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ABSTRACT Automatic License Plate Recognition (ALPR) is one of the applications that hugely benefited
from Convolutional Neural Network (CNN) processing which has become the mainstream processing
method for complex data. Many ALPR research proposed new CNN model designs and post-processing
methods with various levels of performances in ALPR. However, good performing models such as YOLOv3
and SSD in more general object detection and recognition tasks could be effectively transferred to the license
plate detection applicationwith a small effort inmodel tuning. This paper focuses on the design of experiment
(DOE) of training parameters in transferring YOLOv3 model design and optimising the training specifically
for license plate detection tasks. The parameters are categorised to reduce the DOE run requirements while
gaining insights on the YOLOv3 parameter interactions other than seeking optimised train settings. The
result shows that the DOE effectively improve the YOLOv3 model to fit the vehicle license plate detection
task.

INDEX TERMS Convolutional neural network, design of experiments, license plate detection.

I. INTRODUCTION
Automatic License Plate Recognition (ALPR) has been an
active field of research in computer vision applications.
With the emerging Machine Learning (ML) method, specif-
ically Convolutional Neural Network (CNN), ALPR has
become much more robust and reliable than traditional
hard-coded image processing techniques. Recent innovations
and research focus on real-time CNN inferencing benefited
ALPR applications, such as YOLOv3 [1] and SSD [2] meth-
ods. Meanwhile, much ALPR research focuses on custom
CNN models or post-processing methods to tackle differ-
ent ALPR problems by the format or geo-specific condi-
tions of license plate (LP). ALPR can be classified into LP
detection and character recognition, each with application
implementation challenges. In the LP recognition task, the
characters on the LP could have different languages, such as
Arabic and Chinese characters, or other formats such as Italic
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or non-standard fonts. Meanwhile, for LP detection (also
known as localisation), vehicle LPs could have different sizes,
shapes, orientations, conditions, and colours. The process
is similar to You-Only-Look-Once (YOLO) or Single-Shot
detector (SSD) algorithm that improves CNN localisation
performance and could be effectively transferred to the ALPR
task with some efforts on data engineering.

A complete ALPR system relies on both LP detection and
character recognition, with some works only focusing on the
LP detection stage. Newer research attempts to eliminate the
traditional cascaded processing, i.e. LP detection then charac-
ter recognition. A CNNmodel for achieving one-pass end-to-
end LP detection and character recognition is favourable for
real-time processing. There are several performance metrics
in theALPR task. Average precision (AP) is the primary inter-
est for bounding box regression in LP detection to localise
the LP. Character recognition performance is based on the
usual accuracy or recall metrics by comparing the ground
truth LP labels. The algorithm’s execution time is another
comparable performance metric for real-time processing, but
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it is highly dependent on the computing hardware. Many
ALPR techniques are not precisely apple-to-apple compari-
son due to geo-specific LP datasets, not to mention the variety
of proposed CNN models and processing techniques further
limit the comparable metrics. Despite the major innovations
in the ML model specifically for the ALPR task, no one has
attempted to investigate the effect of the ML model training
parameters, which could play a significant role in the ALPR
performance itself.

This article intends to bring the ALPR research back to
the basics with Design of Experiments (DOE) by understand-
ing the training parameters’ correlation and optimising the
training in the DOE process. YOLOv3 algorithm would be
utilised, and the train parameters would be studied for the LP
detection task without modifying the backbone CNN model.
It is shown that the DOE effectively tunes the YOLOv3
algorithm to fit the LP detection task across a wide variety
of LP conditions.

II. RELATED WORKS
A. TRANSITION OF ALPR TO DEEP LEARNING ALGORITHM
The early day ALPRs are mostly on hand-crafted algorithms.
Image processing techniques such as edge detection [3] and
coefficient correlation [4] were common, as well as ML
algorithms such as k-nearest neighbour [5], sparse autoen-
coder method [6], support vector machine (SVM) and arti-
ficial neural network (ANN) [7]. The paradigm had shifted
when a subset of ML algorithms, i.e. CNN deep learn-
ing, started performing and CNN computation became more
viable. Unlike ANN, CNN can process multi-dimensional
data such as images. Initial findings from [6] concluded that
the accuracy would improve with more train data since CNN
is a data-driven algorithm that differs from traditional hand-
crafted coding. Then, [8] attempted to recognise LPs and its
characters with single CNN by retraining AlexNet, which
is one of the most popular CNN algorithms in 2017. They
trained the CNN with custom cropped images of car LPs and
achieved 95.24% of accuracy. Another similar research also
uses CNN-based character classification to replace traditional
OCR, proving that CNN can classify characters from blurry
LP images[9]. Vehicle ALPR research in [10] massively
deployed deep learning algorithms with CNN and long-short
term memory (LSTM). CNN was used to extract features,
then LSTM were trained to process the features to recognise
the characters. They can discriminate both private and public
car plates of different colours and recognise the characters.
Similarly, [11] uses simpler parallel CNNs to identify the
nature of the car plate, such as types, dimensions and colour,
then used LSTM to recognise the car plate characters, achiev-
ing 99.8% of precision. Reference [12] combined both edge
detection and CNN as hybrid processing pipelines to enhance
ALPR performance.

It is realised that although CNN is superior in perfor-
mance, the cost of computing is prohibitive in a real-world
scenario. Image sizes are limited to the CNNs input size. Its

classification performance relies on cropped image batches.
However, it does not translate into the ability to localise and
identify car plates in a huge image area which is the more
practical use case in ALPR application. Thus, [13] tried to
speed up the recognition process with regional CNN (R-
CNN) but achieved a precision of 0.4 out of 1 on a single huge
image, primarily due to R-CNN’s limitations. Newer research
from [14] also showed that a much better variation of R-CNN
called masked R-CNN is capable of a complete ALPR task at
comparable 98% precision and recall.

Data processing pipeline unification has been done by [15]
to fully utilise CNN to detect and recognise the LP characters,
bypassing any unnecessary architectures for different tasks
but showing that CNN favours detection tasks but not char-
acter recognition. Another research exploited big data (about
250k images), namely Chinese City Parking Dataset (CCPD)
with one pass CNN much like SSD to recognise and localise
the LP. It is proven to be effective and robust for various
environments (blurry, angled, tilted LP), avoiding recurrent
CNN computation like R-CNN, which is the reason for the
high computing cost for CNN inferencing [16].

YOLO algorithm has been the interest for ALPR in recent
years. YOLO algorithm was introduced by [17] in 2015 and
achieved one-pass CNN object classification and localisation.
Further revisions of YOLO improve the detection capabil-
ity and speed. The first use of YOLO CNN was attempted
by [18] to detect LPs of vastly different plate orientations,
yielding 99.5% F1-score. YOLOv2 algorithm with modified
ResNet50 CNN was proposed by [19] to localise and detect
the nature of multi-national LP (country, size, and languages
but did not work on recognising the characters on LPs),
achieving 99.57% detection precision. Reference [20] also
used YOLOv2 because they claimed YOLOv3 has more
layers that slow down the training, which is not entirely true
depending on which CNN model to utilise in the YOLO
workflow. They only compared the metric of motorcyclist LP
of riders with or without helmets, in which the comparison
might not be significant. Nevertheless, they also achieved
95 to 97.5% precision score with YOLOv2 algorithm. Simi-
larly, [19] extended the dataset for multi-national and multi-
language LP, reaching 99.57% of AP in LP detection. Ref-
erence [20] further enhance datasets by synthesising LPs to
overcome small dataset size and train a custom CNN model
ported to Fast-YOLO to perform ALPR. Reference [21]
utilised YOLOv3 for both LP detection and recognition
stages with 95-97% accuracy. Overall, the YOLO-based algo-
rithm is very promising to be repurposed for LP detection.
Another work from [22] is very similar to YOLO, but they
used a branching method at the end of CNN to detect LPs.

Besides the YOLO algorithm, CNN could also do image
segmentation with up-sampling layers, giving [23] an idea
of using an entirely semantic segmentation method to detect
and recognise the LP. Their work is specifically on Arabic
LP, so it is hard to compare to the CCPD dataset. Refer-
ence [23] also uses the CNN segmentation method to extract
features and perform complete ALPR with parallel CNNs.
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Some researchers customised CNN for a particular function
instead of a full ALPR task. Reference [24] used CNN to
predict the originated states of the vehicle by LPs. R-CNN
was also used for customised ALPR, such as detecting LP on
non-motor illegal vehicles [25].

The importance of clean data in the CNN application could
not be ignored when [11] combined traditional image pro-
cessing techniques to filter out unnecessary noises and used
CNN at the final stage of car plate recognition, achieving
99.6% accuracy. With that acknowledgement, [26] identified
that rain streaks might be one of the big problems of ALPR
in a real environment. Thus, they first pre-processed images
of noisy rain streak with dictionary learning, then only pro-
cessed the vehicle LP with CNN.

B. THE NATURE OF DATA-DRIVEN ALPR
Deep learning is one of the data-driven programming
approaches. Instead of a hard-coded feature extraction algo-
rithm, feeding as much data as possible will ‘‘code’’ the nec-
essary feature map. Thus, the reliance on big data is one of the
key factors for ML implementation. CNN model architecture
plays a vital role inML, but it heavily depends on themethods
or preference of the data processing pipeline.

The ALPR approach could be classified into one-staged
and two-staged processes. The two-staged process is more
straightforward because the data classes are separated, i.e.
LP itself and its characters in optimising the coding for each
data processing pipeline. This approach is especially true
from traditional image processing, where images are con-
sidered complex data. A two-staged process usually detects
and crops the region of interest (ROI) around LP to elim-
inate any unwanted background details, then only attempt
to recognise the characters on the cropped LP images with
optical character recognition (OCR). OCR could be based on
hard-coded algorithms such as connected component analy-
sis, local binary pattern, temporal matching [27], or CNN-
based classification. However, the image processing pipeline
of ALPR had been shifting to a one-staged process with the
emergence of ML, extracting both LP and its character in one
pass. One pass processing is possible with some innovations
in CNNmodel designs and post-processing techniques. In the
one-staged process, the CNN model mostly only acts as a
feature extractor to preserve the spatial information of the
object of interest, i.e. LP and its characters in ALPR. The
classification and bounding box localisation are passed to
other post-processing techniques such as non-max suppres-
sion (NMS) and intersection over union (IoU) to compute the
confidence level and the ROI of the object class within an
image.

C. THE CHALLENGES OF MALAYSIAN LP
Several ALPR works on Malaysian’s LP exist, but none are
up to the global trend of ML-based ALPR. There are some
unique challenges to implementing ALPR on Malaysian LP.
First is the availability of the dataset because there are no
known open-source LP images for Malaysian vehicles. The

LP images are confidential or owned by specific authorities,
which could not be accessed easily and openly. Secondly is
the inconsistency of the LP format. Many on-road Malaysian
LP characters could have different fonts, spacing and place-
ments, even with non-standard stickers or labels, violating the
official LP guideline. There also exist many valid LPs with
unique characters such as ‘‘XXIV’’, ‘‘SUKOM’’, ‘‘1M4U’’
and Putrajaya’’. Newer LPs also located characters after
the numbering with increasing new on-road vehicles. Those
varying LP standards render most overseas ALPR techniques
inapplicable because foreign LPs have fixed character num-
bers and spacing, suitable for processing with the character
segmentation method.

III. METHODOLOGY
Many ALPR algorithms had been proposed in previous
research, but they hardly discussed the relationships and the
reasoning of the related training parameters. In this work,
multi-level (2-level and 3-level) factorial DOE would be
utilised to study the YOLOv3 training parameters’ interac-
tions and optimise the LP detection performance for stage
one ofALPR, i.e. LP detection only. Self-preparedMalaysia’s
vehicle LP dataset will be used since this research has to
tackle ALPR problems on Malaysian vehicles specifically.
Stage two of ALPR, i.e. character recognition, will not be
part of the research for the time being because LP labels are
geo-specific and highly dependent on dataset labelling and
algorithms.

A. MALAYSIAN VEHICLE LP DATASET
The datasets are obtained by several methods. One is taking
photos from the federal highway, which consists of multiple
vehicles in a single 32MP image with a DSLR telephoto lens.
Some photos are takenwith hand-held cameras or smartphone
cameras; thus, the photos havemixed sources of sensor noises
and qualities. Images with clear local LP labels were also
downloaded from social websites and some local car auction
websites. Some of the downloaded images will have water-
marks and were eliminated by manually cropping the ROI
of the images. Overall, a total of 10k images were manu-
ally collected, processed and labelled. Only the LP spatial
locations are labelled for (x,y,h,w), where ‘x’, ‘y’, ‘w’, and
‘h’ are the horizontal and vertical locations of bounding box
centre, width, and height of the LP bounding box, respec-
tively, as illustrated in Figure 1. The LP characters are simply
recorded, and no character-wise bounding box labelling had
been done. The (x,y,w,h) values are in a ratio relative to the
image size so that the images can be resized without affecting
the relative location of the bounding boxes. The relative point
value could be converted to pixel value before feeding the
label to the YOLOv3 algorithm.

The cropped images of Malaysian LP are of approxi-
mate square shape due to manual cropping, and the height
and width of the cropped images are slightly inconsistent.
Meanwhile, the YOLOv3 pre-processing is designed to feed
images of video format aspect ratio where the image width
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FIGURE 1. The labelling convention.

FIGURE 2. YOLOv3 structure with ‘‘SqueezeNet’’ backbone CNN.

is bigger than its height. The Malaysia LP images have to be
resized to fit into the existing process pipeline, but that would
result in feature loss. Thus, the square images were resized
minimally so that the image height is slightly smaller than its
width to minimise feature loss but still able to be fed to the
YOLOv3 algorithm.

B. THE YOLOv3 PARAMETERS
YOLOv3 is a state-of-art real-time object recognition algo-
rithm that could accept various CNN model designs as the
backbone feature extractor (with few CNN backend require-
ments). The principal technique of YOLOv3 is on the back-
end feature pyramid network (FPN)[28] and anchor box layer
as a post-processing pipeline to retrieve spatial informa-
tion and class confidence from the extracted features. The
FPN extracts the spatial information of the convoluted fea-
ture maps at different scales for multiscale object detection,
and the output consists of anchor box features. The output
will be post-processed with IoU and NMS operations to
resolve object bounding boxes. The backbone CNN model
is ‘‘SqueezeNet’’, originally proposed by [29] and remains
untouched to isolate the parameters specific to the CNN
model. The overall structure of the ‘‘SqueezeNet’’ based
YOLOv3 algorithm is illustrated in Figure 2. YOLOv3 does
have a few training parameters with default values to be
adjusted in the MATLAB native code, as shown in Table 1.
Some parameter values are limited to the original example
datasets and not strictly tied to the YOLOv3 algorithm.

C. MULTI-LEVEL FACTORIAL DOE
The purpose of the DOE is to study the correlation of the
training parameters and their effects on the YOLOv3 LP

TABLE 1. List of parameters For Yolov3 training.

detection performance. The DOE was performed at 2-level
and 3-level factorials, whereby the 2-levels factorial DOE is
applied at the initial DOE, and the 3-level factorial design is
applied on the subsequent DOEs. The choice of level number
would be explained along with the experiments in Section IV.
Multi-level factorial DOE design follows a function, as in

run = levelfactor (1)

One consideration of DOE on CNN is that a complete
epoch of CNN training could take minutes or even hours
depending on the CNN algorithms complexity and computing
hardware. The number of runs increases exponentially with
the number of levels and factors. There are nine possible
parameters for the YOLOv3 training that contribute to nine
factors, referring to (1), a 2-level full factorial DOE would
require 512 runs, or 19683 runs in the case of 3-level full fac-
torial, which is impractical. Thus, reducing either the number
of levels or factors is necessary.

Several research papers performed DOE on tuning CNN
model parameters, albeit not specifically on ALPR tasks.
Reference [30] utilised a new class of 3-level definitive
screening design (DSD) proposed by [31] to tackle many
factors to identify significant main effects while estimating
some of the interaction effects. Standard 2-level fractional
factorial design is also used by [32] to reduce the number
of runs to optimise the CNN model. However, it is unknown
whether the residual data point is normally distributed given
such a small 16 runs on seven factors for the analysis of
variance (ANOVA) to be valid.

Fortunately, the training parameters could be partitioned
into two categories, data-specific and training-specific,
as shown in Table 2. Data-specific variables change with data
and label size, whilst training-specific variables will manipu-
late the CNN training behaviours. Partitioning the parameters
for DOEwould reduce a considerable number of runs. Instead
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TABLE 2. Parameters categorisation.

TABLE 3. DOE outline.

of nine factors at once, it would be more practical to isolate a
few factors once at a time.

The DOEs are rather an iterative process. The first exper-
iment will be executed on data-specific parameters since it
only has three variables. Then, the best performing data-
specific settings would be transferred for the subsequent
experiments to eliminate the data-specific factors. Even so,
there are six training-specific parameters, which might result
in the long run. Thus, the next DOEs were designed itera-
tively, i.e. examining only three parameters at a time in the
hope of discovering the interaction of the parameters and
optimizing a few of them at a time. The factors and aliases
for each DOE are listed in Table 3. Some parameters could
be sensitive to value changes and cause overfitting, failing
the CNN epoch training. The parameter operating ranges is
further described for each DOE in Section IV.

The DSD proposed by [31] seems to fit the experiment
requirements, but the interaction of parameters is also of
interest in this research. Also, the ‘‘numberofEpochs’’ might
not be the interest which will be explained in Section IV part
A, resulting in a total of five factors only. Thus, DSD is not
used. There is another D-optimal Designs [33] technique to
reduce the DOE runs, but it is not in the scope of this article.

IV. EXPERIMENTS
A. DOE I
DOE I is a 2-level full factorial experiment with three factors
and two replicates, resulting in a total of 16 runs. A complete
2-level factorial experiment only requires eight runs, but the
extra loop ensures the normal distribution of the data point.
Only then the scores are valid for the ANOVA. Three factors
were tested, i.e. image aspect ratio, number of anchors and the
train-test ratio. The settings of each factor, their aliases, and
the default values of the other parameters for DOE I are listed
in Table 4, whilst its ANOVA and interaction plot output are
shown in Figure 3.

The default number of epochs was 80, but it was reduced
to 10 for all DOEs. The purpose of the DOE is to study
the interaction of the parameters and their relative conver-
gence capability. It also helps minimise the CNN training

TABLE 4. Doe I list of parameters.

FIGURE 3. DOE I result of analysis.

time to have a faster design cycle for DOE since it takes
several minutes to complete an epoch. Thus, a comprehensive
CNN training epoch is not required. However, a complete
80 epochs of training would be carried out at the end of all
DOEs to validate the DOE findings. ‘‘imageAspectRatio’’
is limited to near square ratio as described in Section III
part A. More ‘‘numberofAnchors’’ could improve the mean
intersection union of the localization, thus improving the AP
for more object classes. Hence, its upper limit is set to double
the lower limit. ‘‘trainTestRatio’’ is dependent on the size of
the supplied dataset. A bigger dataset could allocate more
data for training. A 70% training ratio is general for most ML
approaches.

It is found that the image aspect ratio plays a significant
role in performance outcomes. One apparent reason is that the
images of 4:3 aspect ratio have fewer LP-based features after
image resizing. Similarly, near-square images have relatively
more pixel-level features than the one of 4:3 aspect ratio,
better utilising the CNN feature map for performance con-
vergence. A higher train-test ratio also contributes to higher
performance as more images are available for training, which
explains the slight interaction between the image aspect ratio
and the train test ratio. Unlike the traditional CNN classifica-
tion task, the YOLO algorithm does not require a validation
set since the CNN only does feature extraction and does
not directly classify the object. The number of anchors is
statistically insignificant in the LP detection task because
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TABLE 5. Doe II list of parameters.

Malaysian LP only has a few possible shapes and sizes. LP is
the only class of interest in the ALPR.

B. DOE II
DOE II is a 3-level full factorial experiment with three factors
and one replicates, resulting in 27 runs. It is found that 3-level
factorial could provide more insight into the interactions of
the factors and normally distributed data points with just one
replicate. An extra 11 runs compared to the previous DOE
I is a good trade-off for having additional information for
the 3-level factorial interaction plots while ensuring normal
data distribution for ANOVA outputs to be valid. Since the
previous experiment provided an insight into the parameter’s
interaction, it will not be redone as a 3-level factorial DOE.
The settings of each factor, their aliases, and the default values
of the other parameters for DOE II are listed in Table 5, whilst
its ANOVA and interaction plot output is shown in Figure 4.
The best parameter settings from DOE I were utilised in this
DOE II, i.e. ‘‘imageAspectRatio’’, ‘‘numberofAnchor’’ and
‘‘trainTestRatio’’ are 1:0.98, 6 and 0.7, respectively.

The ‘‘miniBatchSize’’ is set as 16 and 32 since the com-
puting memory is the only limiting factor. Although the
original value for ‘‘warmupPeriod’’ is 41.6% of the total
epochs, a lower value will have a faster ramp to the target
learning rate, thus having better initial convergence but might
risk CNN overfitting. The ‘‘penaltyThreshold’’ is a ceiling
for applying penalty function to the CNN model. A higher
threshold will improve the object detection confidence score
but decrease the anchor box detection overlapping tolerance,
lowering the AP.

One common assumption for CNN training is that image
batch size could be larger with a higher learning rate given
enough hardware memory space on a computer. The change
of learning rate is indirectly adjusted by the warm-up period.
A lower warm-up period will result in a faster learning rate
increment. According to the factorial plots, the interaction
of both ‘‘miniBatchSize’’ and ‘‘warmupPeriod’’ has no sig-
nificance to the overall AP. Or rather, the batch size itself
has a significant effect, whereby it is the number of images
to be fed forward to the CNN model in every feedforward
training. After each feedforward will have a loss gradient
update, in which the loss function tries to converge the CNN

FIGURE 4. DOE II result of analysis.

weight. A smaller batch size could achieve higher AP because
it could have better convergence to the local minima.

Conversely, a higher number of image batch could result in
excessive feature generalisation, converging to global minima
only. Large-batch methods tend to converge to sharp mini-
mizers of the training and testing functions, and sharp min-
ima lead to poorer generalisation [34]. The ‘‘warmupPeriod’’
have some significance according to the Pareto chart in Fig. 4,
but the loss curve shows that it has the risk of overfitting for
a lower value. It had been pushed to the value of 0.01 but
rolled back to 0.15 because overfitting occurred, i.e. the loss
curve increases although it is supposed to converge to zero.
It is important to generalise the newly initialized CNN feature
map with a slower learning rate at the initial stage before
pushing for a higher learning rate for a faster CNN model
convergence. The ‘‘penaltyThreshold’’ is shown to have the
most significant influence on the AP score, although it has no
interaction with other parameters.

C. DOE III
DOE III is also a 3-level full factorial experiment with three
factors and one replicates, resulting in 27 runs. From the DOE
I, it is found that increasing in train-test ratio could have
statistical significance to the performance outcome. However,
it is still possible to push the ratio to 80% instead of limited
to 70%. Also, it is unknown whether the train-test ratio has
any correlation with the L2Regularization and learning rate.
Thus, the train-test ratio was included in this DOE to extend
its behaviour study to 3-level factorial. The settings of each
factor, their aliases, and the default values of the other param-
eters for DOE III are listed in Table 6, whilst its ANOVA and
interaction plot outputs are shown in Figure 5.

The ‘‘L2Regualrization’’ is the magnitude for weight
update gradient, modifying the weight update rate. Whilst
the ‘‘learnRate’’ is the global multiplier for updating the
CNN trainable parameters. CNN training is sensitive to
‘‘L2Regualrization’’ and ‘‘learnRate’’ values, so they are only
adjusted in small margins.
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TABLE 6. Doe III list of parameters.

FIGURE 5. DOE III result of analysis.

TABLE 7. Final test.

The interaction plot B∗C shows that they have strong
interaction. The ‘‘learnRate’’ is favoured at the value of
0.001, and a lower value would result in a performance
drop. Whilst ‘‘L2Regularization’’ is best at the value of
0.0005. Higher ‘‘L2Regualrization’’ than the value listed in
Table 6 had caused random train failure because a higher
value could have a bigger weight update gradient, indirectly
leading to CNN overfitting. Also, higher ‘‘learnRate’’ with
low ‘‘L2Regularization’’ adversely caused a significant AP
reduction, which explains the strong interaction outcome.
Higher ‘‘trainTestRatio’’ has been shown to contribute to
higher AP even though it has almost no interaction with
‘‘L2Regualrization’’ and ‘‘learnRate’’.

D. FINAL TEST
The purpose of the final test is to validate the findings of
the DOE. A full 80 epochs were executed on the YOLOv3

FIGURE 6. The precision-recall curve of final test result (first fold run of
all settings).

FIGURE 7. Examples of YOLOv3 Malaysian LP detection. A) Tilted LP
detection. B) LP with a non-standard sticker. C) Unique legal LP initials. D)
Double LPs, the smaller LP belongs to neighbour Thailand country. E) LP
detection on blurry images. F) LP detection on large vehicles such as
lorries.

algorithm to validate whether the DOE effectively tunes the
performance outcome. There are five tests. Setting E is of
optimum settings from the DOEs, while Setting D is of
original parameters before the DOEs. The rest of Setting A,
B and C are non-optimum settings. Each test is repeated for
3-fold cross-validation so that the tests are less likely to be
data-dependent. The average of three runs for each set was
taken as the final score of each test. In the end, the results are
listed in Table 7. Figure 6 shows the precision-recall curve
of each setting for the first-fold run to compare the fitness of
the YOLOv3 to the Malaysian LP dataset. Some output LP
detection samples are shown in Figure 7.

TheDOEoptimised Setting E delivered the highest 99.00%
AP score while the default Setting D has 98.53% AP,
or 0.47% improvement only because the train test ratio
and the warm-up time are the only difference. Other set-
tings changes were relatively underperformed, ranging from
95.47% to 98.12% AP scores. The precision-recall curve also
shows that the optimised setting has the best average curve fit-
ness of all settings with minimum precision of 0.993. It shows
that the DOEs tuned the performance of the YOLOv3 to
detect the LP location. However, the setting could be specific
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to the Malaysian LP dataset. Other open datasets like CCPD
and UFPR are yet to be tested.

SSD is an alternative algorithm for ALFR, but it has a
poorer performance than YOLOv3 from initial training with
the default setting, only achieving 87.75% AP in addition to
ten times longer training epochs. Also, SSD utilised RestNet-
50 CNN model, so it is not a fair comparison. SSD has some
different classes of parameters and might require different
DOE strategies.

V. CONCLUSION
A series of simple DOEs had been shown to improve
the ALPR performance of YOLOv3 with the CNN model
untouched, specifically on the LP detection task. An AP of
99% is achieved forMalaysian vehicle LP detection by strate-
gically tuning the YOLOv3 training parameters. A minor
change relative to the stock parameters did improve the per-
formance. Adjusting other settings in the DOEs also provide
insights into the interactions of the YOLOv3 parameters.
Images with more pixel areas are generally better because
more features are available for CNN feature extraction. It is
also found that a smaller mini-batch size has a better fitting to
local minima, improving the overall AP. The warm-up period
is useful in generalising the initial feature map across all
image batches before increasing the global learning rate, but
a longer learning rate ramp-up time will decrease the overall
AP.
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