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Abstract— In a previous paper the authors argued the case
for incorporating ideas from innate immunity into artificial
immune systems (AISs) and presented an outline for a concep-
tual framework for such systems. A number of key general
properties observed in the biological innate and adaptive
immune systems were highlighted, and how such properties
might be instantiated in artificial systems was discussed in
detail. The next logical step is to take these ideas and build a
software system with which AISs with these properties can be
implemented and experimentally evaluated. This paper reports
on the results of that step - thelibtissue system.

I. I NTRODUCTION

libtissue is a software system for implementing and
evaluating AIS algorithms on real-world monitoring and
control problems. AIS algorithms are implemented as multi-
agent systems of cells, antigen and signals interacting within
tissue compartments. Input data is provided by sensors which
monitor a system under surveillance, and cells are actively
able to affect the monitored system through response mech-
anisms.libtissue provides ageneral implementational
framework within which many different AIS algorithms can
be instantiated, rather thanc [1].libtissue is being used
at the University of Nottingham to explore the application of
a range of novel immune-inspired algorithms to problems in
intrusion detection.

A brief review of the biological and conceptual views that
underpin the design oflibtissue is given in Section II,
more detailed background information can be found in a
previous paper [2]. This is then followed by a detailed
description of thelibtissue implementation in Section III.
libtissue has grown into a fairly complex software system
and its use is better understood in the context of examples.
Thus, Section IV shows howlibtissue can be applied to
a real-world problem in computer security, and Section V
describes the implementation of a simple example algorithm
usinglibtissue. An analysis and evaluation of this algo-
rithm are then presented in Section VI. The paper concludes
with a brief summary and discussion of future work in
Section VII.

II. A PPLYING INNATE IMMUNITY

In a previous paper [2] the authors describe several biolog-
ical processes in detail and then discuss these biological pro-
cesses at a conceptual level. This biological and conceptual
view of the immune system forms the foundation upon which
thelibtissue implementation is built, and a brief summary
is given here. The reader is referred to [2] and [3] for further
discussions and explanations of the biological terminology.
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The biological immune system is a complex system of
cells of different types interacting with each other and the
tissue in which they reside. The key elements of the system
are cells, signals and antigen, combined with the environ-
ment, tissue. Cells have access to their environment through
antigen and signals. Essentially, signals provide cells with
information on thebehaviourof entities in their environment,
while antigen provides cells with information on thestructure
of these entities. In the biological system structure reflected at
an antigenic level and behaviour at a signal level are tightly
coupled. If the behaviour of a cell changes then so does
its antigen profile and vice versa. Part of the motivation for
the research presented here comes from a desire to better
understand how information from these two levels determines
the dynamics of the immune system.

As well as providing information on behaviour, signals
also provide a control mechanism for immune system cells.
The behaviour of a single cell is determined by complex
signalling networks which are actively maintained between
cells. A cell’s behaviour can be seen in terms of the functions
a cell performs. Of particular interest are the functions
of antigen processing, signal processing, cellular binding,
antigen matching and antigen response. Simple antigen pro-
cessing consists of two steps: antigen ingestion and antigen
presentation. During ingestion, antigen is transfered from
the extracellular space to the interior of the cell. During
presentation, internalised antigen is displayed on the surface
of the cell. Additional manipulation of the antigen whilst
inside the cell is also possible. A specialised class of cells
called APCs performs antigen processing in the body. Signal
processing refers to the ability of a cell to have its behaviour
influenced through the level of a signal, such as a cytokine
or hormone in the extracellular space. Control of DCs by
PAMPs and Danger Signals, or of T helper cells by DCs
provide good examples of this.

While signals allow cells to influence each other without
coming into contact, many immune system processes involve
interactions between cells which require contact. Cells bind
with each other through the action of adhesion molecules
and receptors on their surfaces. Antigen matching, the ability
of certain classes of receptors, for example TcRs, to only
be activated by specific patterns of antigen is one example
of this. Antigen matching within a particular context leads
to cells mounting a response, such as the initiation of the
complement cascade. This response has an impact on the
environment, causing other cells to change their behaviour,
and so their structure, and closes the loop between cell and
environment.



III. SYSTEM IMPLEMENTATION

The aim of the research presented here is to build a
software system which allows researchers to implement and
analyse novel AIS algorithms and apply them to real-world
problems. This clearly translates into three separate areas of
functionality: algorithm implementation, algorithm analysis
and algorithm application. This section begins by describing
how the overall architecture oflibtissue delivers these
functionalities. It then goes on to present in as much technical
detail as space permits how these functionalities have actually
been implemented.
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Fig. 1. The architecture oflibtissue. libtissue clients monitor a host
and provide input data to alibtissue server and AIS algorithm. Clients
also allow algorithms to change the state of the monitored host.

libtissue has a client/server architecture pictured in
Figure 1. An AIS algorithm is implemented as part of a
libtissue server, andlibtissue clients provide input
data to the algorithm and response mechanisms which change
the state of the monitored system. This client/server architec-
ture separates data collection by thelibtissue clients from
data processing by thelibtissue servers and allows for
relatively easy extensibility and testing of algorithms onnew
data sources.libtissue is coded in C as a Linux shared
library with client and server APIs, allowing new antigen
and signal sources to be easily added tolibtissue servers
from a programmatic perspective. Becauselibtissue is
implemented as a library, algorithms can be compiled and
run on other machines with no modification. Client/server
communication is socket-based, allowing clients and servers
to potentially run on separate machines, for example a signal
or antigen client may in fact be a remote network monitor.

AIS algorithms are implemented within alibtissue
server as multiagent systems of cells. Cells exist within
an environment, called a tissue compartment, along with
other cells, antigen and signals. The problem to which the
algorithm is being applied is represented bylibtissue
as antigen and signals. Cells express various repertories of
receptors and producers which allow them to interact with
antigen and control other cells through signalling networks.
libtissue allows data on implemented algorithms to be
collected and logged, allowing for experimental analysis of
the system.

A. libtissue clients

libtissue clients are of three types: antigen, signal and
response. Antigen clients collect and transform data into anti-
gen which are forwarded to alibtissue server. Currently,
a systrace antigen client has been implemented which
collects process system calls (syscalls) usingsystrace [4].
Syscalls are a low-level mechanism by which applications
request system services such as peripheral I/O or memory
allocation from an operating system. Signal clients monitor
system behaviour and provide an AIS running on the tissue
server with input signals. A process monitor signal client,
which monitors a process and its children and records
statistics such as CPU and memory usage, and a network
signal client, which monitors network interface statistics such
as bytes per second, have been implemented. Two response
clients have been implemented, one which simply logs an
alert, and another which allows an active response through
the modification of asystrace syscall policy. All of these
clients are designed to be used in realtime experiments and
for data collection for offline experiments withtcreplay.

The implementation is designed to allow varied AIS algo-
rithms to be evaluated on real-world, realtime systems and
problems. When testing IDSs it is common to use preexisting
datasets such as the Lincoln Labs dataset [5]. However, the
projectlibtissue has been built for is focused on combin-
ing measurements from a number of different concurrent data
sources. Preexisting datasets which contain all the necessary
sources are not available. Therefore, to facilitate experimen-
tation, a libtissue replay client, calledtcreplay, was
also implemented. This client reads in log files gathered from
previous realtime runs of antigen and signal clients, and also
has the facility to read logfiles generated bystrace [6].
It then sends these logs to alibtissue server. Variable
replay rates are available, allowing data collected from a
realtime session to be used to perform many experiments
quickly. Having such a replay facility is important in termsof
reproducibility of experiments. In this paper, all experimental
runs are scripts which take data and parameter files as input
and run a tissue server andtcreplay client.

B. libtissue servers

A libtissue server is in fact several threaded pro-
cesses running asynchronously. An initialisation routineis
first called which creates a tissue compartment based on
user-supplied parameters. During initialisation a threadis
also started to handle connections between the server and
libtissue clients, and this thread itself starts a separate
thread for each connected client. After initialisation, cells,
the characteristics of which are specified by the user, are
created and initialised, and the tissue compartment populated
with these cells. Cells in the tissue compartment then cycle
and input data is provided by connectedlibtissue clients.

1) Tissue compartments:Thelibtissue server provides
a multiagent simulation engine in which AIS algorithms
can be implemented. At the centre of this simulation is the
concept of a tissue compartment. A tissue compartment is



the environment in which cells, signals and antigen interact.
As well as housing cells, the maximum number of which is
determined by themax cells parameter, each tissue compart-
ment has a fixed-size antigen store, set by themax antigen
parameter, where antigen provided bylibtissue clients is
placed. The tissue compartment also stores a fixed-number
of signals, set by themax cytokines parameter, the levels of
which are set either by signal tissue clients or cells.

Input data can undergo some preprocessing before entering
a tissue compartment. As well as representing the target-
domain problem as antigen and signals, one of the roles of
libtissue is to frame it in a “more biological” way in the
following sense. The biological systems which biologically-
inspired algorithms are based upon are specific for a par-
ticular environment with particular characteristics. Forthe
immune system these characteristics include rate of antigen,
uniqueness of antigen and antigen turnover.libtissue

implements these functions by allowing the preprocessing
of data fromlibtissue clients before it enters the tissue,
controlled by a number of user-defined parameters. The
antigen multiplier parameter determines the number of copies
of an incoming antigen placed into the tissue antigen storage.
It was found necessary to have such a parameter since, as
will be seen, datum in real-world problems often occur at
a low frequency. Biologically, it is the case that a certain
level of antigen is necessary to simulate the system, this is,
a single unique antigen will not perturb the immune system
much. Seen from the level of the pathogen, which is made up
of repeated protein structures and reproduces itself multiple
times, this is also clear. The multiplicity of antigen seemsto
be an important property of the biological immune system. In
essence, theantigen multiplier parameter allowslibtissue
to emulate this property for problems which have differing
degrees of multiplicity in their input data, and its value is
therefore problem dependent.

Another important concept related to antigen multiplicity
is that of antigen persistence. In the biological system indi-
vidual antigen do not persist indefinitely, but instead there is
a turnover of antigen. This is provided for bylibtissue
on one level through the limitation of the size of a tissue
compartment’s antigen store by themax antigen parameter,
and can be seen by tracing the transit of antigen that are
received by alibtissue server. After preprocessing by the
libtissue server as detailed above, new antigen, multiplied
by the antigen multiplier parameter, will simply overwrite
existing antigen. Antigen is then transferred from the tissue
to the internal antigen store of cells with antigen receptors.
From the internal store antigen is transferred to antigen
producers on these cells, where it persists for a user-defined
time period before being removed. Users can also remove
antigen from a cell’s store in the cell cycle callback. These
factors combine to create a turnover of antigen in the tissue,
with antigen entering and eventually being removed.

Even when composed of relatively small numbers of
simple actors, the behaviour of multiagent systems is often
difficult to understand. While formal analysis is possible, an

experimental approach is more often adopted.libtissue

implements probes which periodically sample and log data
from a tissue compartment. Sampling is necessary, since
even with simple algorithms such as the one described in
Section V below it is infeasible in terms of storage space and
performance to log all of the data produced. Additionally,
since any experiment will require only certain data, the
details of what is logged are left to the user, who provides
a probe callback function. The rate at which this callback is
run, and so the rate at which data is sampled, is defined by
the probe rate parameter. Probes allow data to be efficiently
gathered and ease the experimental evaluation of algorithms.

2) libtissue cells:libtissue cells, like tissue compart-
ments, have antigen and signal stores, the sizes of which
are set by thenum antigen and num cytokines parameters.
They also have a number of different receptors and producers
which allow them to interact with others cells, antigen and
signals in the tissue compartment. Currently, four types of
receptors have been implemented: antigen, cytokine, cell
and VR receptors. Antigen receptors allow cells to transfer
antigen from the tissue compartment to their own internal
antigen store. Cytokine receptors allow cells to read signal
levels in the compartment. Cell receptors allow cells to bind
to other cells. Binding is necessary for VR receptors to be
activated, which match antigen presented on another cell.
Antigen from a cell’s internal store are presented on antigen
producers, one of the three types of producers currently
implemented. The other two types, response and cytokine
producers, allow cells to communicate with response clients,
and to change signal levels in the tissue compartment and
hence control the behaviour of cells with cytokine receptors
respectively.

While libtissue provides the basic building blocks
for modelling biological cells in terms of receptors and
producers, the details of their actual configuration on cells
and how cells behave in response to them is specified by the
user.libtissue implements a simple scheduler which is
periodically called at a rate defined by thecell update rate
parameter. When called, the scheduler, taking the cells in a
random order, first sets the values of the receptors for all
of the cells. A user-defined cell cycle callback function is
then executed for each cell. This function is essentially the
controller for the cell, and determines how the actions of its
receptors and producers are related. Once all of the callbacks
have been run, the scheduler updates the tissue compartment
according to cells’ antigen producers. This design, since the
cell cycle callback is in fact an arbitrary C function, means
that cells can have complex behaviours. The specific action
and parameters of the various producers and receptors is now
described in more detail.

Antigen receptors allow the transfer of antigen from the
tissue compartment’s antigen store to the internal store of
a cell. Transfered antigen is removed from the tissue com-
partment. For each antigen receptor a cell has, a random
location in the tissue antigen store is chosen. If the location
contains no antigen then none is transfered for that receptor.



A random location is picked in the cell’s antigen store into
which to transfer the tissue antigen. If this location contains
a previously transfered antigen then it is overwritten by the
incoming antigen. Clearly, both the parameter settings forthe
size of the tissue and cell antigen compartments,max antigen
andnum antigen respectively, as well as the rate of incoming
antigen to the tissue compartment, will affect the overall rate
at which antigen is transferred from the tissue compartment
to the internal antigen store of cells.

Cytokine receptors allow cells to read the values of the
signals stored in the tissue compartment, which are set
by libtissue signal clients or cells themselves through
cytokine producers. As well as providing a control mech-
anism for cells, cytokine receptors are designed to give
cells sensitivity to external signals. Cytokine receptorsare
initialised as receptive to a specific tissue cytokine and at
each iteration the value of this cytokine is copied to the
receptor. This value is available for use during the user-
specified cell cycle callback, and can, for example, affect
the value of an internal cytokine or be used to determine the
range of receptors a cell expresses.

Cell receptors model the concept of cellular binding
in libtissue and enable cells to restrict some recep-
tor/producer interactions. A cell receptor can be specific for
a cell of a particular type. At each time step a random index
in the tissue compartment’s cell store is chosen for each cell
receptor. If a cell of the same type as the cell receptor exists
at that index then that cell’s index is copied to the receptor.
Only when a cell is bound can certain other receptors, such
as VR receptors, be activated.

VR receptors allow antigen presented on antigen producers
to be matched. A VR receptor is the lock part of a lock-and-
key type receptor mechanism. The lock is opened, that is
the receptor activated, by certain antigen, the keys, which
are presented on antigen producers of other cells. The exact
structure of the locks and keys and the matching criteria
chosen to establish which keys fit which locks is problem
dependent.libtissue provides for this by allowing the user
to specify the lock and key structure and matching in user-
defined callback functions. VR receptors enablelibtissue

cells to perform antigen matching.

Antigen producers take antigen and make it available for
inspection by other cells through VR receptors. Antigen
producers work much like antigen receptors except that they
transfer a randomly chosen antigen if available from a cell’s
internal store to the antigen producer itself. The antigen is
removed from the cell’s store and replaces any antigen which
may already be on the antigen producer. This transfer and
overwriting, when combined with antigen receptors, allows
antigen to be passed through the system from tissue to cell to
an antigen producer on a cell and so to eventual destruction.
The parameter settings for the number of antigen receptors
and producers a cell has, along with the size of the cell’s
antigen store, affect how quickly this process takes place.
One further parameter is available which has proved useful
in controlling this process. Antigen producers have an action

time which determines the number of cell cycles an antigen
is displayed for on the producer. While an antigen is being
displayed, it cannot be overwritten by other antigen. Together
with antigen receptors, antigen producers give a cell the
ability to process antigen.

Cytokine producers allow signals stored in the tissue
compartment to be set. At each time step the value on the
cytokine producer affects the value to the corresponding
cytokine in the tissue compartment. Since the values of
cytokines can also be read by other cells, cells equipped with
both cytokine receptors and producers are capable of signal
processing and can form complex signalling networks. Re-
sponse producers allow cells to send messages tolibtissue

response clients and so actively affect the systems they are
monitoring. The semantics of the message and its actual
effects are determined by user-supplied callbacks. In this
paper, only a simple response producer which logs a mes-
sage is considered. Active responses in combination with
libtissue response clients are also possible. If the action
of response producers is linked to cytokine and VR receptors
in the cell cycle callback then cells can be made to respond
to antigen in a selective way.

IV. A N EXAMPLE PROBLEM

The architecture described in the previous section allows
AIS algorithms to be implemented and experimentally eval-
uated fairly easily, and an example algorithm will shortly be
given. First, this section addresses howlibtissue can be
used to test algorithms on realistic data derived from real-
world problems. A brief review of a real-world intrusion
detection problem is now presented, followed by a short
description of the datasets gathered for this problem.

Fundamentally, anomaly detection in intrusion detection
rests on the idea of a normal profile of behaviour, deviations
from which are considered as attacks [7]. It is attractive in
that it allows novel attacks to be detected so long as one can
determine to a sufficient degree of accuracy what is normal.
Errors occur when instances of normal behaviour are seen
as attacks, the false positive rate, or when attacks are seen
as normal behaviour, the false negative rate. Reducing the
false positive rate of anomaly detection systems is currently
a key area of research in intrusion detection. Process anomaly
detection is a specific example of one such anomaly detection
problem. Several process anomaly detection systems have
been built on the idea of using syscalls to monitor the be-
haviour of processes. Research such as [7] and [8] has shown
that this avenue is promising, especially when combined with
other sources of data such as context signals. Systems such
as systrace [4] have also been implemented which allow
process behaviour to be controlled through syscall policies.

In order to gather data for the process anomaly detection
problem a small experimental network with three hosts
was set up. Pairs ofstrace and process monitor logs
were collected on the instrumented target machine while
rpc.statd was utilised in a number of different scenarios.
These logs were then parsed to form a singletcreplay

logfile for each of the scenarios. An antigen entry in the



tcreplay log was created for every syscall recorded in the
strace log. A signal entry was created for each recording
of CPU usage in theprocess monitor log. While the
strace log actually contains much more information, the
use of just the syscall number is more than sufficient for
testing the example algorithm described in the next section.
It would be expected that a more complex algorithm would
require additional complexity in both the antigen and rangeof
signals it is provided with, such as the addition information
about syscall arguments, sequences of syscalls, or instruc-
tion pointer address. A larger number of datasets would
also be necessary to statistically validate an algorithm. The
monitored scenarios are divided into three groups based on
whether the type of interaction with therpc.statd server
is a successful attack, a failed attack, or normal usage.

V. A N EXAMPLE ALGORITHM

This section describes an example AIS algorithm called
twocell implemented usinglibtissue. The algorithm
is primarily intended to evaluate the initiallibtissue
implementation, and also as an explanatory aid to help the
reader understand how the fairly complex system described
in Section III is used to actually implement an algorithm.
For this reason the functions and interactions of the cells
in the example are kept fairly simple. This simplicity will
of course limit the algorithm’s overall performance on the
problem when compared to existing solutions. On the other
hand it allows for the behaviour of the algorithm to be traced
at an in-depth level, the results of which are presented in
Section VI below. This also makes the algorithm a useful tool
for testing and evaluation of thelibtissue implementation
itself. Other papers such as [9] focus on more complex
algorithms developed withlibtissue.

A. the twocell algorithm
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Fig. 2. The two different cell types implemented intwocell.

The cells intwocell, shown in Figure 2, are of two types,
labelled Type 1 and Type 2, and each type has different
receptor and producer repertories, as well as different cell
cycle callbacks. Type 1 cells are designed to emulate two
key characteristics of biological APCs: antigen and signal
processing. In order to process antigen, each Type 1 cell is
equipped with a number of antigen receptors and producers.
A cytokine receptor allows Type 1 cells to respond to the
value of a signal in the tissue compartment. Type 2 cells
emulate three of the characteristics of biological T cells:

cellular binding, antigen matching, and antigen response.
Each Type 2 cell has a number of cell receptors specific for
Type 1 cells, VR receptors to match antigen, and a response
producer which is triggered when antigen is matched. Type 2
cells also maintain one internal cytokine, an integer whichis
incremented every time a match between an antigen producer
and VR receptor occurs. If the value of this cytokine is still
zero, that is no match has occurred, after a certain number
of cycles, set by thecell lifespan parameter, then the values
of all of the VR receptor locks on the cell are randomised.
Settings for the various parameters are given in Table I.

TABLE I

THE libtissue PARAMETER SETTINGS USED FORtwocell.

max antigen 1000

max cytokines 0

max cells 100

cell update rate (µsecs) 100000

antigen multiplier 10

num cells 1 50

num antigen 1 100

num antigen receptors 1 10

num antigen producers 1 10

antigen producer action time 10

num cells 2 50

cell lifespan 2 100

num cell receptors 2 2

num vr receptors 2 20

num response producers 2 1

probe rate (µsecs) 1000000

A tissue compartment is populated with a number of Type
1 and 2 cells. Antigen and signals in the compartment are
set bylibtissue clients based on the syscalls a process is
making and its CPU usage. Type 1 and 2 cells have different
cell cycle callbacks. Type 1 cells ingest antigen through their
antigen receptors and present it on antigen producers. The
period for which the antigen is presented is determined by a
signal read by a cytokine receptor on these cells, and so can
be made dependant upon CPU usage. Type 2 cells attempt
to bind with Type 1 cells via their cell receptors. If bound,
VR receptors on these cells interact with antigen producers
on the bound Type 1 cell. If an exact match between a VR
receptor lock and antigen producer key occurs, the response
producer on Type 2 cells produces a response, in this case a
log entry containing the value of the matched receptor.

VI. RESULTS

One of the goals oflibtissue is to allow algorithms to
be experimentally evaluated and tested. The aim of this sec-
tion is to highlight through a handful of simple experiments
the methodology employed when attempting to understand
the dynamics of algorithms implemented withlibtissue
and when testing them on a real-world problem.twocell is
used for this purpose and its behaviour is examined when
applied to six datasets. The first experiment looks at a



number oftwocell runs, while the second takes one run
and examines it more closely. The third evaluates the per-
formance of a syscall policy generated bytwocell. During
these experiments, in order to more clearly understand the
dynamics oftwocell, the cytokine receptor on Type 1 cells
is disabled, thus makingtwocell unresponsive to the CPU
usage external signal. The final experiment returns to the
question of signals and compares the effect the addition of
the signal has on the dynamics oftwocell. The parameters
given in Table I were used for all experiments, which were
carried out on a 2GHz AMD64 Turion laptop running Linux.
Runs used on average around 1%, and never more than 3%,
of the available CPU resources.

TABLE II

THE NAIVE SYSCALL POLICY AND THE AVERAGE twocell POLICY

GENERATED FROM THEnormal1 AND normal2 DATASETS.

syscall freq mean sd cv
chdir(12) 2 0.07 0.26 371

execve(11) 2 0.07 0.26 371
personality(136) 2 0.07 0.34 485

setsid(66) 2 0.07 0.34 485
fork(2) 2 0.10 0.37 370
write(4) 2 0.10 0.37 370

send(309) 2 0.15 0.56 373
time(13) 2 0.15 0.40 266

fstat64(197) 2 0.17 0.52 305
lseek(19) 2 0.17 0.42 247

fsync(118) 2 0.25 0.80 365
getrlimit(191) 2 0.28 0.67 320

listen(304) 2 0.28 0.63 239
select(142) 3 0.57 1.48 225

gettimeofday(78) 4 0.50 0.85 276
getsockname(306) 4 0.53 1.47 170

exit(1) 4 0.55 1.38 277
uname(122) 4 0.75 1.91 250

stat(106) 4 0.80 2.58 259
connect(303) 5 1.60 2.48 254
getdents(141) 8 0.20 0.73 322
mprotect(125) 8 0.47 1.30 185

poll(168) 8 0.90 1.67 224
sendto(311) 9 0.95 2.13 225

recvfrom(312) 9 2.45 3.68 233
rt sigaction(174) 10 0.97 2.19 155

getpid(20) 10 1.60 2.28 142
fcntl(55) 12 1.18 2.76 268
bind(302) 12 1.68 4.51 200

munmap(91) 15 1.88 3.77 225
brk(45) 16 2.25 3.78 168

fstat(108) 23 2.33 4.45 229
ioctl(54) 24 2.73 4.67 190

socket(301) 25 3.10 4.97 150
old mmap(90) 27 1.90 4.29 171

read(3) 27 2.25 5.17 160
open(5) 30 5.95 7.75 130
close(6) 557 19.43 27.03 139

In experiments it is important to have a baseline with
which to compare algorithmic performance. In terms of
syscall policies such a baseline can be generated and is here
termed anaive policy. A naive syscall policy is generated
for a process, such asrpc.statd, by recording the syscalls

TABLE III

THE SYSCALL POLICY GENERATED BYtwocell FOR THEnormal2

DATASET AND THE FREQUENCY OF RESPONSE FOR EACH SYSCALL.

syscall frequency

gettimeofday(78) 1

listen(304) 1

send(309) 1

select(142) 2

poll(168) 3

recvfrom(312) 8

fcntl(55) 9

fstat(108) 9

open(5) 22

close(6) 34

it makes under normal usage, as in thenormal1 and nor-
mal2 datasets. A permit policy statement is then created
for all syscalls seen. This baseline is not too unrealistic
when compared to how current systems such assystrace

automatically generate a policy. The first column of Table II
shows the permitted syscalls (syscall number given in brack-
ets) in such a naive policy generated from thenormal1 and
normal2 datasets. The frequency with which each syscall was
observed at combined over the two datasets is given in the
second column, as this will be useful for further analysis.

Similarly to the naive policy, one way in whichtwocell
can be used is to generate a syscall policy by running it
with normal usage data during a training phase. During the
run, responses made by Type 2 cells are recorded. At the
end of each run, a syscall policy is created by allowing only
those syscalls responded to, and denying all others. Since
interactions inlibtissue are stochastic, looking at the
average results over a number of runs helps to understand the
behaviour of implemented algorithms. A script was written to
start thetwocell server and then after 10 seconds start the
tcreplay client and replay a dataset in realtime.twocell

was allowed to continue running for a further minute after
replay had finished. This process was repeated 20 times for
both thenormal1 andnormal2 datasets, yielding 40 individual
syscall policies. A single averagetwocell policy was then
generated by allowing all syscalls which were permitted in
any of the 40 individual policies. It was found that all of
the 38 syscalls that were permitted in the naive policy were
also permitted in the average policy. The mean frequency
with which the syscall appeared in a policy is given in the
third column of Table II. As expected, there appears to be
a correlation between the frequency that a syscall occurs
and the likelihood of it being in a policy generated by
twocell. Standard deviations, given in the fourth column
of Table II, appear to at first show an increasing amount of
noise for high-frequency syscalls. However, examination of
the coefficient of variation for each syscall, given in the last
column of Table II, shows that there is in fact more variation
in the frequencies of response to the lower frequency syscalls.

The last experiment showed that thetwocell algorithm



has the property of responding in a selective way to input data
based on the frequency at which an input data item occurs.
In order to examine more closely howtwocell responds, a
single run of thetwocell algorithm was observed. Follow-
ing the same general procedure as the previous experiment,
twocell was run once with thenormal2 dataset. The result-
ing policy is shown in Table III, along with the frequencies
with which the permitted syscalls were responded to. During
the run, the time at which a Type 2 cell produced a response
to a particular syscall was also recorded, and the rate at which
these responses occur is plotted in Figure 3. The rate of
incoming syscalls is also plotted for comparison. This figure
clearly shows a correlation between the rate of incoming
syscalls and the rate of responses produced by Type 2 cells.
Cells initially do not produce any response until syscalls
occur, and then produce a burst of responses for a relatively
short period before settling down to an unresponsive state
once again. This is to be expected, as antigen enter and are
passed throughtwocell until their eventual destruction after
being presented on Type 1 cell antigen producers.
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Fig. 3. The rate of incoming antigen and corresponding cell response rates
for the normal2 dataset.

For the same run, the individual receptors expressed by
Type 2 cells can also be examined. Figure 4 shows the
repertoire of VR receptors expressed by all 50 Type 2 cells
during the run. Alibtissue probe periodically recorded
the syscall values expressed by the VR receptors on all of the
Type 2 cells. A point is plotted in Figure 4 if the syscall was
being expressed during that period. Points for the 10 syscalls
which twocell responded to (see Table III) are highlighted.
As expected, due to the limited lifespan of unmatched Type
2 cells, set by thecell lifespan parameter, and after which the
cell’s VR receptor is randomised, many bursts of around 10
seconds of expression of VR receptors specific for a given
syscall are seen. Once a VR receptor matches, and a response
and permit policy is therefore produced for that syscall, the
cell stops randomising its receptors. This can be observed
from the continuous horizontal lines in Figure 4 for the 10
highlighted syscalls.

An example is now given of how the classification accu-
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Fig. 4. The VR receptor repertoire expressed by Type 2 cells for the
normal2 dataset. Highlighted syscalls are the ones responded to.

racy and error of alibtissue algorithm can be evaluated.
In terms of syscall policies, a particular policy can be consid-
ered successful in relation to the number of normal syscalls
it permits versus the number of attack syscalls it denies.
The naive policy and averagetwocell policy generated
from datasetsnormal1 and normal2 in the first experiment
above were evaluated in such a way. The number of syscalls
both policies permitted and denied when applied to the four
datasets in the attack and failed groups was recorded. For
each dataset, Table IV shows the percentages of attack and
normal syscalls in the dataset, together with the percentage
of syscalls permitted by the naive andtwocell policies.
The results show that the tendency of the naive policy was
to permit the vast majority of syscalls, whether attack related
or not. Thetwocell generated policy behaved much more
selectively, denying a slightly larger proportion of syscalls
in the success1 andsuccess2 datasets than it permitted. For
the failure1 and failure2 datasets the converse was true.

The previous experiments have all used thetwocell al-



TABLE IV

COMPARISON OF THE PERFORMANCE OF A NAIVE POLICY AND A

twocell POLICY GENERATED FROM THEnormal2 DATASET.

dataset success1 success2 failure1 failure2

normal syscalls 23% 23% 81% 87%

attack syscalls 76% 76% 18% 12%

naive permit 90% 90% 99% 99%

naive deny 9% 9% 0% 0%

twocell permit 47% 47% 69% 68%

twocell deny 52% 52% 30% 31%

gorithm with the cytokine receptors of Type 1 cells disabled.
This was necessary in order to gain an initial understanding
of the dynamics oftwocell. This final experiment now
examines how the addition of a context signal changes the
dynamics of the algorithm. When enabled, the cytokine re-
ceptor on a Type 1 cell controls theaction time parameter of
antigen producers on these cells as follows. Theaction time
parameter is initialised to a value of 100. If there is no change
in the signal, CPU usage in this case, then the action time
stays the same. If CPU usage decreases, the action time
is reduced by 50%, and if it increases, the action time is
reset 100.twocell with its cytokine receptor enabled was
run 20 times on thesuccess2 dataset and the responses it
produced recorded. For a fair comparison, the mean action
time observed on antigen producers over all of the runs,
28.57 in this case, was calculated and thetwocell algorithm
without signals was run 20 times on the same dataset with
the action time of its antigen producers set to 29. Figure 5
shows bspline curves fitted to the mean response rates of
twocell with and without a signal over the 20 runs. The
results show that the response time oftwocell with a signal
is much more tightly controlled, with responses starting and
dropping off more rapidly and lasting for a shorter duration
in total. This is to be expected in light of the incoming data,
and from the action of the cytokine receptor, which causes
a sudden rise and quick decreases in the action time of the
antigen producers on Type 1 cells based on the rate of change
of the external signal.

VII. C ONCLUSIONS

The aim of this paper has been to describe the architecture
of the libtissue implementation and how it is used to
implement and evaluate algorithms on real-world problems.
After briefly laying down the biological and conceptual
background, thelibtissue implementation was described
in detail. In order to help understand howlibtissue is ac-
tually used, its application to a real-world intrusion detection
problem was presented. An example algorithm implemented
with libtissue was then introduced, and aspects of its
dynamics evaluated and discussed. The paper now concludes
with a brief summary and discussion of future work.

While simplified, the examples presented above validate
thelibtissue implementation in several ways. They show
that it meets the goals it set out to achieve in terms of im-
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Fig. 5. The mean response rates of thetwocell algorithm with and without
a signal for 20 runs on thesuccess2 dataset.

plementation, evaluation and application of AIS algorithms.
More generally, they show the feasibility of using AISs
implemented as multiagent systems to address real-world
problems. Additionally, it is the authors’ experience that
simple algorithms such astwocell are a necessary step
in developing more complex algorithms. Such algorithms
are being developed by the authors and other researchers
using libtissue and future papers will report the results
of this research. The sourcecode oflibtissue is distributed
under a GPL licence and available, along with the datasets,
clients and example algorithm used in this paper, from the
first author’s website.
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