are theorems that are not
maxims. Theorems of classical logic are examples of maxims, and r ∈ r
for r = {x : x /∈ x} an example of a minor. We say that a schema is
minor if all its instances are theorems and it has minor instances, and a
schema is maximal if all its instances are maxims. M A signifies that
A is a maxim, and m A means that A is a minor. We use the roadstyle
without subscript if it is left undecided whether the theorem is a maxim
or a minor.

We here stress that the induced inference rules for librationism are
novel, and that e.g. modus ponens for  is not a valid inference rule.
This will be covered precisely below, but needs mentioning here in order
to forestall hasty dismissals.

We have seen that both r ∈ r and r /∈ r are librationist theorems.
This does not mean, however, that r ∈ r∧r /∈ r is a librationist theorem,
as, quite on the contrary, r ∈ r ∨ r /∈ r is a maxim. To forestall irrel-
evant objections appealing to something like what is thought of as the
one and only true meaning of connectives, we suggest that the skeptical
reader employs the following alternative names for the most common
connectives used in the main bulk of this presentation of librationism:



328 Frode Bjørdal

negjunction (∼), adjunction (∧), veljunction (∨), subjunction (⊃) and
equijunction (≡). The first of these names is an etymologically justifiable
neologism whose pronunciation is not too far off from “negation”. The
last name returned some very few occurrences with the intended meaning
of material equivalence on an internet search. The name “veljunction”
is sometimes, but very rarely used for disjunction, and “adjunction”
perhaps even more rarely for conjunction. It seems that “subjunction”
has come to be used sometimes in the field of grammar for material con-
ditionals and their cognates. (In some places “subjunctive conditional”
is taken to refer to a conditional akin to the counterfactual conditional.)

The reader may associate with these different names for connectives
in the librationist setting in part to avoid the prejudice that these are
to be thought of as gaining their meanings from purely truth functional
considerations. We will not adhere strictly to this in our own presenta-
tion. As in standard theories, the meaning of connectives in librationism
must be understood syncategorematically, as the schoolmen would have
expressed it; this is to say that they do not have a meaning in virtue
of a denotatum, but rather obtain one from their appropriate use in
conjunction with other formulas. But, importantly, some pretheoreth-
ically expected usages fail in librationism. We cannot, e.g., infer from
 ∼ A to not  A, nor vice versa, as in a standard semantical frame-
work. Nor do we always have adjunctivity for theoremhood, i.e. that
 A and  B only if  A ∧ B, and so in this single respect there
is a resemblance between librationism and Stanislaw Jaskowski’s non-
adjunctive paraconsistent system. And yet the standard interdefinablity
connections between connectives hold maximally.

Librationism is a semi-formal system. An important difference e.g.
between Peano arithmetic and omega logic, i.e. Peano arithmetic with
the omega rule, is that the latter is quite categorical with respect to
content. For this reason we use the expression contentual system as
synonymous with, or as a replacement for, semi-formal system. This
neologism seems to fit the analogous distinction between form and con-
tent appropriately in our context. Also, the term semi-formal does not
seem to carry important information. However, on many occasions semi-

formal is used parenthetically as a reminder.
The contentual (semi-formal) system librationism is not recursively

axiomatizable, but it serves to isolate many partial formal systems. It
is important in this connection to point out the validity of what we, in
analogy with the ω-rule, by picking the last letter of the Latin alphabet,
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call the Z-rule: from M A(v) for all noemata (free variables) v, infer
M ∀xA(x). The intuitive and prima facie weaker infintary rule that
M ∀xA(x) holds if M A(t) holds for all terms t entails the Z-rule given
the facts that noemata (free variables) in librationism are names of sorts
and all sorts are named. The corresponding rules with no subscript or
minor subscript are not validated.

As noemata (free variables) serve as names of sorts we may e.g. have
that  v37 = {v3 : v3 ∈ v3}. But generalizing this would of course
be absurd. In stating partial axiomatic schemas which do allow gener-
alization, the precaution is taken that all generalizations of the stated
schemas are also axioms. A simple inductive argument going back to
Tarski shows that generalization will hold as a derived inference rule for
the partial systems consisting of such schemas as here described.

The validity of the Z-rule makes it the case that librationism verifies
the consistency not only of a wide range of first order axiomatizable
theories such as Peano arithmetic, but also much stronger theories. In
this there is nothing whatsoever which detracts from Gödel’s seminal
insights, as librationism itself is not recursively axiomatizable. Indeed,
it is important to stress that we in librationism always see things from
a semantical point of view. Hence traditional soundness and complete-
ness considerations are inappropriate in the librationist setting. The
axiomatic and inferential principles of librationism which we are able to
isolate are therefore always partial.

Librationism may be regarded as a paraconsistent system given con-
temporary terminology, but the reader is asked to pay attention to the
very significant differences between it and such frameworks. The author
also has some important issues with the nomenclature in the area as
concerns librationism (and not only for etymological reasons) and thinks
parasistent, which etymologically signifies the property of standing up
beyond, is a much more suitable term than paraconsistent, which ety-
mologically rather seems to signify the property of being beyond a safe
place to stand.

Provided a theory is regarded as inconsistent iff it has theorems of the
form A ∧ ∼ A, then librationism is a consistent theory. We will conform
to this usage, and consider librationism consistent.

There is then the question of whether librationism should be consid-
ered a contradictory theory on account of the fact that for some sentences
A both  A and  ∼ A. Pragmatic considerations here strongly suggest
that we should avoid the term contradictory if at all possible, for it seems
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not to be in accordance with commonly adopted standards for language
and rationality that a theory contradicts itself. It is important in this to
pay attention to the fact that standard usage has it that if two sentences
are contradictory then it is impossible for both to be true.

And closer inspection indeed suggests that a contradiction need not
be thought to be involved here. We do not, in librationism, commit
ourselves to the idea that the Aristotelian principle of non-contradiction
fails in paradoxical contexts. Let the significance of a formula be the set
of ordinals below the closure ordinal where it holds in the Herzberger
process. A formula is then librationistically valid just in case the union of
its significance is the closure ordinal (assuming von Neumann ordinals).
When we have both  A and  ∼ A, what we have is that the two sen-
tences A and ∼ A have what we take to be complementary significances in
the sense that the union of these significances is the closure ordinal itself,
their intersection is empty and both significances are unbounded under
the closure ordinal. We think of sentences as contradictory just in case
the union of their significance is the closure ordinal, the intersection of
their significances is empty and it is not the case that both significances
are unbound under the closure ordinal. Contradictory and complemen-
tary sentences as A and ∼ A are always incompatible in the sense that
their conjunction (adjunction) must fail to be a librationist theorem.

With this as background we can offer a librationist diagnosis of why
it is wrong to assert A as well as to assert ∽A when A and ∽A are
contradictory; this is because exactly one of A and ∽A is false. Similarly,
we see that if A and ∽A are complementary, then they are both true
from the librationist point of view; so we can in this case truthfully assert
A as well as truthfully assert ∽A.

It is worthwhile to point out and emphasize that our connectives be-
have quite classically when regarded as operating upon the significances
of formulas. Given the significances of formulas A and B as the sets of
ordinals below the closure ordinal where they hold, the significance of
∼ A is the complement of the significance of A relative to the closure
ordinal, the significance of A ∨ B is the union of the significance of A
with the significance of B and the significance of A∧B is the intersection
of the significance of A with the significance of B. The significance of
subjunctions and equijunctions are defined similarly according to their
standard definitions in terms of other connectives. The significance of
e.g. TA given that of A is more complicated to express, and these two
will always differ in our minimalist approach.
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The author sides with those who, like recently [6], are dissatisfied
with the formation of the terms “dialetheism” and “dialetheic” on ety-
mological grounds, to the preference of “dialethism” and “dialethic”, and
prefers the terms “bialethism” and “bialethic” for usage in characterizing
librationism in order to distinguish the point of view from common expo-
sitions of dialetheism which have it that the latter view is characterized
by accepting the truth of some contradictions.

In summing up, librationism may be understood as a parasistent,
consistent, complementary and bialethic theory. Librationism is related
to paraconsistent theories, though it has some very special features which
sets it apart from such approaches. This warrants special terminology.

Instead of having restrictions on syntax, as e.g. in type theory, or,
alternatively, weakening classical logic and keeping the naive comprehen-
sion schema, as e.g in certain traditional or hypothetical paraconsistent
approaches to set theory (or “property theory”. . . ), we may instead opt
for syntactic freedom, keep classical logic and weaken the naive compre-
hension schema. In librationism this is, as in the ZF-tradition, a central
trait of the strategy which is followed. In articulating the librationist
strategy, we conveniently make use of a truth-operator in what we may
think of as an alethic comprehension schema which we may for now state
as follows:

∀x(x ∈ {w : A} ≡ TA(x/w))

Here A is a formula where w may occur free and A(x/w) is the result of
substituting x for w in A. It is presupposed that x is substitutable for
w in A. T is a monadic formula-forming formula operator. Intuitively,
we may think of T as our truth-operator. The sort brackets are used
as one should expect. If we were to conjoin alethic comprehension with
the naive truth principle A ≡ TA, we would of course recover naive
comprehension and triviality, i.e. that everything follows, in the con-
text of classical logic. In librationism we instead have a series of axiom
schemas and inferential principles which in sum approximate the naive
truth principle very strongly while avoiding triviality.

The system we isolate is, as pointed out, importantly, contentual
(semi-formal), i.e. infinitary proof principles hold, and in that sense it
goes beyond standard formal systems. We focus upon one designated
model, and this is instrumental in isolating the provability verb. We
hope that we will give occasion to appreciate the adequacy of such a
move in connection with our discussion of Curry-paradoxicalities in sec-



332 Frode Bjørdal

tion 11. By adequacy is here meant that our discussion of the Curry-
paradoxicalities reveals that a contentual (semi-formal) approach is in-
deed needed in order to deal with paradoxes in a general setting. It
turns out that the Curry-paradoxicality in the librationist framework is
transformed into a metalogical reminder that librationism is negation
(negjunction) complete and so only serves to reiterate that librationism
is a contentual system and that what we present of it must only be
understood as a partial axiomatization.

It is a surprising fact that Cantor’s reductio argument for the un-
countability of power-sorts of infinite sorts does not go through in libra-
tionism. Instead, Cantor’s reductio argument, which of course is entirely
valid, serves to discard the assumption that there is a non-paradoxical
sort s = {x : x ∈ N ∧ x /∈ f(x)} given a function f from the sort N

of natural numbers onto the power sort of N. Indeed, we may even
postulate that there is such a function from N onto the full universe
V of all sorts, and this does not fall prey to Cantor’s argument. Also,
generally power-sorts are paradoxical in librationism.

As the reader comes to study more details, she or he is encouraged
to appreciate that there are, in a certain sense, very few intuitively or
pretheoretically plausible principles of truth which fail. Librationism
does not generally have the naïve truth principle A ≡ TA, but it always
has both halves, i.e. both A ⊃ TA and TA ⊃ A are (at least minor)
theorems. Also, if A is a theorem, then so is TA, and vice versa. In
consequence of the foregoing, transparency, as it has been recently called,
in the sense of having full substitutivity of the sentences A and TA in all
contexts, will of course fail in the general case. But such transparency
will hold whenever the sentence A is not paradoxical. Further, and more
subtle, deviations from the naive picture of truth and abstraction are
not pointed out here, but accounted for below.

We have stressed that librationism is a contentual (semi-formal) sys-
tem several times. It at this point seems appropriate to quote from a
post by Martin Davis on the Foundations of Mathematics mailing list
on Friday the 16th of March 1998: “For me, it has been clear since I
was a boy (a very long time ago) that an acceptable account of Gödel’s
incompleteness theorem would necessarily take the natural numbers as
given in their totality with objective properties beyond what could be
derived in any particular formal system. As my teacher Emil Post put
it (even longer ago): “this . . . must result in at least a partial reversal
of the entire axiomatic trend of the late nineteenth and early twentieth
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centuries, with a return to meaning and truth as being of the essence
of mathematics.” Seen in such a way, the fact that librationism is a
contentual system is not something which one should too easily hold
against it. We suggest on the contrary.

1. The formal language

In order to avoid certain complexities in some of our metalogical reason-
ing we shall at the outset presuppose a rather austere language in a Polish
fashion. Another important reason for this austerity is that the Polish
formulation brings to the fore the point that sorts may be regarded as
properties. As our primitive alphabet we take the 6 signs in the list ‘v, .,
T, ∀, |, ˆ’. The noemata (free variables) are generated by the clauses: (1)
v is a noema; (2) If something is a noema then that noema concatenated
with . is also a noema; (3) Nothing else is a noema. Instead of using
the austere expressions “v”, “v.”, “v..”, etc. we will in our exposition on
occasions make use of numerals and write “v0”, “v1”, . . . , and also we use
“i”, “k”. . . etc. to stand for arbitrary numerals. These are numerals used
for metamathematical convenience and not objects which in themselves
are terms which can be acted upon by quantifiers, and we therefore use
boldface fonts to distinguish. Usually, we will for convenience be using
noemata like x, y, z in the metalinguistic exposition.

The primitive alphabet also contains the monadic formula forming
formula operator T, the dyadic connective or formula forming formula
operator |, signifying the truth function neither-nor, the dyadic quanti-
fier or formula forming noema-cum-formula operator ∀ and the dyadic
sortifier or term forming noema-cum-formula operator ˆ.

We use upper case A and B etc. for arbitrary formulas and lower case
a and b etc. for arbitrary terms, though in some exceptional cases we
will use upper case letters for terms (sorts) which are of special interest
(e.g. ∅, V , N, H). The formation rules can be stated by the double
recursion:

FR1: All noemata are terms.

FR2: If a and b are terms then ba is a formula.

FR3: If A is a formula then TA is a formula.

FR4: If A and B are formulas then |AB is a formula.

FR5: If A is a formula and vi is a noema, then ∀viA is a formula.
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FR6: If A is a formula and vi is a noema, then ˆviA is a term.

FR7: Nothing else is a term or a formula.

All and only terms and formulas are expressions.
Notice that although e.g. vi and vj are considered noemata as taken

in isolation, the austere expression ∀vivjvi contains only vj as a noema.
The two occurences of vi in ∀vivjvi are variables and not noemata; the
one occuring nearest the quantifier is the binding variable and the other
is a bound variable.

With these notions we define the set of noemata of expressions as
follows (we use square brackets for sets as used in the metalanguage):

ν(vi) = [vi];

ν(ba) = ν(a) ∪ ν(b);

ν(TA) = ν(A);

ν(|AB) = ν(A) ∪ ν(B);

ν(∀viA) = ν(A)\[vi];

ν(ˆviA) = ν(A)\[vi].

We say that a noema vi is present in a formula A iff vi ∈ ν(A), and
present in a term a iff vi ∈ ν(a). A noema vi occuring in a formula A
(term a) is a variable in A (a) iff vi is not present in A (a). A formula
A is a proposition iff no noema is present in A. A term a is a nomen iff
no noema is present in a. A formula A is atomic iff A is of the form ba
with terms a and b. For a formula A and noema vi we write A(vi) to
signify that vi is present in A.

With this terminology, all propositions are sentences and all nomina

(pl) are sort constants. (We do not presuppose that propositions are
extralinguistic entities in the context of our framewok.) However, as it
turns out, in librationism all formulas are sentences and all terms are
sort constants. But not all sentences are propositions and not all sort
constants are nomina. No nomen is a noema and no noema is a nomen,
but both nomina and noemata are sort constants. All and only terms
are sort constants, but some terms, as ˆvivjvi, are neither nomina nor
noemata.

The substitution function (_/_) from expressions to expressions has
the following definition:

(a/vk)vi = a if i = k, otherwise (a/vk)vi = vi;

(a/vk)cb = (a/vk)c(a/vk)b;
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(a/vk)TA = T(a/vk)A;

(a/vk)|AB = |(a/vk)A(a/vk)B;

(a/vk)∀viA = ∀vi(a/vk)A if i 6= k, else (a/vk)∀viA = ∀viA;

(a/vk)ˆviA = ˆvi(a/vk)A if i 6= k, else (a/vk)ˆviA = ˆviA.

We will make use of a suffix notation and write A(a/vk) for (a/vk)A.
Iterated uses of the substitution function like (a0/v0)(a1/v1) . . . (an/vn)
should be written as (a0/v0, . . . , an/vn).

We define the notion ‘a is substitutable for vk in . . . ’ by the recursion:
a is substitutable for vk in vj; a is substitutable for vk in cb iff a is
substitutable for vk in b and in c; a is substitutable for vk in TA iff
a is substitutable for vk in A; a is substitutable for vk in |AB iff a is
substitutable for vk in A and in B; a is substitutable for vk in ∀viA iff
vi does not occur in a or vk is not present in A, and a is substitutable
for vk in A; a is substitutable for vk in ˆviA iff vi does not occur in a or
vk is not present in A, and a is substitutable for vk in A.

We usually write A(vk) instead of A(vi)(vk/vi) when vk is substi-
tutable for vi in A, and on occasions simply write e.g. A(a) and A(b),
where it is then understood that they are given by A(vi)(a/vi) and
A(vi)(b/vi) for some noema vi such that a and b are substitutable for vi

in A(vi).
We will, as mentioned, later make use of noema signs “x”, “y”, “z”. . . .

to stand for arbitrary noemata, and also introduce definitions as follows
in order to more conveniently work in the metalanguage as we provide
partial axiomatic and inferential principles and work in the contentual
system of librationism. Parentheses are invoked for punctuation. We
use the definitions:

{x : A} =D ˆxA;

∼ A =D |AA;

(A ∧ B) =D ∼ |AB;

(A ∨ B) =D ∼(∼ A ∧ ∼ B);

(A ⊃ B) =D ∼(A ∧ ∼ B);

(A ≡ B) =D ((A ⊃ B) ∧ (B ⊃ A));

(∃x)A =D ∼(∀x) ∼ A.

Instead of the applicative Polish expression ba we will in general be
using the standard infix epsilon notation a ∈ b. Our reasons for having
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presupposed the austere Polish notions lie in the facts that this simplifies
some of the following metalogical reasoning and that it brings to the fore
that sorts may fundamentally be regarded as a special kind of properties.

2. The model

We now describe the semi-inductive type of Herzberger process which
provides a model that validates our librationist principles. For related
descriptions of this kind of semantics, see [7,11,12]. Our modelling of
librationism will, as announced, contain some additional twists. Let
there be a Gödel-coding of our language so that we have the set of
natural numbers which, under this coding, are codes of formulas as seen
at the metalevel. As it turns out that librationism accommodates more
than arithmetic it is strong enough to provide its own Gödel coding, and
so Fm(x), for x is the Gödel number of a formula of the librationist
language, can in the following be regarded both as a statement in the
object language and as a meta statement. We use square brackets to
denote sets presupposed metalogically for the semantic setup, as in [x :
Fm(x)] for the set of Gödel numbers of formulas. We let pAq stand for
the Gödel-number of the formula A. We define a semi inductive style
model (X, |=, e) by a semi inductive process (X, |=) built upon a given
enumeration e (e(0), e(1), . . . ) of all nomina (i.e. terms not containing
noemata but only bound or binding variables) by a double transfinite
recursion on (e.g. von Neumann) ordinals which are taken as given.

For α any ordinal, we require:

P(0) X(α) = [pAq : Fm(pAq) ∧ ∃β(β < α & ∀γ(β ≤ γ < α →
X(γ) |= A))]

P(1) X(α) |= TA iff pAq ∈ X(α)
P(2) X(α) |= |AB iff neither X(α) |= A nor X(α) |= B
P(3) X(α) |= ˆviAa iff a is substitutable for vi in A and

X(α) |= TA(a/vi)
P(4) X(α) |= ∀viA iff for all a substitutable for vi in A,

X(α) |= A(a/vi)
P(5) If a = e(i) then X(α) |= A(a) iff X(α) |= A(vi)

Define:

IN (X, |=) = [pAq : Fm(pAq) & ∃β∀γ(β ≤ γ → pAq ∈ X(γ))]

OUT(X, |=) = [pAq : Fm(pAq) & ∃β(∀γ(β ≤ γ → pAq /∈ X(γ)))]
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STAB(X, |=) = IN(X, |=) ∪ OUT (X, |=)

UNSTAB(X, |=) = [pAq : Fm(pAq)]\STAB(X, |=)

Definitions:

(i) Limit κ covers (X, |=) iff for every γ ≥ κ, IN(X, |=) ⊂ X(γ)
and X(γ) ⊂ IN(X, |=) ∪ UNSTAB(X, |=).

(ii) Limit σ stabilizes (X, |=) iff σ covers (X, |=) and X(σ) ⊂ IN(X, |=).

Theorem 1. (i) There is an ordinal κ which covers (X, |=).
(ii) There is an ordinal σ which stabilizes (X, |=).

Proof. (i): Any member pAq of STAB(X,�) will stabilize at HT (pAq)
equal to the least ordinal γ such that for all δ ≥ γ, pAq ∈ X(δ)(pAq /∈
X(δ)). By Löwenheim-Skolem-style arguments (see [11, 19, 20]) mem-
bers of STAB(X,�) will stabilize at a countable ordinal. Any limit
ordinal κ larger than the supremum of [HT (pBq) : pBq ∈ STAB(X, ∈)]
will cover (X,�).

(ii): Let δ be the least ordinal which covers (X,�). Let [f(n) : n ∈ ω]
by a trick of Cantor be an enumeration of all elements of UNSTAB(X,�)
where each element pBq of UNSTAB(X,�) recurs infinitely often in the
sense that if pBq = f(m) and m < n ∈ ω, then there is a natural
number n′, n < n′ ∈ ω, such that f(n′) = pBq. Define recursively:
F (0) = δ and F (n + 1) = the least ν > F (n) such that f(n) ∈ X(ν)
iff f(n) /∈ X(F (n)). We define ς = [γ : ∃m∃ν(m ∈ ω & ν = F (m) &
γ ∈ ν)]. It is obvious that ς is a limit ordinal which covers (X,�). It is
also clear that if m < n ∈ ω then F (m) < F (n). Since ς covers (X,�),
it suffices to show that pBq ∈ X(ς) entails that pBq ∈ STAB(X,�) in
order to establish that ς stabilizes (X,�). Suppose pBq ∈ X(ς). Since
ς is a limit ordinal, this entails by P (0) that we for some ordinal ν have
that

a) ∀µ(ν ≤ µ < ς ⇒ pBq ∈ X(µ))

Since F is increasing with ς as its range, we will then for some natural
number m ∈ ω have that ν ≤ F (m) < ς, so that

b) ∀µ(F (m) ≤ µ < ς ⇒ pBq ∈ X(µ))

Suppose pBq /∈ STAB(X,�). By our enumeration of unstable ele-
ments where each term recurs infinitely often, we will have that pBq =
f(n) for some natural number n, m < n ∈ ω. It follows that F (m) <
F (n) < ς. From a) and b) we can then infer that pBq ∈ X(F (n)), since
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we have supposed that pBq ∈ X(ς). But from the construction of the
function F it would then follow that pBq /∈ X(F (n + 1)), contradicting
b). It follows that pBq ∈ X(ς) only if pBq ∈ STAB(X,�), so that ς
stabilizes (X,�).

The least stabilizing ordinal for (X,�) is called the closure ordinal
for the process (X,�). We henceforth let “TO” denote the closure ordinal.
Notice that it will hold that pAq ∈ X(TO) iff for all γ ≥ TO, X(γ) � A.
Since all members of STAB(X,�) stabilize at a countable ordinal, the
closure ordinal is countable.

In the proof of Theorem 1 we have mainly adapted [7], pp. 391–2.
The construction goes back to [11, 12]. Notice that we need no “boot-
strapping policy” in our framework.

We now make the crucial librationist twist in order to isolate the
intended model of librationism. We shift our attention to those formulas
(as noemata serve as names, sentences) A which are such that X(TO) |=
∼ T∽A. So our official definition of the roadstyle sign is given by 

A =D X(TO) |= ∼ T∽A. It is a fact that X(TO) |= is maximally consistent
in the sense that X(TO) |= B iff not X(TO) |= ∼ B. Suppose not  A.
It follows that X(TO) |= T ∼ A. But we can show that X(TO) |= TB ⊃
∼ T ∼ B (see LO2M in the next paragraph) and that modus ponens
holds for X(TO) |=, so it follows that X(TO) |= ∼ TA, i.e.  ∼ A. So:  A
or  ∼ A, as announced.

Notice from this that our definition of the roadstyle supports the
following more precise definitions of maxims and minors: M A =D

X(TO) |= TA and m A =D A & ∽A.

We again stress that on account of P(5) all noemata name nomina (i.e
terms which contain no noemata but only bound or binding variables),
and as a consequence all formulas of librationism are in reality sentences.
We will in the main bulk of what is to follow let that be reflected in our
terminology.

3. Axiom schemas and inference rules of librationism

We first give a partial list of axiomatic principles, presupposing the
definitions introduced at the end of section 1. Maximal schemas are
indicated with subscript M , and minor schemas, i.e. schemas which have
minor instances, are indicated with subscript m. We remind that all
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axiom schemas that follow hold with all generalizations, so that gener-
alization is not a primitive inference rule. We can show, however, by an
inductive argument going back to Tarski, that generalization holds as a
derived inference rule relative to theorems which follow from the axiom
schemas presupposed with all generalizations.

L1M A ⊃ (B ⊃ A)
L2M (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
L3M (∼ B ⊃ ∼ A) ⊃ (A ⊃ B)
L4M A ⊃ ∀xA, provided x is not present in A.
L5M ∀x(A ⊃ B) ⊃ (∀xA ⊃ ∀xB)
L6M ∀xA ⊃ A(t/x), if t is substitutable for x in A.

LO1M T(A ⊃ B) ⊃ (TA ⊃ TB)
LO2M TA ⊃ ∼ T ∼ A
LO3M TB ∨ T ∼ B ∨ (T ∼ T ∼ A ⊃ TA)
LO4M TB ∨ T ∼ B ∨ (TA ⊃ TTA)
LO5M T(TA ⊃ A) ⊃ (TA∨T ∼ A)
LO6M ∃xTA ⊃ T∃xA
LO7M T∀xA ⊃ ∀xTA
LO8m TA ⊃ A
LO9m A ⊃ TA

LO10m ∀xTA ⊃ T∀xA
LO11m T∃xA ⊃ ∃xTA

The alethic comprehension principle is as follows:

AC M ∀x(x ∈ {y : A} ≡ TA(x/y)), if x is substitutable for y in A.

We next point out some salient inference rules for librationism:

R1 M A & M (A ⊃ B) ⇒ M B modus maximus

R2 m A & M (A ⊃ B) ⇒  B modus subiunctionis

R3 M A & m (A ⊃ B) ⇒ m B modus antecedentiae

R4 M A ⇒ M TA modus ascendens maximus

R5 m A ⇒ m TA modus ascendens minor

R6 M TA ⇒ M A modus descendens maximus

R7 m TA ⇒ m A modus descendens minor

R8 M∽T∽A ⇒ M TA modus scandens maximus
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R9 m∽T∽A ⇒ m TA modus scandens minor

R10 M ∀xTA ⇒ M T∀xA modus Barcanicus

R11  T∃xA ⇒  ∃xTA modus attestans generalis

R12 m T∃xA ⇒ m ∃xTA modus attestans minor

R13 m A &m B ⇒ m∽T∽A ∧ ∽T∽B modus minor

RZ MA(v) for all noemata ⇒ M ∀xA(x) The Z-rule

This list of axiom schemas and inference principles is, we again stress,
not complete, as librationism is not recursively axiomatizable and no
such list can be safeguarded as complete. Moreover, we have aimed at
providing a fairly comprehensive list instead of circumscribing an inde-
pendent list of schemas and inference rules.

We have no explicit librationist comprehension principle. However,
one may think of librationist comprehension as being implicitly defined
by the sum total of such principles as librationism provides.

We show how some of the axiom schemas and inference rules are
validated and leave the rest as exercises. §69 in [7] will be helpful on
some, but not all, issues as regards other axiom schemas; the inferential
principles are all novel with librationism. Note well the subscripts in
R10–R12 above, as pretheoretically plausible strengthenings have coun-
terexamples.

LO1M : Suppose β = γ + 1 is a successor ordinal and X(β) � T(A ⊃
B) and X(β) � TA. Then X(γ) � (A ⊃ B) and X(γ) � A, hence by
modus ponens X(γ) � B, hence X(β) � TB. For β a limit, X(β) �

T(A ⊃ B) and X(β) � TA entails that ∀δ(γ ≤ δ < β ⇒ X(δ) � (A ⊃
B)) and ∀δ(ε ≤ δ < β ⇒ X(δ) � A) as from some ordinals γ and ε
smaller than β. Let κ=max(γ,ε). Again by modus ponens, ∀δ(κ ≤ δ <
β ⇒ X(δ) � B), so X(β) � TB . It follows that X(β) � T(A ⊃ B) ⊃
(TA ⊃ TB) for any ordinal β below TO. Consequently X(TO) � T(T(A ⊃
B) ⊃ (TA ⊃ TB)), and so M T(A ⊃ B) ⊃ (TA ⊃ TB).

LO3M : We notice that for β=γ+1 a successor ordinal X(β) � (TB ∨
T∽B). This follows from the definition of X and � as it entails that
X(γ) � B or X(γ) � ∽B. We show that for limit β, X(β) �

(T∽T∽A ⊃ TA). Suppose β is a limit and that X(β) � T∽T∽A.
Then for some ordinal γ < β, ∀δ(γ ≤ δ < β ⇒ X(δ) � ∽T∽A).
As for all γ, X(γ + 1) � ∽T∽A only if X(γ) � A, it will hold that
∀δ(γ ≤ δ < β ⇒ X(δ) � A), hence X(β) � TA. We have shown that
X(β) � (T∽T∽A ⊃ TA) for all limit ordinals β. As we have that
X(β) � (TB ∨ T∽B) for all successor ordinals β, this justifies that
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X(TO) � T(TB ∨T∽B ∨ (T∽T∽A ⊃ TA)), from which it follows that
M TB ∨ T∽B ∨ (T∽T∽A ⊃ TA).

LO5M : For β a successor ordinal this holds trivially as the consequent
holds. Let β be a limit ordinal and suppose X(β) � T(TA ⊃ A). Then
for some ordinal γ < β, ∀δ(γ ≤ δ < β ⇒ X(δ) � TA ⊃ A). Suppose
there is some ordinal κ such that γ ≤ κ<β and X(κ) � A; then ∀δ(κ ≤
δ < β ⇒ X(δ) � A), so X(β) � TA. In case there is no such ordinal κ,
we have that X(β) � T∽A. In either case, X(β) � (TA ∨ T∽A). So
X(β) � T(TA ⊃ A) ⊃ (TA ∨ T∽A). As β can be taken as arbitrary
below TO, we have that M T(TA ⊃ A) ⊃ (TA ∨ T∽A).

R2: Suppose m A and M A ⊃ B. It follows that X(TO) � ∽TA
and X(TO) � ∽T∽A as well as X(TO) � T(A ⊃ B). It is straightforward
to observe that  B as A is unbounded under TO and (A ⊃ B) holds
below TO as from some ordinal below it. But we do not have enough
information to know whether B is a maxim or a minor.

R3: Suppose M A and m A ⊃ B. We then have that X(TO) �

TA, X(TO) � ∽T∽(A ⊃ B) and X(TO) � ∽T(A ⊃ B). That X(TO) �

∽T∽(A ⊃ B) means that A ⊃ B is unbounded under TO. That X(TO) �
TA means that A holds as from some ordinal below TO. As modus ponens
holds at all ordinals, this means that B is unbounded under TO, i.e.
X(TO) � ∽T∽B. That X(TO) � ∽T(A ⊃ B), i.e. X(TO) � ∽T∽(A ∧
∽B), means that A ∧ ∽B is unbounded under TO. But so a fortiori also
∽B is unbounded under TO, i.e. X(TO) � ∽TB. So  B and  ∽B, i.e.
m B.

R10: Suppose M ∀xTA(x). Then X(TO) � T∀xTA(x). But then it
obviously follows that X(TO) � TT∀xA(x), and so M T∀xA(x). Cfr.
section 11 as to why R10 cannot be strengthened as we would intuitively
expect.

R11: Suppose  T∃xA. We then have that X(TO) � ∽T∽T∃xA, so
that for all γ < TO there is a β, γ<β<TO, such that X(β) � T∃xA. But
then, whether β is a successor or not, there is a δ such that β > δ ≥ γ and
such that X(δ) � ∃xA. By P (2) and P (4) it follows that X(δ) � A(a/x)
for some term a substitutable for x in A. So X(δ +1) � TA(a/x), and so
by existential generalization we have that X(δ + 1) � ∃xTA. So that for
all γ<TO there is a β, γ<β<TO, such that X(β) � ∃xTA. It follows that
X(TO) � ∽T∽T∃xA implies X(TO) � ∽T∽∃xTA. This means that if
 T∃xA then also  ∃xTA. As to why we in addition to R11 and R12

cannot have the rule that M T∃xA only if M ∃xTA, cfr. section 11.
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4. Identity

We are able to justify the following:

Theorem 2. (i) X(TO) � TA ≡ TTA,

(ii) X(TO) � T∽T∽A ≡ TA,

(iii) X(TO) � T(A ⊃ B) ≡ T(TA ⊃ TB)),
(iv) X(TO) � T(A ⊃ TA) ≡ T(TA ⊃ A),
(v) X(TO) � ∀xTA ⊃ T∀xA
(vi) X(TO) � TA ⊃ A.

Proof. We do (i) and (iv) and leave the rest as exercises. (Notice that
all the isolated principles of Theorem 2 will hold as minor schemas.)
(i): Let r be {x : x /∈ x}. From alethic comprehension and universal
instantiation we have that X(TO) � r ∈ r ≡ Tr /∈ r. As by Theorem 2 (vi)
X(TO) � TA ⊃ A this gives us X(TO) � r ∈ r ⊃ r /∈ r, i.e. X(TO) � r /∈ r.
This gives us X(TO) � ∽Tr /∈ r, and we also get X(TO) � ∽Tr ∈ r on
account of X(TO) � Tr ∈ r ⊃ r ∈ r and that modus tollens is respected
by X(TO) �. X(TO) � Tr ∈ r ∨ Tr /∈ r ∨ (TA ⊃ TTA) is an instance of
of LO4M . Since X(TO) � ∽Tr ∈ r and X(TO) � ∽Tr /∈ r we have that
X(TO) � TA ⊃ TTA. The reverse direction comes from Theorem 2(vi).
(iv): Assume X(TO) � T(A ⊃ TA). Because of LO2M we then have that
X(TO) � T(A ⊃ ∽T∽A), so by contraposition X(TO) � T(T∽A ⊃ ∽A).
On account of LO5M it therefore follows that X(TO) � TA ∨ T∽A. If
X(TO) � TA it follows, using LO1M , that X(TO) � T(TA ⊃ A). If
X(TO) � T∽A, we have X(TO) � T∽TA by Theorem 2(ii), and so by
LO1M we again get that X(TO) � T(TA ⊃ A). The reverse direction is
similar.

We next justify

Lemma 1. M ∀x, y(∀u(x ∈ u ⊃ y ∈ u) ⊃ T∀u(x ∈ u ⊃ y ∈ u)).

Proof. By logic

M ∀x, y(∀u(x ∈ u ⊃ y ∈ u) ⊃

(x ∈ {z : ∀u(x ∈ u ⊃ z ∈ u)} ⊃ y ∈ {z : ∀u(x ∈ u ⊃ z ∈ u)})).

But clearly M ∀x(x ∈ {z : ∀u(x ∈ u ⊃ z ∈ u)}), so

M ∀x, y(∀u(x ∈ u ⊃ y ∈ u) ⊃ y ∈ {z : ∀u(x ∈ u ⊃ z ∈ u)}).

Lemma 1 follows by alethic comprehension.
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We justify the Substitution Axiom Schema:

M ∀u(a ∈ u ⊃ b ∈ u) ⊃ (A(a) ⊃ A(b))

Proof. Suppose X(TO) � ∽T(∀u(a ∈ u ⊃ b ∈ u) ⊃ (A(a) ⊃ A(b))). By
Theorem 2(ii), X(TO) � ∽T∽T(∀u(a ∈ u ⊃ b ∈ u) ∧ A(a) ∧ ∽A(b)).
From LO1M we get that X(TO) � ∽T∽(T∀u(a ∈ u ⊃ b ∈ u) ∧ TA(a) ∧
T∽A(b)). By using Theorem 2(iv) and Lemma 1, on the other hand,
we establish that X(TO) � T∀x, y(T∀u(x ∈ u ⊃ y ∈ u) ⊃ ∀u(x ∈ u ⊃
y ∈ u)). From these it follows that X(TO) � ∽T∽(∀u(a ∈ u ⊃ b ∈
u) ∧ TA(a) ∧ T∽A(b)). Using LO2M on the third conjunct, X(TO) �

∽T∽(∀u(a ∈ u ⊃ b ∈ u) ∧ TA(a) ∧ ∽TA(b)). By ACM , X(TO) �

∽T∽(∀u(a ∈ u ⊃ b ∈ u) ∧ a ∈ {x : A(x)} ∧ b /∈ {x : A(x)})). But then
also X(TO) � ∽T∽(∀u(a ∈ u ⊃ b ∈ u) ∧ ∃u(a ∈ u ∧ b /∈ u)), which is
impossible. So X(TO) � T(∀u(a ∈ u ⊃ b ∈ u) ⊃ (A(a) ⊃ A(b))), and the
Substitution Axiom Schema holds.

We justify the Symmetry Theorem (given our substitution function it
does not follow directly from the Substitution Axiom Schema but needs
separate consideration):

M ∀x, y(∀u(x ∈ u ⊃ y ∈ u) ⊃ ∀u(y ∈ u ⊃ x ∈ u))

Proof. We have that

M ∀u(a ∈ u ⊃ b ∈ u) ⊃
(a ∈ {z : ∀u(z ∈ u ⊃ a ∈ u)} ⊃ b ∈ {z : ∀u(z ∈ u ⊃ a ∈ u)}).

By rearrangement

M a ∈ {z : ∀u(z ∈ u ⊃ a ∈ u)} ⊃
(∀u(a ∈ u ⊃ b ∈ u) ⊃ b ∈ {z : ∀u(z ∈ u ⊃ a ∈ u)}).

As M a ∈ {z : ∀u(z ∈ u ⊃ a ∈ u)} we use modus maximus and alethic
comprehension to get M ∀u(a ∈ u ⊃ b ∈ u) ⊃ T∀u(b ∈ u ⊃ a ∈ u).
From Lemma 1 and Theorem 2(iv), M T∀u(b ∈ u ⊃ a ∈ u) ⊃ ∀u(b ∈
u ⊃ a ∈ u), so by a hypothetical syllogism M ∀u(a ∈ u ⊃ b ∈ u) ⊃
∀u(b ∈ u ⊃ a ∈ u).

As the relation ∀u(a ∈ u ⊃ b ∈ u) is also reflexive and transitive, we
presuppose the Leibnizian-Russellian definition

Definition (=). a = b =D ∀u(a ∈ u ⊃ b ∈ u).
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5. Arithmetic

Definitions.

KIND(a) =D ∀x(Tx ∈ a ∨ Tx /∈ a),
∅ =D {x : x 6= x},
a′ =D {x : x ∈ a ∨ x = a},
N =D {x : ∀y(∅ ∈ y ∧ ∀z(z ∈ y ⊃ z′ ∈ y) ⊃ x ∈ y)}.

We call a sort a a kind, or kind, if M KIND(a). Following standard
notation, we also set ω =D N.

Theorem 3. (i) M ∅ ∈ N, (ii) M ∀z(z ∈ N ⊃ z′ ∈ N), (iii) M

KIND(N), (iv) sort-induction: M ∀y(∅ ∈ y ∧ ∀z(z ∈ y ⊃ z′ ∈ y) ⊃
∀w(w ∈ N ⊃ w ∈ y)) and (v) full induction: M A(∅) ∧ ∀z(A(z) ⊃
A(z′)) ⊃ ∀w(w ∈ N ⊃ A(w)).

Proof. (i): This follows from M ∀y(∅ ∈ y∧∀z(z ∈ y ⊃ z ∈ y) ⊃ ∅ ∈ y)
and alethic comprehension. (ii): By predicate logic ∀y(∅ ∈ y ∧ ∀z(z ∈
y ⊃ z′ ∈ y) ⊃ x ∈ y) ⊃ ∀y(∅ ∈ y ∧ ∀z(z ∈ y ⊃ z′ ∈ y) ⊃ x′ ∈ y) so
X(TO) � T(∀y(∅ ∈ y ∧ ∀z(z ∈ y ⊃ z′ ∈ y) ⊃ x ∈ y) ⊃ ∀y(∅ ∈ y ∧ ∀z(z ∈
y ⊃ z′ ∈ y) ⊃ x′ ∈ y)). So by Theorem 2(iii) X(TO) � T(T∀y(∅ ∈
y ∧ ∀z(z ∈ y ⊃ z′ ∈ y) ⊃ x ∈ y) ⊃ T∀y(∅ ∈ y ∧ ∀z(z ∈ y ⊃ z′ ∈ y) ⊃
x′ ∈ y)). Using alethic comprehension and the definition of N we have
that X(TO) � T(x ∈ N ⊃ x′ ∈ N). As x was arbitrary, it follows that
X(TO) � ∀xT(x ∈ N ⊃ x′ ∈ N). But by Theorem 2(v) we then have
that X(TO) � T∀x(x ∈ N ⊃ x′ ∈ N), so M ∀x(x ∈ N ⊃ x′ ∈ N). (iii):
From predicate logic we get X(TO) � T(∅ ∈ N ∧ (∀x)(x ∈ N ⊃ x′ ∈ N) ⊃
((∀y)(∅ ∈ y ∧ ∀z(z ∈ y ⊃ z′ ∈ y) ⊃ a ∈ y) ⊃ a ∈ N)). Using Theorem
3(i) and (ii) and the fact that X(TO) � T(A ⊃ B) ⊃ (TA ⊃ TB), it
follows that X(TO) � T(∀y)((∅ ∈ y ∧ ∀z(z ∈ y ⊃ z′ ∈ y) ⊃ a ∈ y) ⊃
a ∈ N). Using LO7M , Theorem 2(iii), alethic comprehension and the
definition of N it follows that X(TO) � T(a ∈ N ⊃ Ta ∈ N). Using
Theorem 2(iv) we get that X(TO) � T(Ta ∈ N ⊃ a ∈ N), and so by
LO5M we have that X(TO) � Ta ∈ N ∨ Ta /∈ N. But a was arbitrary,
hence X(TO) � TKIND(N) and M KIND(N). (iv): Immediate. v): We
strengthen an idea of [7, p. 356]. Let A(x) be an arbitrary sentence and
define A′(x) =D A(∅) ∧ ∀y(A(y) ⊃ A(y′)) ⊃ A(x). We will have by
logic that X(TO) � T(A′(∅) ∧ ∀x(A′(x) ⊃ A′(x′))), so from established
principles also X(TO) � T(∅ ∈ {u : A′(u)} ∧ ∀x(x ∈ {u : A′(u)} ⊃
x′ ∈ {u : A′(u)})). Using sort-induction we therefore have that X(TO) �



Librationist closures of the paradoxes 345

T∀w(w ∈ N ⊃ w ∈ {u : A′(u)}). As N is kind we obtain that X(TO) �

T∀w(Tw ∈ N ⊃ TA′(w)). But this entails, by LO7M , that X(TO) �

∀wT(Tw ∈ N ⊃ TA′(w)), and so, by Theorem 2(iii), we have that
X(TO) � ∀wT(w ∈ N ⊃ A′(w)). Given Theorem 2(v) it follows that
X(TO) � T∀w(w ∈ N ⊃ A′(w)). By the definition of A′(x) it follows
that X(TO) � T∀w(w ∈ N ⊃ (A(∅) ∧ ∀y(A(y) ⊃ A(y′)) ⊃ A(w))). The
unrestricted induction schema follows by rearrangement.

Theorem 3, with its obvious elaborations, establishes Peano arith-
metic. The proof that M ∀x, y(x, y ∈ N ⊃ (x′ = y′ ⊃ x = y)) is
facilitated by the regularity rule for the sort H of hereditarily iterative
non-paradoxical sorts, pointed out in section 9.

6. Manifestation-points and non-extensionality

The following construction goes back to [7, p. 78] and, in a related con-
text, [18]. We can isolate a fixed-point construction, which we call a

manifestation point, as follows. If we let A(x, y) be any sentence with
the noemata shown, we can find a term hA such that M ∀z(z ∈ hA ≡
TTA(z, hA)). Proof: Let 〈a, b〉 be the ordered pair e.g. à la Kuratowski,
d = {〈x, g〉 : A(x, {u : 〈u, g〉 ∈ g})} and hA = {x : 〈x, d〉 ∈ d}.

The next theorem shows that librationism is highly non-extensional:

Theorem 4. Let a =E b abbreviate ∀x(x ∈ a ≡ x ∈ b) and KIND(x)
be as defined in section 5. (i) M ∃x(KIND(x) ∧ x =E ∅ ∧ x 6= ∅).
(ii) If a is any kind then there is a kind b such that M a =E b ∧ a 6= b.

Proof. A proof of (i) is by letting A(x, y) be x = y ∧ x = ∅ and
considering its manifestation-point k such that M ∀x(x ∈ k ≡ TT(x =
k ∧ x = ∅)). Suppose some b ∈ k. Then b = k ∧ b = ∅ and the empty
sort ∅ has a member. So k is empty, and due to the maximality of
identity statements, it is a maxim that k is empty. Suppose that k = ∅.
But then clearly ∅ ∈ k, which is impossible. So k is distinct from ∅
and maximally coextensional with ∅. This is called “Gordeev’s paradox”
by [7], p. 73.2 Notice that k is kind because of the logic of identity.
The following type of proof of (ii) is credited to Pierluigi Minari by [7,

2 Lev Gordeev has related to me that he had discovered and communicated the
same kind of result based upon combinatoric logic in the context of Explicit Math-
ematics to Solomon Feferman and to Michael Beeson around 1981. The result was
published with acknowledgement to Gordeev in [1].



346 Frode Bjørdal

p. 74]. Let a be any kind and consider the manifestation point b such
that M ∀x(x ∈ b ≡ TT((a = b ∧ a /∈ a) ∨ (a 6= b ∧ x ∈ a)). As a is kind
also b will be kind, so M ∀x(x ∈ b ≡ ((a = b ∧ a /∈ a) ∨ (a 6= b ∧ x ∈ a)).
It is now an easy exercise to verify that M a =E b ∧ a 6= b.

Theorem 5. (i) There are infinitely many mutually distinct kinds co-

extensional with ∅ = {x : x 6= x}.

(ii) If a is any kind, then there are infinitely many mutually distinct

kinds coextensional with a.

Proof. (i) We extend the idea in the proof of Theorem 4(i). Write
0 for ∅ (and 1 for k as in that proof). Write

∨i=n
i=0 (x = i) for the

disjunction (veljunction) of n identities. Our definitions of the kinds are
now given by 0= ∅ and n+1 as provided by the manifestation point of
x = y∧

∨i=n
i=0 (x = i). It follows by identity theory that M ∀x(x ∈n+1≡

(x =n+1∧
∨i=n

i=0 (x = i)). We show by an induction that n+1 is kind
and distinct from all of 0,. . . ,n. Suppose b ∈n+1. Then b =n+1 and
(b =0 or...or b =n). By identity theory b ∈0 or . . . or b ∈n. But 0 to n

are empty kinds by the induction hypothesis. So n+1 is empty, and kind
by identity theory. If n+1 were to be identical with one of 0 to n we
would have n+1∈n+1, contradicting its emptiness. (ii) Exercise. Hint:
Generalize Minari’s strategy used in Theorem 4(ii) in a similar way as
the proof of Theorem 4(i) was generalized in Theorem 5(i).3

7. å and the paradoxicality and infinitude of power-sorts

We show the existence of an exotic sort å4 , that virtually all power sorts
are paradoxical and that all power sorts have infinitely many members.

Theorem 6. There is an å such that m ∀x(x ∈ å) and m ∀x(x /∈ å).

Hint: Let A(x, y) be x /∈ y, and let å be its manifestation-point.

Theorem 7. If M ∃x(x /∈ a), ℘(a) = {x : x ⊂ a} = {x : ∀y(y ∈ x ⊃
y ∈ a} is paradoxical.

Hint. Employ å and reason semantically.

3 During the revision process of this paper the author was communicated a differ-
ent but related construction in Theorem 4 of [10] (forthcoming), which gives a result
similar to our Theorem 5(ii) in the context of fuzzy set theory. This inspired the
insight that also Minari’s construction can be generalized.

4 å is the minuscule of the Scandinavian letter Å.
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For å the construction needed to prove Theorem 7 fails, but in that case
we will e.g. for V = {x : x = x} have that m V ∈ {x : x ⊂ å}. The
author does not know of any sort not maximally coextensional with kind
universal sorts which does not have a paradoxical power sort.

Theorem 8. All power-sorts have infinitely many members.

Proof. Let a be any sort. Let b be any of the infinitely many kinds
coextensional with ∅ as provided by Theorem 5(i). For any such b,
M b ⊂ a and hence M b ∈ {x : x ⊂ a}.

For the notion of infinitude invoked here cfr. the following paragraph.
Notice that Theorem 8, counter intuitive as it may seem, even holds
for finite sorts including empty sorts. Our librationist results on power
sorts confirm, as it were, predicativist and related scruples about and
suspicions concerning power sets. But in librationism this is made more
precise and more general. Power sorts are accommodated in librationism,
but in a sense of the word “sense”, power sorts do not make sense; they
are virtually always paradoxical. This does not exclude that there can be
inner models where a restricted power sort behaves non-paradoxically.

8. Resisting Cantor’s conclusion

There is no doubt whatsoever that Cantor’s arguments for the conclusion
that there are uncountable cardinalities are perfectly valid reductio ar-
guments. However, we have learned from Duhem and Quine and others
that in the face of contrary evidence a theory might be changed many
times in many ways. In the light of librationism the assumption that
there may be a function from the natural numbers onto its power-sort,
or indeed, onto the universe itself, does not need to be discarded in the
face of Cantor’s evidence. Instead, as we shall, see, a hidden assumption
concerning the non-paradoxicality of certain sorts is discarded in the
librationist framework.

We define some central concepts as they are cashed out in the libra-
tionist setting. A sort f is a relation iff M ∀x(x ∈ f ⊃ ∃y, z(x = 〈y, z〉)).
f is a function iff it is a relation and M ∀x,y,z(〈x, y〉 ∈ f ∧ 〈x, z〉 ∈ f ⊃
y = z). a is a preimage (domain) of a function f iff M ∀x(x ∈ a ≡
∃y(〈x, y〉 ∈ f)). A sort a is an image (sometimes imprecisely called
range) of a function f iff M ∀y(y ∈ a ≡ ∃x(〈x, y〉 ∈ f)). We used the
indefinite article for preimage and image in the two previous sentences
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on account of librationism’s highly non-extensional character as borne
out by Theorem 5. A function f is a bijection from preimage to image if
M ∀x, y, y(〈x, z〉 ∈ f ∧ 〈y, z〉 ∈ f ⊃ x = y). A function f is onto a sort
a (a surjection) iff M ∀y(y ∈ a ⊃ ∃x(〈x, y〉 ∈ f)). Notice that all func-
tions are surjections to their images, given these notions. It follows that
if M a ⊂ b and f is a surjection to b then f is also a surjection to a. A
sort a has cardinality n, for n ∈ N, iff there is a kind bijection from n to a.
A sort a has cardinality ω iff there is a kind bijection from ω = N to a. A
sort has cardinality iff it has cardinality ω or it has cardinality n for some
n ∈ N. A sort a is finite iff there is a sort b such that M a ⊂ b and b has
cardinality n for some n ∈ N. A sort a is infinite iff for all n ∈ N there is
a b with cardinality n such that M b ⊂ a. A sort a is unfinite iff it is not
finite. All infinite sorts are unfinite, but not vice versa; a sort is properly
unfinite if it is unfinite and not infinite. There are both finite, properly
unfinite and infinite sorts which have no cardinality. An example of the
first type is {x : (x = ∅∧r ∈ r)∨ ((x = ∅∨x = {∅})∧r /∈ r)} for r = {x :
x /∈ x}. å is an example of the second type. Examples of the third type
are r = {x : x /∈ x} and {x : x ⊂ ∅}. A sort a is countable iff there is a
surjection from ω to a. As it turns out, in librationism all sorts are count-
able, i.e. none are uncountable. A sort is listable iff it has a cardinality.

Assume there is a function f from N onto the full universe V =
{x : x = x}. We also assume that f is a kind, i.e. that M ∀x(Tx ∈
f ∨ Tx /∈ f). We now consider Cantor’s sort s = {x : x ∈ N∧ x /∈ f(x)}.
Clearly s exists according to librationism, as all expressible conditions
correspond to a sort according to the librationist point of view. We will
write m ≎ f(n) as shorthand for 〈n, m〉 ∈ f , avoiding the identity sign as
is commonly used as there in librationism are paradoxical functions. The
use of the identity sign for the purpose of abbreviating functional map-
ping would at best be misleading in librationism, and sometimes turns
out to be just wrong as identity logic holds maximally in librationism
(see below in this paragraph for more on this).

Let numerals stand for finite von Neumann ordinals as usual. Sup-
pose now e.g. that s ≎ f(8). Since f is maximal we will have that this
is a maxim. We then consider whether 8 ∈ s. What we obtain from all
this and our comprehension principle ACM is that M 8 ∈ s ≡ T(8 ∈
N ∧ 8 /∈ s). But M 8 ∈ N, so this reduces to M 8 ∈ s ≡ T(8 /∈ s).
But the available axiomatic principles and inference rules only license
the conclusion that s is a paradoxical sort, and that we thus have both
 8 ∈ s and  8 /∈ s. The assumption that s must be non-paradoxical
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is an essential requirement in this Cantorian argument for the existence
of higher cardinalities. In the librationist framework the assumption is
naturally discarded, and the Cantorian argument does not support the
conclusion that f cannot exist.

We assumed f to be a kind (non-paradoxical) function from N onto
the full universe of sorts, and noticed that such an assumption can be
made without falling prey to Cantor’s considerations. It holds, a fortiori,
that we may assume that there is such a function from N onto its power-
sort.

Other Cantorian type arguments, including Cantor’s first argument,
for higher types of infinities fall prey to similar considerations. For ex-
ample, if (as is indeed suggested by the present framework) the sort of
real numbers (e.g. taken in a Dedekindian way) is a paradoxical sort,
there is no way to collect exactly all the real numbers by means of a
non-paradoxical function from the natural numbers. The sort of real
numbers so taken is paradoxical in the librationist framework, just as is
the power sort of the natural numbers and, indeed, as we saw, power-
sorts more generally. There even are paradoxical real numbers with such
a Dedekindian setup (e.g. {x : (x <Q 0Q ∧ r ∈ r) ∨ (x <Q 1Q ∧ r /∈ r)}
with <Q the standard order of rational numbers, 0Q (1Q) rational zero
(one) and r = {x : x /∈ x}), and there is no non-paradoxical sort which
maximally collects exactly the non-paradoxical real numbers. The sit-
uation is as follows: If there were a non-paradoxical function from the
natural numbers having exactly the sort of (non-paradoxical) real num-
bers as its range, then the sort of (non-paradoxical) real numbers would
be non-paradoxical. But we can show that the sort of (non-paradoxical)
real numbers so taken, for independent reasons, is paradoxical. So there
is no such function. The sort of real numbers is not listable. Still, there
is nothing which licences the conclusion that there is no non-paradoxical
function from the natural numbers onto the sort of (non-paradoxical)
real numbers, and so in this fundamental and perfectly adequate sense
the sort of real numbers remains countable, i.e. it does not have a car-
dinality larger than ω. No sort has a cardinality larger than ω in li-
brationism, though some, as the sort of real numbers do not have a
cardinality. There are no more real numbers than there are natural
numbers.

We have of course not by the foregoing shown that librationism as so
far developed has such a surjection as assumed from N to V . To achieve
such a strengthened countable framework, we enlarge the librationist
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language with a new nomen e and have its denotatum serve as a bijection
from N to the full universe by just slightly altering the semantical setup.

We first change into an enumeration where e is reckoned amongst
the nomina. The semantical principle P (5) of secion 2 is now changed
into Pe(5): (1) If a = e(0) then X(α) � A(a) iff X(α) � A(v0). (2) For
successor numerals i + 1, if there is a natural number n such that for all
numerals k smaller than i + 1, X(α) � ∽(∀u)(e(n) ∈ u ⊃ vk ∈ u), then
X(α) � (∀u)(e(m) ∈ u ⊃ vi+1 ∈ u) iff m is the smallest number such that
for all numerals k smaller than i + 1, X(α) � ∽(∀u)(e(m) ∈ u ⊃ vk ∈ u).
Otherwise X(α) � (∀u)(vi ∈ u ⊃ vi+1 ∈ u).

Notice that we in defining Pe(5) have presupposed the Leibnizian-
Russellian definition of identity in section 4. We also point out that
if we stay with the notation of Def(=) in section 4, one must keep in
mind that it is only at very large ordinals of the semantical process that
identity is adequately captured. We e.g. have that X(0) � ∀x∀y(x = y).
But already X(2) � {x : x ∈ x} 6= {x : x /∈ x}. The generation of
non-identities is monotonous in the external semantical process, so that
if α < β and X(α) � a 6= b then X(β) � a 6= b.

Presupposing e.g. a Kuratowskian definition of ordered pairs and N

as defined above, we further assume a new semantical principle P (6):
X(α) � u ∈ e iff for some sort a and some natural number n and noema
with corresponding numeral n, X(α) � u = 〈n, a〉 ∧ n ∈ N ∧ a = vn.
Our semantical setup is now such that M KIND(e). This follows
from the logic of identity and the fact that N is kind. It holds that
e is a bijection from N to the full universe, as distinct noemata are
now unique standard names for distinct sorts, i.e. all sorts will have a
unique noema as its standards name and all noemata denote a unique
sort. Given this we may also accommodate an appropriate substitution
function and by slight alterations in the semantical setup include also
a truth predicate; we then justify an Axiom of Truth which expresses
the appropriate correspondence between the truth operator T and the
truth predicate. The truth predicate is then best thought of as a sort
of natural numbers, and it is a paradoxical sort. The Liar paradox and
related paradoxes are now accounted for librationistically in a way which
at this point will be understood in its outlines by my audience; we invoke
the Carnap-Gödel Diagonal Lemma. We mention that Yablo’s alleged
non-circular paradox can be accounted for in our framework.

Given that e is a kind bijection from N to the full universe, an
appropriate partial function from the natural numbers N onto its power
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sort ℘(N) is provided by f = {〈x, y〉 : 〈x, y〉 ∈ e ∧ y ⊂ N}. An image
of f will indeed be {x : x ⊂ N}. For any b, and so also if  b ∈ {x :
x ⊂ N}, there will be some unique sort a such that M 〈a, b〉 ∈ e.
Here M a ∈ N. So suppose  b ∈ {x : x ⊂ N} and a ∈ N such
that M 〈a, b〉 ∈ e. By alethic comprehension and modus descendens
we get  b ⊂ N. By classical logic and modus subiunctionis then 

(〈a, b〉 ∈ e ∧ b ⊂ N). By modus ascendens,  T(〈a, b〉 ∈e∧b ⊂ N), and
so by alethic comprehension and the definition of f ,  〈a, b〉 ∈ f . The
function f , partial on N, can be seen to be a bijection from e.g. the
proper domain {x : ∃y(〈x, y〉 ∈ e ∧ y ⊂ N)} to its images.

We show that the function f = {〈x, y〉 : 〈x, y〉 ∈ e ∧ y ⊂ N} itself is
paradoxical. To see this consider our sort å defined in section 7 which
is such that  ∀x(x ∈ å) and  ∀x(x /∈ å). Given that e is a kind
bijection from N to the full universe, there will be a unique n ∈ N so
that M 〈n, å〉 ∈ e. Since  å ⊂ N it follows that  〈n, å〉 ∈ e ∧ å ⊂
N by classical logic and modus subiunctionis. By modus ascendens,
 T(〈n, å〉 ∈ e ∧ å ⊂ N), and so by alethic comprehension and the
definition of f ,  〈n, å〉 ∈ f . Now, since also  å 6⊂ N, it will as well
hold that  〈n, å〉 /∈ e ∨ å 6⊂ N. By modus ascendens it follows that
 T(〈n, å〉 /∈ e ∨ å 6⊂ N). By LO2M and modus subiunctionis it follows
that  ∽T∽(〈n, å〉 /∈e ∨ å 6⊂ N), so by de Morgan  ∽T(〈n, å〉 ∈ e ∧
å ⊂ N). By alethic comprehension and the definition of f ,  〈n, å〉 /∈ f .
So  〈n, å〉 ∈ f and  〈n, å〉 /∈ f . f is a paradoxical function. Still, it
is a function in that it is maximally a relation and M ∀x, y, z(〈x, y〉 ∈
f ∧ 〈x, z〉 ∈ f ⊃ y = z).

The fact that there are paradoxical functions conjoined with the fact
that identity statements are always maximally true or maximally false,
justify the symbolical innovation introduced above for the librationist
setting.5 As we know it has been common to write g(a) = b for 〈a, b〉 ∈ g
when g is a function. But this notation is in the librationist framework
not advisable, since it, in conjunction with the librationist theory of
identity, would imply that functions cannot be paradoxical. Instead we
suggest to write g(a) ≎ b for 〈a, b〉 ∈ g when g is a function. If e.g.
M 〈13, å〉 ∈ e and f is as in the two previous paragraphs, we conclude
that m 〈13, å〉 ∈ f and write m å ≎ f(13).

It is conceivable that one could presuppose a librationist framework
for dealing with the paradoxes and at the same time retain the idea

5 The author first suggested this symbolic innovation in [3].
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that there are uncountable infinities. The author would regard such an
approach, if possible, as quite disingenuous. It is a virtue to postulate as
few entities as possible in order to account for a phenomenon. Given this
attitude, we should not postulate uncountable entities unless we are com-
pelled to. Moreover, the author does not believe there are uncountable in-
finites. But we are in the librationist framework not compelled to postu-
late uncountable infinities, and we ought to regard this as a strong advan-
tage which counts in its favour. Here also the Löwenheim-Skolem theorem
is on our side, as it, as stressed by Skolem, shows that the notion of un-
countability is one that we can have only in a very theory relative sense.

9. Introducing hereditarily kind and iterative sorts

We first report some results without proof. For related results in a
different formal setting, see [7, §12 and §23]. As before, we let KIND(y)
abbreviate ∀x(Tx ∈ y ∨ Tx /∈ y).

Given the manifestation-point M ∀x(x ∈ H ≡ TT(KIND(x) ∧
x ⊂ H)) it follows that M x ∈ H iff M KIND(x) ∧ x ⊂ H. If
M a ∈ H then a is hereditarily kind (non-paradoxical) and iterative.
(a is hereditarily kind iff a is kind and all members of a are hereditarily
kind. We explain our notion of iterativity below.) From Theorem 3(iii),
M N ∈ H. Further, H is closed under pairing and union, in that if
M a, b ∈ H then M {a, b} ∈ H and M ∪ b ∈ H. H is in fact closed
under all the remaining Jensen rudimentary functions.6

F1(x, y) = x\y
F2(x, y) = x × y
F3(x, y) = {〈u, z, v〉 : z ∈ x ∧ 〈u, v〉 ∈ y}
F4(x, y) = {〈u, v, z〉 : z ∈ x ∧ 〈u, v〉 ∈ y}
F6(x, y) = Dom(x)
F7(x, y) = ∈ ∩ x2

F8(x, y) = {x′′{z} : z ∈ y})

in the same sense, and so also under ∆0-separation. From section 5
we know that the full induction schema for N holds. Indeed, from the
following paragraph we will see that much more is true.

One should pay attention to the fact that H itself is not a kind. For
example, m å ∈ H. This is left as an exercise.

6 See [13], especially Lemma 1.8 on p. 239.
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We wrote that H is a sort of iterative sorts. This holds in the fol-
lowing sense of a regularity rule:

If M b ∈ H then M ∃x(x ∈ b) ⊃ ∃x(x ∈ b ∧ ∀y(y ∈ b ⊃ y /∈ x)).

We can justify the regularity rule briefly as follows: Suppose instead
that M b ∈ H and  ∃x(x ∈ b) ∧ ∀x(x ∈ b ⊃ ∃y(y ∈ b ∧ y ∈ x)). As b is
hereditarily kind it follows that M ∃x(x ∈ b)∧∀x(x ∈ b ⊃ ∃y(y ∈ b∧y ∈
x)). But the latter can only be satisfied if b is circular, a cycle or has an
infinitely descending chain. Given the nature of H, it would follow that
X(0) � ∃x(x ∈ H), which is contrary to our minimalist stipulations.
Hence, H only contains well-founded sorts as maximal members.

If M b ∈ H we will say that b is a good. Here the word “good” is
used as a noun, but we also on occasion use it adjectivally. All goods are
kinds, but not vice versa. In as far as librationism supports the existence
of sets in a more classical sense (e.g. as those sorts which belong to a
good defined as the least sort built up iteratively from N=ω by closing
off with the Jensen rudimentary functions) such sets will be goods. But
not all goods are sets. E.g. extensionality fails badly for H. For this, see
Theorems 4 and 5.

10. Finitely Iterated Inductive Definitions

and Transfinite Induction

The notion of a y-positive sentence will be central here, so we define
y-positive and y-negative sentences relative to goods e of H as follows:
If y is not among the noemata of a sentence A then A is both y-positive
and y-negative. The sentence t ∈ y is y-positive. If A and B are both y-
positive (y-negative) then A∧B, A∨B, ∃x(x ∈ e∧A) and ∀x(x ∈ e ⊃ A)
are y-positive (y-negative). If A is y-positive (y-negative) then ∽A is
y-negative (y-positive).

The theory of finitely iterated inductive definitions ID<ω extends
ACA0 by least fixed-point principles for successively newly introduced
set terms. If A(x, y) has x and y present and is y-positive, let the ex-
pression [xyA(x, y)] temporarily stand for such a new term with x and
y bound so that:

FP ∀z(z ∈ [xyA(x, y)] ≡ A(z, [xyA(x, y)])
LEAST ∀z(∀x(A(x, z) ⊃ x ∈ z) ⊃ ([xyA(x, y)] ⊂ z))
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It follows from what we pointed out in section 9 that H suffices to
interpret ACA. We will now show that analogues of FP and LEAST

can be captured, and we use manifestation points. Since we are now first
of all interested in the generation of subsorts of N, we let A(x, y) be of
the form x ∈ N∧ A′(x, y), where A′(x, y) is y-positive relative to (goods
of) H. This means that all quantifiers in the build-up of A(x, y) are to
be bound by goods in H. All and only good parameters from H are
allowed. We now consider the manifestation-point such that M ∀x(x ∈
hA ≡ TTA(x, hA)) and will show that FP and LEAST hold for hA. We
first consider FP .

It is sufficient to show that hA is non-paradoxical, which in its turn
is necessary in order to show that M hA ∈ H.

Observation. Since hA is an operator with the indicated restrictions

to H, we will for all ordinals α have that X(α) � ∀x(x ∈ hA ⊃ Tx ∈
hA) ⊃ ∀x(A(x, hA) ⊃ TA(x, hA)).

This follows from the build up of A(x, y), it being positive in y. We
will show first that X(TO) � T∀x(x ∈ hA ⊃ Tx ∈ hA). If δ is a limit
below TO or δ = ∅ then clearly also X(δ) � ∀x(x ∈ hA ⊃ Tx ∈ hA)
and X(δ + 1) � ∀x(x ∈ hA ⊃ Tx ∈ hA). Suppose β = γ + 2 and that
the hypothesis that ∀x(x ∈ hA ⊃ Tx ∈ hA) holds below β. Suppose
so that X(β) � a ∈ hA. Then X(γ) � A(a, hA). But by the induction
hypothesis, X(γ) � ∀x(x ∈ hA ⊃ Tx ∈ hA). From our Observation,
it then follows that X(γ) � TA(x, hA), which in its turn entails that
X(β) � Ta ∈ hA. Hence X(β) � (a ∈ hA ⊃ Ta ∈ hA). By a transfinite
induction it follows that we at the closure ordinal have that X(TO) �

T(a ∈ hA ⊃ Ta ∈ hA), and hence M KIND(hA). Now clearly also
M hA ⊂ H, so that M hA ∈ H.. It follows as a matter of course that
we also have �M ∀x(x ∈ hA ≡ A(x, hA)), so that we have FP.

We show that hA satisfies LEAST . Let β be an ordinal equal to or
below the closure ordinal and assume X(β) � ∀x(A(x, z) ⊃ x ⊂ z). Also,
let β be larger than HT (pKIND(hA)q) (cfr. section 2), so that X(β) �

∀x(x ∈ hA ⊃ Tx ∈ hA). We first show by a transfinite induction on
ordinals γ below β that if X(γ) � a ∈ hA then X(β) � a ∈ z. (1) Let γ =
0 or a limit. Then in the first case not X(γ) � a ∈ hA, so the conditional
holds trivially. In the second case, supposing that X(γ) � a ∈ hA, the
conclusion follows by the induction hypothesis because a ∈ hA holds at
yet smaller ordinals. (2) Let γ = 1 or δ + 1 where δ is a limit ordinal. In
the first case again not X(γ) � a ∈ hA, so the conditional holds trivially.
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The second case is similar to the second case under (1), as it, due to hA

being a manifestation point, entails that X(δ) � a ∈ hA. (3) Let γ = δ+2
and assume that X(γ) � a ∈ hA. It follows that X(δ) � A(a, hA). Now,
reasoning at the meta-level, the set [y : X(δ) � y ∈ hA] is, by the
induction hypothesis, a subset of [y : X(β) � y ∈ z]. Since A(x, y) is a
kind operator positive in y, and X(δ) � A(a, hA), it follows that X(β) �
A(a, z). But X(β) � (A(a, z) ⊃ a ∈ z), so X(β) � a ∈ z. β was taken to
be an arbitrary ordinal equal to or below the closure ordinal and above
HT (pKIND(hA)q). If we assume that X(β) � a ∈ hA it therefore follows
that X(β) � Ta ∈ hA. But if so, X(γ) � a ∈ hA for some ordinal γ below
β, so that by our induction, X(β) � a ∈ z. Putting things together, it
follows that X(β) � ∀z(∀x(A(x, z) ⊃ x ⊂ z) ⊃ (hA ⊂ z)). But β was
arbitrary at or below the closure ordinal and above HT (pKIND(hA)q),
so it follows that X(TO) � T∀z(∀x(A(x, z) ⊃ x ∈ z) ⊃ (hA ⊂ z)) so that
M ∀z(∀x(A(x, z) ⊃ x ∈ z) ⊃ (hA ⊂ z)).

We now first show that a transfinite induction rule, the Bar rule,
holds along good well-founded relations in H. Let ≺= {〈x, y〉 : A(x, y)},
where we shall assume A(x, y) to be such that �M ≺∈ H. Instead of
〈x, y〉 ∈≺ we write x ≺ y. Define:

Progr (≺, B) =D ∀x(∀y(y ≺ x ⊃ B(y)) ⊃ B(x))
Progr (≺, z) =D ∀x(∀y(y ≺ x ⊃ y ∈ z) ⊃ x ∈ z)
W (≺, u) =D ∀z(Progr (≺, z) ⊃ u ∈ z)
WF (≺) =D {u : W (≺, u)}

The transfinite induction rule, or Bar rule, we show is: M a ∈ WF (≺)
only if M (Progr(≺, B) ⊃ B(a)). Suppose the contrary X(TO) � Ta ∈
WF (≺) and X(TO) � ∽T(Progr (≺, B) ⊃ B(a)). The first means that
X(TO) � T∀z(Progr (≺, z) ⊃ a ∈ z), i.e. that X(TO) � T∀z((∀x(∀y(y ≺
x ⊃ y ∈ z) ⊃ x ∈ z) ⊃ a ∈ z). The second means that there is an
unbounded set of ordinals δ below TO such that X(δ) � Progr (≺, B) ∧
∽B(a). Spelled out this means that X(δ) � ∀x(∀y(y ≺ x ⊃ B(y)) ⊃
B(x)) ∧ ∽B(a). But then it follows that X(δ + 1) � T(∀x(∀y(y ≺
x ⊃ B(y)) ⊃ B(x)) ∧ ∽B(a)). From LO1M and LO7M we get that
X(δ + 1) � ∀x(T∀y(y ≺ x ⊃ B(y)) ⊃ TB(x)) ∧ T∽B(a)). Since
δ + 1 is a successor ordinal, the Barcan-principle (LO10m) holds, so
that X(δ + 1) � ∀x(∀yT(y ≺ x ⊃ B(y)) ⊃ T∀y(y ≺ x ⊃ B(y))).
Combined with LO2M it follows that X(δ + 1) � ∀x(∀yT(y ≺ x ⊃
B(y)) ⊃ TB(x))∧∽TB(a)). As δ+1 is a successor ordinal and M ≺∈ H
we have that X(δ + 1) � (y ≺ x ⊃ TB(y)) ≡ T(y ≺ x ⊃ B(y)). From
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this we obtain X(δ +1) � ∀x(∀y(y ≺ x ⊃ TB(y)) ⊃ TB(x))∧∽TB(a)).
Using comprehension, this means that X(δ+1) � ∀x(∀y(y ≺ x ⊃ y ∈ {u :
B(u)}) ⊃ x ∈ {u : B(u)}) ∧ a /∈ {u : B(u)}. But, as we have supposed
M a ∈ WF (≺), X(TO) � T∀z(∀x(∀y(y ≺ x ⊃ y ∈ z) ⊃ x ∈ z) ⊃ a ∈ z),
so we also have that X(δ + 1) � ∀z(∀x(∀y(y ≺ x ⊃ y ∈ z) ⊃ x ∈ z) ⊃
a ∈ z). Instantiating with {u : B(u)} for z we have a contradiction. So
the Bar-rule is valid.

If also �M WF (≺) ∈ H we can moreover show that full Bar-
Induction M ∀x(x ∈ WF (≺) ⊃ (Progr (≺, B) ⊃ B(x))) holds. It
is worth pointing out that �M ≺∈ H suffices for ∀x(x ∈ WF (≺) ⊃
(Progr (≺, B) ⊃ B(x))), and so in combination with the Bar-rule there is
little that goes amiss compared with the strength of full Bar-induction.
Nonetheless, it would be of interest to know whether �M ≺∈ H entails
�M WF (≺) ∈ H or not. If the answer is no, it would be of interest to
know of counterexamples.

Since M hA ∈ H iterations of such fixed-points are allowed as in
the theory of finitely iterated inductive definitions ID<ω. By established
results of proof theory this shows that librationism accommodates Π1

1 −
CA0 in the sense of what can be proved maximally in H. Possibly, the
precise gauge here is Π1

1 −CA as the condition A(x, y) allows goods from
H as parameters.

11. Closures of Paradox

We have seen how librationism deals with Russell’s paradox, in that we
both have that  r ∈ r and  r /∈ r, i.e. m r /∈ r for Russell’s sort
r = {x : x /∈ x}. We will now discuss how librationism deals with a
selection of other and some more complicated paradoxes.

The Liar paradox can be treated in a way very much like Russell’s
paradox if we extend our language with a bijection from N to V and
with a truth predicate, as well as with an Axiom of Truth which links
the truth predicate with the truth operator T in the appropriate way.

The Curry paradox has deservedly captured much attention since its
inception. In librationism it has a somewhat surprising resolution. Let
F be any sentence, and define c = {x : x ∈ x ⊃ F}. LO8m and alethic
comprehension gives us  c ∈ c ⊃ (c ∈ c ⊃ F ). But M (c ∈ c ⊃
(c ∈ c ⊃ F )) ⊃ (c ∈ c ⊃ F ), so by modus subiunctionis it follows that
 (c ∈ c ⊃ F ). By modus ascendens we get  T(c ∈ c ⊃ F ), and so next
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 c ∈ c follows from alethic comprehension by modus subiunctionis. So
we have that both  c ∈ c and  c ∈ c ⊃ F for any arbitrary sentence
F . Now,  c ∈ c being a theorem, it must either be a minor or a
maxim. If M c ∈ c, we easily derive that F is a maxim, i.e. M F .
If c ∈ c is a minor (m c ∈ c), it follows that ∽F is a theorem. For
then also m c /∈ c so by alethic comprehension and modus subiunctionis
 ∽T(c ∈ c ⊃ F ) and hence by modus scandens and modus descendens,
 c ∈ c ∧ ∽F . By tautologies and modus subiunctionis,  ∽F . It
follows, by parity of reasoning, that for any sentence F , either F is a
maxim, F (and hence also ∽F ) is a minor, or ∽F is a maxim. But in
our contentual framework this is perfectly as it should be; remember our
observation that librationism is negation (negjunction) complete at the
end of section 2.

We will now discuss a paradoxicality related to an observation in [14].
Let N as usual be the sort of natural numbers as defined earlier, and let
the use of ′ as superscript signify ordinal succession. Let, for any sort s,
sN be given by:

{x : ∀y(〈∅, s〉 ∈ y ∧ ∀z, w(〈z, w〉 ∈ y ⊃ 〈z′, {u : u ∈ w}〉 ∈ y) ⊃ x ∈ y)}

(Remember that extensionality fails in librationism, and w is generally
distinct from {u : u ∈ w}.) Let r = {x : x /∈ x}, t = {x : x =
r ∧ x /∈ x ∧∽Tx ∈ x} and > be the usual order on the natural numbers.
Let B(x) be the sentence (x ∈ N ⊃ ∃y(y > x ∧ ∃w(〈y, w >∈ tN ∧
r ∈ w))). If we now for any limit-ordinal α (under the closure ordinal)
consider the limit-ordinal β such that β = α + ω, we will (and we leave
this as an exercise) realize that X(β) � ∀xTB(x) while also X(β) �

∽T∀xB(x). So not X(TO) � T(∀xTB(x) ⊃ T∀xB(x)). In consequence
this also clarifies why only a minor schema of the Barcan-formula can be
assumed in librationism. Now, our construction also reveals that X(TO) �
∽T∽∀xTB(x) and X(TO) � ∽T∀xTB(x). So m ∀xTB(x). But also
X(TO) � T∃x∽B(x) (exercise), so M ∃x∽B(x). By R4 we now have
that M T∃x∽B(x). Using modus maximus with LO2M we obtain M

∽T∀xB(x). But then, it is not the case that  T∀xB(x), and a fortiori
not the case that m T∀xB(x). So we have that m ∀xTB(x) and
not  T∀xB(x) (and hence also not m T∀xB(x)). Consequently R10

cannot be strengthened in such ways as one would intuitively suspect.
It is with intricacies such as in this paragraph that librationism evades
omega inconsistencies. Importantly, librationism is omega complete, and



358 Frode Bjørdal

avoids the type of omega inconsistency encountered e.g. in the Friedman-
Sheard logic of truth.

Another curious phenomenon arises in connection with the fact that
the inference rule M T∃xA only if M ∃xTA is not generally valid. To
see this, the reader is left to realize that X(TO) � T∃x(x = ∅ ≡ r ∈ r),
where r is again Russell’s sort. But also X(TO) � ∽∃xT(x = ∅ ≡ r ∈ r),
and as a consequence X(TO) � ∽T∃xT(x = ∅ ≡ r ∈ r) by Theorem
2(vi). So M T∃x(x = ∅ ≡ r ∈ r) and not M ∃xT(x = ∅ ≡ r ∈ r) in
this exotic case.

The first paradox to receive attention in the modern mathematical
literature on these was that of Burali-Forti which concerned itself with
well-orderings. We will point out some distinctive features in the way
librationism tackles this challenging paradox.

In order to emulate von Neumann ordinals, we utilize the fact that
goods in H are well-founded, and define the sort of ordinals by

M ∀x(x ∈ Ord ≡ x ∈ H ∧ Tr(x) ∧ ∀y(y ∈ x ⊃ Tr(y))).

(Here Tr(x) is short for ∀y(y ∈ x ⊃ ∀z(z ∈ y ⊃ z ∈ x)).)
Since H is non-extensional, we need to make use of bi-simulation in

order to recapture standard information on good ordinals. Let (global)
bi-similarity ≅ be given by the manifestation point

�M ∀x(x ∈ ≅ ≡ TT∃u, v(x = 〈u, v〉 ∧ ∀w(w ∈ u ⊃
∃z(z ∈ v ∧ 〈w, z〉 ∈ ≅)) ∧ ∀w(w ∈ v ⊃ ∃z(z ∈ u ∧ 〈w, z〉 ∈ ≅)))).

Instead of 〈u, v〉 ∈ ≅ we write u ≅ v. Define aηb =D ∃c(a ≅ c∧c ∈ b).
For relations between good ordinals one writes α ≺ β instead of αηβ.
We can now establish e.g. that if M α,β ∈ Ord then M α ≺ β ∨ α ≅

β ∨ α ≻ β. Further principles of ordinal arithmetic similarly depend
upon the condition that the ordinals are good.

The Burali-Forti paradox is resolved in the context of librationism
because Ord itself is paradoxical and so not good; we e.g. have that
m å ∈ Ord.

12. Closures of Mathematical Phenomena

Since librationism is a contentual system which is negation complete,
it may seem somewhat malapropos to compare its strength to formal
systems such as Peano arithmetic and Π1

1 − CA. E.g., as librationism
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accommodates the omega-rule, as a special instance of the Z-rule, it has
no proof theoretic ordinal. Let the information strength of a system
S be the set of sentences Σ such that σ ∈ Σ iff S entails or contains
that σ and does not entail or contain that ∽σ. A trivial system which
entails everything will then have no information strength, and also a
system S which has no theorems will have zero information strength.
Some systems will have incomparable information strengths. Maxi-
mally consistent sets of sentences have maximal information strength;
however, such sets in the language of librationism cannot preserve suf-
ficiently many of our pretheoretic intuitions concerning abstraction and
truth. Librationism is geared to have as much information strength as
possible while also providing a considered account of theoremhood and
paradoxicality which preserves as many of our pretheoretical intuitions
as possible. Its tremendous information strength follows from its be-
ing arithmetically complete and extending Weak König Lemma which is
equivalent over RCA0 to Gödel’s Completeness Theorem. It follows from
this that any consistent first order formal theory has a countable model
in librationism. So librationism has greater information value than any
consistent first order formal theory. But such information strength is
immensely obscured, and will also predominately depend upon delicate
issues of interpretation. It is therefore of interest to consider revealed

information strength as various formal theories may gain a librationist
justification in that manner. Our discussion in section 10 has established
that the revealed information strength of librationism is greater than
that of Π1

1 − CA0 plus ordinary Bar-Induction. Recent work of the au-
thor suggests, as is to be expected, that the revealed information strength
of librationism will be significantly increased. Notice that according to
librationism no mathematical problem is absolutely unsolvable.

13. Concluding Words

We gain closure on something, e.g. grief, when we have come to accept
the reason for it and manage to live with it without being paralyzed or
made powerless by it. In this way, it seems to the author that libra-
tionism offers closure in our dealings with paradoxes. In the librationist
framework we are able to accommodate paradoxes and accept their exis-
tence without giving up on the highly important inventory of our intellec-
tual heritage, such as classical logical theorems and the means to sustain
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advanced reasoning. As pointed out in our motivation of librationism’s
name, the theory on offer here deals with paradoxical phenomena in a
way which does justice to the shifts in perspectives which are involved in
our reasoning in such contexts. Importantly, librationism achieves this
without falling prey to revenge paradoxicalities.

Closures in mathematics abound in another sense. Many sets, or
sorts in our context, may be regarded as e.g. the least sort containing
this and closed under that. Our manifestation-points offer another way
of obtaining similar, or related, closure. Other constructions available
may be regarded in similar ways. From what we have pointed out,
librationism offers an alternative foundation of mathematics with great
potential for closure.

Acknowledgement: The author wishes to express gratitude to an anony-
mous referee for suggestions and inquiries which helped improve the
paper.
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