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Abstract Leader-driven community detection algorithms

(LdCD hereafter) constitute a new trend in devising algo-

rithms for community detection in large-scale complex net-

works. The basic idea is to identify some particular nodes in

the target network, called leader nodes, around which local

communities can be computed. Being based on local compu-

tations, they are particularly attractive to handle large-scale

networks. In this paper, we describe a framework for imple-

menting LdCD algorithms, called LICOD. We propose also

a new way for evaluating performances of community detec-

tion algorithms. This consists on transforming data cluster-

ing problems into a community detection problems. Exter-

nal criteria for evaluating obtained clusters can then be used

for comparing performances of different community detec-

tion approaches. Results we obtain show that our approach

outperforms top state of the art algorithms for community

detection in complex networks.

Keywords Complex networks · Community detection ·
Leader-driven algorithms · Task-based evaluation

1 Introduction

Research in mining and analyzing large-scale complex net-

works has been boosted recently after discovering that much

of complex networks extracted form natural and artificial sys-

tems share a set of non-trivial characteristics that distinguish

them from pure random graphs. Basic topological charac-

teristics of complex networks are: low separation degree (or

what is better known as small-world feature [37]), power-

law distribution of node’s degrees [75], and high clustering
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coefficient [46]. As a consequence of these basic topological

features, almost all real-world complex networks exhibit a

mesoscopic level of organization, called communities [58].

A community is loosely defined as a connected subgraph

whose nodes are much linked with one each other than with

nodes outside the subgraph. Nodes in a community are gen-

erally supposed to share common properties or play simi-

lar roles within the network. This suggests that we can gain

much insight into complex networked systems by discov-

ering and examining their underlaying communities. The

semantic interpretation of a community depends on the type

of the analyzed graph. In a metabolic network, a commu-

nity would express a biological function in a cell [26]. In a

network of transactions in an e-commerce site, this would

express a set of similar customers [6]. Considering the web

as a complex network, a community would be a set of pages

dealing with a same topic [20].

More importantly, since the community-level structure is

exhibited by almost all studied real-world complex networks,

an efficient algorithm for detecting communities would be

useful to implement a pre-treatment step for a number of

general complex operations such as computation distribution,

huge graph visualization and large-scale graph compression

[25].

A quite big number of algorithms have been proposed for

detecting communities in complex networks. Recent interest-

ing survey tidies on this topic can be found in [21,66,83]. A

quick review of the scientific literature allows to distinguish

three different, but related problems:

• Disjoint communities detection: The goal here is to com-

pute a partition of the graph node’s set. One node can

belong to only one community at once. Most of the work

in the area of community detection deals with this problem

[21].
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• Overlapping communities detection: The goal is to com-

pute soft clustering of the graph node’s set where a node

can belongs to several communities at once [61,64,77,87,

88].

• Local community identification: The goal here is to com-

pute the community of a given node rather than partition-

ing the whole graph into communities. This can be useful

in different settings, namely in the area of recommender

systems [5,11,13,33].

Both problems, disjoint and overlapping community

detection are NP-hard [10]. Different heuristics have been

proposed to compute sub-optimal partitions. Most popu-

lar methods are based on applying greedy optimisation

approaches of a graph partition quality measure [7,23,73].

The most applied graph partition criteria are the modular-

ity initially introduced in [23]. However, some recent stud-

ies has pointed out some serious limitations of modularity

optimization-based approaches [24,40]. These limitations

have boosted the research for alternative approaches for com-

munity detection. Emergent approaches include label prop-

agation approaches [71] and seed-centric ones [34]. The

basic idea of seed-centric approaches is to select a set of

nodes (i.e. seeds) around which communities are constructed.

Being based on local computations, these approaches are

very attractive to deal with large-scale and/or dynamic net-

works. One special case of seeds is to select nodes that are

likely to act as leaders of their communities [36,76]. In this

work, we propose a general framework for implementing

Leader-driven community detection algorithms (LdCD here-

after) called LICOD. The approach we develop here is an

extension of the work presented in [32]. Major enhancements

are about transforming LICOD into a framework for imple-

menting LdCD algorithms as described in Sect. 4. Another

major new contribution concerns the evaluation process.

Actually, since LdCD algorithms are not based on maximiz-

ing an objective function (i.e. the modularity), it is unfair to

use the later criteria to compare these algorithms with pop-

ular modularity-guided approaches. One idea to provide fair

evaluation criteria for different community detection algo-

rithms is task-oriented evaluation. This can be conducted by

evaluating how good are computed communities for realiz-

ing a given dependent task. In this paper, we propose using

data clustering task for that purpose. The idea is to transform

classical clustering benchmarks into a community detection

problem. Algorithms can then be evaluated using classical

extrinsic clustering evaluation metrics [52].

To sum up, main contributions of this paper are the fol-

lowing:

• Proposing LICOD, a general framework form implement-

ing LdCD algorithms.

• Introducing task-oriented evaluation of community detec-

tion algorithms and providing an approach for evaluating

different community detection algorithms on data clus-

tering tasks.

The remainder of this paper is organized as follows. Next

in Sect. 2, we provide basic notations used in this paper.

In Sect. 3, we review briefly major approaches for commu-

nity detection algorithms as well as evaluation approaches.

The LICOD approach is detailed in Sect. 4. Next, in Sect. 5,

experimentation on both small benchmark networks and

applying the proposed task-oriented evaluation approach are

described. The clustering-oriented evaluation approach is

described in Sect. 5.2. Obtained results are provided and

commented. Finally, we conclude in Sect. 6.

2 Definitions and notations

In this study, we only consider simple unweighted, undirected

graphs. A graph G is defined by a couple: G = 〈V, E〉 where

V = {v1 . . . , vn} is a set of nodes (a.k.a actors, sites, vertices)

and E ⊆ V × V is a set of links (a.k.a ties, arcs, or relation-

ships). We denote by nG = |V | (reps. mG = |E]) the number

of nodes (reps. links) of graph G. The set of direct neighbors

of a node v ∈ V is given by the function Ŵ(v). The number of

direct neighbors of a node is the node’s degree and is denoted

by dv = |Ŵ(v)|. The density of a graph G is given by the ratio

of the number of existing links to the number of potential

links. This is given by: d(G) = 2×mg

ng×(ng−1)
. We denote by A

the adjacency matrix of graph G. We have Ai j = 1 (resp.

Ai j = 0) if nodes vi , v j ∈ V are linked (resp. unlinked).

3 Related work

In this section, we provide a brief survey on both following

topics related to the contributions of this paper: community

detection algorithms and community evaluation approaches.

3.1 Community detection approaches

We focus in this study on approaches that aim to compute

a partition, or disjoint communities of a complex network.

A wide variety of different approaches have been proposed

so far. Some comprehensive survey studies are provided in

[21,66,83]. Here, we propose to classify existing approaches

into four classes: Group-based approaches, network-based

approaches, propagation-based approaches and seed-centric

ones. Next we briefly review each of these identified classes.

3.1.1 Group-based approaches

These are approaches based on identifying groups of nodes

that are highly connected or share some strong connec-
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tion patterns. Some relevant connection patterns are the

following:

• High mutual connectivity: a community can be assimilated

to a maximal clique or to a γ -quasi-clique. A subgraph G

is said to be γ -quasi-clique if d(G) ≤ γ . Finding maxi-

mal cliques in a graph is known to be a NP-hard problem.

Generally, cliques of reduced size are used as seeds to

find larger communities. An example is the clique perco-

lation algorithm [1,82]. Such approaches are relevant for

networks that are rather dense.

• High internal reachability: One way to relax the constraint

of having cliques or quasi-cliques is to consider the inter-

nal reachability of nodes within a community. Following

this, a community core can be approximated by a maxi-

mal k-clique, k-club or k-core subgraph. A k-clique (resp.

k-club) is a maximal subgraph in which the longest shortest

path between any nodes (resp. the diameter) is ≤k. A k-

core is a maximal connected subgraph in which each node

has a degree ≥k. In [86], authors introduce the concept

of k-community which is defined as a connected subgraph

G ′ = 〈V ′ ⊂ V, E ′ ⊂ E〉 of a graph G in which for

every couple of nodes u, v ∈ V ′ the following constraint

holds: |ŴG(v)∩ŴG(u)| ≥ k. The computational complex-

ity of k-cores and k-communities is polynomial. However,

these structures do not correspond to all the community,

but are rather used as seeds for computing communities.

An additional step for adding non-clustered nodes should

be provided. In [67], authors propose to compute k-cores

as mean to accelerate computation of communities using

standard algorithms, but on size-reduced graphs.

3.1.2 Network-based approaches

These approaches consider the whole connection patterns in

the network. Historical approaches include classical cluster-

ing algorithms. The adjacency matrix can be used as a sim-

ilarity one, or topological similarity between each couple of

nodes can also be computed. Spectral clustering approaches

[59] and hierarchical clustering approaches can then be used

[70]. Usually the number of clusters to be found should

be provided as an input for the algorithm. Another draw-

back of spectral clustering is its high computation complex-

ity which might be cubic on the size of the input dataset.

Some distributed implementations of these approaches are

proposed to provide efficient implementations [85]. More

popular network-based approaches are those based on opti-

mizing a quality metric of graph partition. Different partition

quality metrics have been proposed in the scientific litera-

ture. The modularity is the most widely used one [58]. This

is defined as follows. Let P = {C1, . . . , Ck} a partition of

the node’s set V of a graph. The modularity of the partition

P is given by:

Q(P) =
∑

c∈P

e(C) − a(C)2 (1)

where e(C) =
∑

i∈C

∑

j∈C
Ai j

2×mG
is the fraction of links inside

the community C, and a(C) =
∑

i∈C

∑

j∈V Ai j

2.mG
is the fraction

of links incident to a node in C. The computing complexity

of Q is (O)(mG) [23]. Some recent work has extended the

definition to bipartite and multipartite graphs [18,48,56] and

even for multiplex and dynamic graphs [39,55]. Different

heuristic approaches have been proposed for computing par-

titions that maximize the modularity. These can be classified

into three main classes:

• Agglomerative approaches: These implement a bottom-

up approach where an algorithm starts by considering

each single node as a community. Then, it iterates by

merging some communities guided by some quality cri-

teria. The louvain algorithm [7] is one very known exam-

ple of such approaches. The algorithm is composed of

two phases. First, it looks for small communities by opti-

mizing modularity in a local way. Second, it aggregates

nodes of the same community and builds a new network

whose nodes are the communities. Two adjacent commu-

nities merge if the overall modularity of the obtained parti-

tion can be enhanced. These steps are repeated iteratively

until a maximum of modularity is reached. The comput-

ing complexity of the approach is empirically evaluated

to be O(nlog(n)).

• Separative approaches: These implement a top-down

approach, where an algorithm starts by considering the

whole network as a community. It iterates to select ties to

remove to split the network into communities. Different

criteria can be applied for tie selection. The Newman–

Girvan algorithm is the most known representative of this

class of approaches [58]. The algorithm is based on the

simple idea that a tie linking two communities should

have a high betweenness centrality. This is naturally true

since an inter-community tie would be traversed by a

high fraction of shortest paths between nodes belong-

ing to these different communities. Considering the whole

graph G, the algorithm iterates for mG times, cutting at

each iteration the tie with the highest betweenness cen-

trality. This allows to build a hierarchy of communities,

the root of which is the whole graph and leafs are com-

munities composed of isolated nodes. Partition of high-

est modularity is returned as an output. The algorithm is

simple to implement and has the advantage to discover

automatically the best number of communities to iden-

tify. However, the computation complexity is rather high:

O(n2 · m + (n)3log(n)). This is prohibitive to apply to

large-scale networks.
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• Other optimization approach: Other classical optimiza-

tion approaches can also be used for modularity optimiza-

tion such as applying genetic algorithms [31,47,68], evo-

lutionary algorithms [29] or multi-objective optimization

approaches [69].

All modularity optimization approaches make implicitly

the following assumptions:

• The best partition of a graph is the one that maximize the

modularity.

• If a network has a community structure, then it is possible

to find a precise partition with maximal modularity.

• If a network has a community structure, then partitions

inducing high modularity values are structurally similar.

Recent studies have showed that all three above-mentioned

assumptions do not hold. In [24], authors show that the mod-

ularity function exhibits extreme degeneracies: it namely

accepts an exponential number of distinct high scoring solu-

tions and typically lacks for a clear global maximum. In

[40], it has been shown that communities detected by mod-

ularity maximization have a resolution limit. These serious

drawbacks of modularity-guided algorithms have boosted the

research for alternative approaches. Some interesting emerg-

ing approaches are label propagation approaches [71] and

seed-centric ones [34].

3.1.3 Propagation-based approaches

Even the top fast algorithm, the louvain approach, has a

computation complexity that becomes costly for very large-

scale networks that can be composed of millions of nodes

as it is frequently the case when considering online social

networks today. In addition, studied complex networks are

very dynamic. A low complexity incremental approaches for

community detection are then needed. Label propagation

approaches constitute a first step in that direction [71,89].

The underlaying idea is simple: each node v ∈ V in the net-

work is assigned a specific label lv . All nodes update in a

synchronous way their labels by selecting the most frequent

label in the direct neighborhood. In a formal way, we have:

lv = arg maxl |Ŵl(v)|

where Ŵl(v) ⊆ Ŵ(v) is the set of neighbors of v that have the

label l. Ties situations are broken randomly. The algorithm

iterates until reaching a stable state where no more nodes

change their labels. Nodes having the same label are returned

as a detected community. The complexity of each iteration is

O(m). Hence, the overall computation complexity is O(km)

where k is the number of iterations before convergence. Study

reported in [45] shows that the number of iterations grows

in a logarithmic way with the growth of n; the size of the

target network. In addition to its low computation complexity,

the label propagation algorithm can readily be distributed

allowing hence handling very large-scale networks [62,78,

92]. While the algorithm is very fast, it suffers from two

serious drawbacks:

• First, there is no formal guarantee of the convergence to a

stable state.

• Lastly, it lacks for robustness, since different runs produce

different partitions due to random tie breaking.

Different approaches have been proposed in the literature

to cope with these two problems. Asynchronous, and semi-

synchronous label updating have been proposed to hinder the

problem of oscillation and improve convergence conditions

[14,71]. However, these approaches harden the paralleliza-

tion of the algorithm by creating dependencies among nodes

and they increase the randomness in the algorithm making

the robustness even worse. Different other approaches have

been developed to handle the problem of label propagation

robustness. These include balanced label propagation [81],

label hop attenuation [44] and propagation preference-based

approaches [49]. Another interesting way to handle the insta-

bility of label propagation approaches consists simply on

executing the algorithm k times and apply an ensemble clus-

tering approach on the obtained partitions [33,41,63,74].

3.1.4 Seed-centric approaches

The basic idea underlaying seed-centric approaches is to

identify some particular nodes in the target network, called

seed nodes, around which local communities can be com-

puted [32,65,76]. Algorithm 1 presents the general outlines

of a typical seed-centric community detection algorithm. We

recognize three principal steps:

1. Seed computation.

2. Seed local community computation.

3. Community computation out from the set of local com-

munities computed in the previous step.

Algorithm 1 General seed-centric community detection

algorithm

Require: G =< V, E > a connected graph,

1: C ← ∅
2: S ← compute_seeds(G)

3: for s ∈ S do

4: Cs ← compute_local_com(s,G)

5: C ← C + Cs

6: end for

7: return compute_community(C)
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Leader-driven algorithms constitute a special case of seed-

centric approaches. Nodes of a network are classified into

two (eventually overlapping) categories: leaders and follow-

ers. Leaders represent communities. An assignment step is

applied to assign followers nodes to most relevant communi-

ties. Different algorithms apply different node classification

approaches and different node assignment strategies. Three

different LdCD algorithms have been proposed almost simul-

taneously in three different works [32,36]. Next, we present

briefly the first two cited algorithms.

In [36] authors propose an approach directly inspired

from the K-means clustering algorithm [27]. The algorithm

requires as input the number k of communities to identify.

This is clearly a major disadvantage of the approach that

authors of the approach admit. k nodes are selected randomly.

Unselected nodes are labeled as followers. Leaders and fol-

lowers form hence exclusive sets. Each leader node repre-

sents a community. Each follower nodes is assigned to the

most nearby leader node. Different levels of neighborhood

are allowed. If no nearby leader is found the follower node is

labeled as outlier. When all flowers nodes are handled. The

algorithm computes a new set of k leaders. For each commu-

nity, the most central node is selected as a leader. The process

is iterated with the new set of k leaders until stabilization of

the computed communities. The convergence speed depends

on the quality of initially selected k leaders. Different heuris-

tics are proposed to improve the selection of the initial set of

leaders. The best approach according to experimentation is

to select the top k nodes that have the top degree centrality

and that share little common neighbors.

The algorithm proposed in [76] is much similar to our

approach. It starts by computing the closeness centrality of

all nodes. The closeness centrality of a node v is given by

the inverse of the average distance to all other nodes in the

network. Leaders will be any node whose closeness central-

ity is less than at least one of its neighbors. This heuristics

results in a huge set of leaders. The list of leaders is sorted

in decreasing order of closeness centrality. The list is then

parsed assigning to each leader direct followers that are not

already assigned to another leader. At the end, leaders that

are not followed by any node are assigned to the community

to which belong the majority of its direct neighbors.

3.2 Community evaluation approaches

The problem of performances evaluation of community

detection algorithms still to be an open problem in spite of

the huge amount of work in this area. Existing approaches

can be divided into three main types:

1. Evaluation on networks for which a ground-truth decom-

position into communities is known.

2. Evaluation in function of the topological features of com-

puted communities.

3. Task-driven evaluation.

Next, we detail these different approaches.

3.2.1 Ground-truth comparison approaches

Networks with ground-truth partitions can be obtained by

one of the following ways:

• Annotation by experts: For some networks representing

real systems, experts in the system field have been able

to define the community structure. Examples of such net-

works are given in Sect. 5.1. In general, these networks are

rather very small (allowing hence to be handled by experts)

and the defined community structure is usually given by a

partition of the studied graph with no overlapping among

defined communities.

• Network generators use: The idea here is to generate artifi-

cial networks with predefined community structure. Some

early work in this area is the Girvan–Newman benchmark

graph [23]. A more sophisticated generator is proposed

in [42] where the user can control different parameters of

the network including the size, the density, the degree dis-

tribution law, the clustering coefficient, the distribution of

communities size as well as the separability of the obtained

communities. While the approach is interesting, generated

networks are not guaranteed to be similar enough to real

complex networks observed in real-world applications.

• Implicit community definition : This approach is based on

inferring the community structure in a graph applying sim-

ple rules taking usually the semantic of ties into account.

For example in [90] authors define a community in the Live

journal social network as groups of fans of a given artist.

Communities in a co-authorship of scientific publications

are taken to be authors participating in a same venue! The

relevance of proposed rules seems to be questionable.

When a ground-truth community structure is available,

classical external clustering evaluation indices can be used to

evaluate and compare community detection algorithms. Dif-

ferent clustering comparison or similarities functions have

been proposed in the literature [2]. In this work, we apply

two widely used indices: the Adjusted Rand Index (ARI)

[30] and the Normalized Mutual Information (NMI) [79].

The ARI index is based on counting the number of

pairs of elements that are clustered in the same clusters in

both compared partitions. Let Pi = {P1
i , . . . , P l

i }, Pj =
{P1

j , . . . , Pk
j } be two partitions of a set of nodes V . The set

of all (unordered) pairs of nodes of V can be partitioned into

the following four disjoint sets:
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• S11 = {pairs that are in the same cluster under Pi and Pj }

• S00 = {pairs that are in different clusters under Pi and Pj }

• S10 = {pairs that are in the same cluster under Pi but in

different ones under Pj }

• S01 = {pairs that are in different clusters under Pi but in

the same under Pj }

Let nab = |Sab|, a, b ∈ {0, 1}, be the respective sizes of

the above defined sets. The rand index initially defined in

[72] is simply given by:

R(Pi , Pj ) =
2 × (n11 + n00)

n × (n − 1)

In [30], authors show that the expected value of the Rand

Index of two random partitions does not take a constant value

(e.g. zero). They proposed an adjusted version which assumes

a generalized hypergeometric distribution as null hypothesis:

the two clusterings are drawn randomly with a fixed number

of clusters and a fixed number of elements in each cluster

(the number of clusters in the two clusterings need not be

the same). Then the ARI is the normalized difference of the

Rand Index and its expected value under the null hypothesis.

It is defined as follows:

ARI(Pi , Pj ) =

∑l
x=1

∑k
y=1

(

|P x
i ∩ P

y
j |

2

)

− t3

1
2
(t1 + t2) − t3

(2)

where:

t1 =
l

∑

x=1

(

|P x
i |
2

)

, t2 =
k

∑

y=1

(

|P y

j |
2

)

, t3 =
2t1t2

n(n − 1)

This index has expected value zero for independent clus-

terings and maximum value 1 for identical clusterings.

Another family of partitions comparisons functions is the

one based on the notion of mutual information. A partition P

is assimilated to a random variable. We seek to quantify how

much we reduce the uncertainty of the clustering of randomly

picked element from V in a partition Pj if we know Pi . The

Shannon’s entropy of a partition Pi is given by:

H(Pi ) = −
l

∑

x=1

|P x
i |

n
log2

( |P x
i |

n

)

Notice that
|Px

i |
n

is the probability that a randomly picked

element from V be clustered in P x
i . The mutual information

between two random variables X , Y is given by the general

formula:

MI(X, Y ) = H(X) + H(Y ) − H(X, Y ) (3)

This can then be applied to measure the mutual informa-

tion between two partitions Pi , Pj . The mutual information

defines a metric on the space of all clusterings and is bounded

by the entropies of involved partitions. In [79], authors pro-

pose a normalized version given by:

NMI(X, Y ) =
MI(X, Y )

√
H(X)H(Y )

(4)

Another normalized version is also proposed in [22]. Other

similar information-based indices are also proposed [52,60].

3.2.2 Topological measures for community evaluation

Two types of topological measures can be used to evaluate

the quality of a computed community structure:

• Global measures that evaluate the quality of the computed

partition as a whole. The modularity Q defined in [57] (see

formula 1) is the most applied measure. Other modular-

ity measures have also been proposed [51,54]. However,

the different modularity limitations discussed earlier (see

Sect. 3.1.2) hinder the utility of using it as an evaluation

metric.

• Local topological measures. A number of local topologi-

cal measures have been proposed to evaluate the quality of

a given community. Most are used in the context of iden-

tifying ego-centered communities [4,11]. In [90], authors

present an interesting survey on these measures. Let f (c)

be a community evaluation measure. The quality of a par-

tition is then simply given by:

Q(C) =
∑

i f (Si )

|C|
(5)

3.2.3 Task-driven evaluation

The principle of task-driven evaluation is the following: Let

T be a task where community detection can be applied. Let

per(T, Algox
com) be a performance measure for T execu-

tion applying the community detection algorithm Algox
com .

We can then compare performances of different community

detection algorithms by comparing induced per(T, Algox
com)

values. In [66], authors propose to use the recommendation

task for evaluating purposes. In this work, we propose using

the data clustering as an evaluation task.

4 The LICOD approach

4.1 Informal presentation

The basic idea underlaying the proposed algorithm is that a

community is composed of two types of nodes: Leaders and
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Followers. Algorithm 2 sketches the general outlines of the

proposed approach. The algorithm functions as follows:

1. First, it searches for nodes in the network that are likely

to be leaders in a community. Different node ranking

metrics can be used to estimate the role of a node. These

include the classical centrality metrics. Let L be the set

of identified leaders. In Algorithm 2, this step is achieved

by the function isLeader() (line 3).

2. The list L is then reduced by grouping leaders that are

estimated to be in the same community. This is the task of

the function computeCommunitiesLeader(), line 7 in

Algorithm 2. Let C be the set of identified communities.

3. Each node in the network (a leader or a follower) com-

putes its membership degree to each community in C.

A ranked list of communities can then be obtained, for

each node, where communities with highest membership

degree are ranked first (lines 9–13 in Algorithm 2).

4. Next, each node will adjust its community membership

preference list by merging this with preference lists of

its direct neighbors in the network. Different strategies

borrowed form the social choice theory can applied here

to merge the different preference lists. This step is iterated

until stabilization of obtained ranked lists at each node.

The convergence towards a stable sate is function of the

applied voting scheme.

5. Lastly, each node will be assigned to top-ranked commu-

nities in its final obtained membership preference list.

The local voting process intends to ensure local homo-

geneity in nodes membership to different communities.

Notice that the algorithm is designed as a general frame-

work that allows testing different working hypothesis: How

to select leader? How to compute community membership?

And how to merge preferences of linked nodes? Next we

describe possible choices for implementing each step.

4.2 Implementation issues

The LICOD algorithm is implemented using the igraph graph

analysis toolkit [15]. We give next some details about the

implementation of each of the main steps of the proposed

algorithm.

4.2.1 Function isLeader()

One simple idea to distinguish leaders from follower nodes

is to compare nodes centralities. Actually, leader nodes are

expected to have higher centrality (whatever the centrality

is) than ordinary nodes. Different centrality measures can be

used. In our experiments, we have tested the following two

basic centralities:

Algorithm 2 LICOD algorithm

Require: G =< V, E > a connected graph

1: L ← ∅ {set of leaders}

2: for v ∈ V do

3: if isLeader(v) then

4: L ← L ∪ {v}
5: end if

6: end for

7: C ← computeComumunitiesLeader(L)

8: for v ∈ V do

9: for c ∈ C do

10: M[v, c] ← membership(v, c) {see equation 6}

11: end for

12: P[v] = sortAndRank(M[v])
13: end for

14: repeat

15: for v ∈ V do

16: P∗[v] ← rankAggregatex∈{v}∩ŴG(v)P[x]
17: P[v] ← P∗[v]
18: end for

19: until Stabilization of P∗[v]∀v

20: for v ∈ V do

21: /* assigning v to communities */

22: for c ∈ P[v] do

23: if |M[v, c] − M[v, P[0]]| ≤ ǫ then

24: C O M(c) ← C O M(c) ∪ {v}
25: end if

26: end for

27: end for

28: return C

Degree centrality (denoted dc): This is given by the pro-

portion of nodes directly connected to the target node.

Formally, the degree centrality of a node v is given by:

dc(v) = dG (v)
nG−1

. The computation complexity is O(nG).

Betweenness centrality BC(v): The is given by the fraction

of all-pairs shortest paths that pass through the target node.

Formally, the betweenness centrality of a node v is given

by BC(v) =
∑

s,t∈V
σ(s,t |v)
σ (s,t)

where σ(s, t) is the number

of shortest paths linking s to t , and σ(s, t |v) is the number

of paths passing through node v other than s and t . The

best known algorithm for computing this centrality has a

computation complexity O(nG .mG + (nG)2log(nG)) [9].

The first centrality is local-computed metric while the

later captures global proprieties of the network. A node is

identified as a leader if its centrality is greater or equal to

σ ∈ [0, 1] percent of its neighbors centralities. The rational

behind introducing the σ parameter is to be able to recover

leaders connected to other leaders. Notice that the number of

leaders will depend on the value of the threshold σ . More σ

is high fewer are the leaders.

4.2.2 Function computecommunitiesleaders

Two leaders are grouped in the same community if the ratio

of common neighbors to the total number of neighbors is

above a given threshold δ ∈ [0, 1]. The couple σ, δ deter-
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mines in somehow, the number of communities detected by

the algorithm.

4.2.3 Function memebership(v, c)

We propose to measure the membership degree of a node v

to a community c by the inverse of the minimal shortest path

that links v to one of the leaders of c.

membership(v, c) =
1

(minx∈C O M(c)S Path(v, x)) + 1

(6)

It is easy to see that the previous function takes values in

the range
[

1
Diameter(G)

, 1
]

. The diameter of a graph is the

maximum of the shortest path between any pair of nodes.

Notice also that for a community c, the membership of all its

leaders is equal to 1.

4.2.4 Rank aggregation approaches

Let S be a set of elements to be ranked by a set of m

rankers. We denote by Sri the ranking provided by ranker

ri . {Sr1 , . . . , Srm } is a set of all ranks provided by the m

rankers. Notice that each list Sri represents a permutation of

elements of S. An optimal ensemble ranking approach seeks

for a permutation σ that has the minimum number of pair-

wise disagreements with all input ranks Sri [3,12,19,80]. The

Kendall Tau distance computes the pairwise disagreement

between two ranks defined over the same set of elements S.

This is formally defined as follows:

K(π, σ ) =
∑

x,y∈S

dπ,σ (x, y) (7)

where:

dπ,σ (x, y) =
{

0 if π and σ rank x and y in the same order

1 otherwise

This problem has been extensively studied in the context of

social choice algorithms [3]. Early work tackling this prob-

lem goes back the French revolution epoch with the work of

Borda [8] and Marquis de Condorcet [16] striving to define a

fair election rule. Rank aggregation approaches can be clas-

sified into two classes: position-based approaches and order-

based ones [12].

One well-known position-based method is Borda’s method

[8]: A Borda score is computed for each element in the lists.

For a set of complete ranked lists L = [L1, L2, L3, . . . , Lk],
the Borda’s score of an element i and a list Lk is given by:

BLk
(i) = {count( j)|Lk( j) < Lk(i) & j ∈ Lk}. The total

Borda’s score for an element is then: B(i) =
∑k

t=1 BL t (i).

Elements are sorted in function of their total Borda score with

random selection in case of ties.

Kemeny approaches are well-known order-based

approaches. A Kemeny optimal aggregation [35] is an aggre-

gation that has the minimum number of <div> pairwise dis-

agreement as computed by the Kendall tau distance [43].

Computing an optimal Kemeny aggregation is NP-hard start-

ing from a list of four candidates. Different approximate

Kemeny aggregation approaches have been proposed in

the literature. The basic idea of all proposed approximate

Kemeny aggregation is to sort the candidate list, using stan-

dard sorting algorithms, but using a non-transitive compari-

son relationship between candidates. This relation is the fol-

lowing: si is preferred to s j , noted si ≻ s j , if the majority

of rankers ranks si before s j . Since the ≻ relation is not

transitive, different sorting algorithms will provide different

rank aggregations with different proprieties. In [19] authors

propose a local Kemeny aggregation applying a bubble sort

algorithm. In [53] authors propose an approximate Kemeny

aggregation applying quick sort algorithm .

4.2.5 Community assignment

A node v is assigned to top-ranked communities in the final

community preference list P∗
v . As showed in lines 22–26 of

Algorithm 2, a node is assigned simultaneously to commu-

nities for which its membership is ǫ-far from the member-

ship degree to the top-ranked community. The ǫ threshold

controls the degree of desired overlapping in identified com-

munities. However, putting ǫ to 0 may still results in having

overlapping communities since for a given node different

communities may have the same membership degree.

5 Experimentation

5.1 Evaluation on benchmark networks

In a first experiment, we evaluate the proposed approach on

a set of four widely used benchmark networks for which

a ground-truth decomposition into communities is known.

These networks are the following:

Zachary’s karate club This network is a social network of

friendships between 34 members of a karate club at a US

university in 1970 [91]. Following a dispute, the network

was divided into two groups between the club’s adminis-

trator and the club’s instructor. The dispute ended in the

instructor creating his own club and taking about half of the

initial club with him. The network can hence be divided into

two main communities.
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Dolphins social network This network is an undirected

social network resulting from observations of a community

of 62 dolphins over a period of 7 years [50]. Nodes represent

dolphins and edges represent frequent associations between

dolphin pairs occurring more often than expected by chance.

Analysis of the data revealed two main groups.

American college football dataset This dataset contains the

network of American football games [23]. The 115 nodes

represent teams and the edges represent games between

2 teams. The teams are divided into 12 groups contain-

ing around 8–12 teams each and games are more frequent

between members of the same group. Also teams that are

geographically close but belong to different groups are more

likely to play one another than teams separated by a large

distance. Therefore, in this dataset groups can be considered

as known communities.

American political books This is a political books co-

purchasing network. Nodes represent books about US poli-

tics sold by the online bookseller Amazon.com. Edges rep-

resent frequent co-purchasing of books by the same buyers,

as indicated by the “customers who bought this book also

Table 1 Basic topological characteristics of selected benchmark net-

works

Dataset # Nodes # Edges # Real communities

Zachary 34 78 2

Football 115 616 11

US Politics 100 411 2

Dolphin 62 159 2

bought these other books” feature on Amazon. Books are

classified into three disjoint classes: liberal, neutral or con-

servative. The classification was made separately by Mark

Newman based on a reading of the descriptions and reviews

of the books posted on Amazon.

Figure 1 shows the structure of the selected networks with

real communities indicated by the color code. Table 1 gives

the basic characteristics of these networks.

For each network we have applied the proposed algorithm

by changing the configuration parameters as follows:

Fig. 1 Real community

structure of the four selected

benchmark networks. Zachary

Karate Club Network [91],

Collegae football network [23],

US Politics books network [38],

Dolphins social network [50]
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Fig. 2 Performance of

applying LICOD to Zachary

Karate club network in function

of σ in terms of NMI, ARI and

the modularity Q

Fig. 3 Performance of

applying LICOD to American

college football network in

function of σ in terms of NMI,

ARI and the modularity Q

• Centrality metrics = [Degree centrality (dc), Betweenness

centrality (BC)]

• Voting method = [Borda, Local Kemeny]

• σ ∈ [0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
• δ ∈ [0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
• ǫ ∈ [0.0, 0.1, 0.2]

For each configuration, we compute the NMI, ARI and

the modularity Q. Figures 2, 3, 4 and 5 show the vari-

ations of these metrics, for each dataset, with the varia-

tion of σ . We have omitted to show the results with dif-

ferent values of δ since on these datasets the δ value has

showed negligible impact on obtained results. The same
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Fig. 4 Performance of

applying LICOD to American

political books networks in

function of σ in terms of NMI,

ARI and the modularity Q

Fig. 5 Performance of

applying LICOD to dolphins

social network in function of σ

in terms of NMI, ARI and the

modularity Q

effect was observed for the ǫ parameter. On each figure,

we plot four graphics showing the variation of NMI, ARI

and Q, for each of the possible four configurations depend-

ing on the choice of the used centrality and the voting

method.

These results show that the use of the betweenness cen-

trality accelerate slightly the convergence for the right value

to obtain. Local Kemeny voting methods out performs that

Borda in the case of the football network only and gives

comparable results for the US Politics network. Borda gives

123



252 Vietnam J Comput Sci (2014) 1:241–256

Table 2 Comparison of performances of different community detection

algorithms

Dataset Algorithm NMI ARI Q # Communities

Zachary Newman 0.57 0.46 0.40 5

Louvain 0.58 0.46 0.41 4

Walktrap 0.50 0.33 0.35 5

LICOD 0.60 0.62 0.24 3

Football Newman 0.87 0.77 0.59 10

Louvain 0.89 0.80 0.60 10

Walktrap 0.88 0.81 0.60 10

LICOD 0.83 0.69 0.49 16

US Politics Newman 0.55 0.68 0.51 5

Louvain 0.57 0.55 0.52 4

Walktrap 0.53 0.65 0.50 4

LICOD 0.68 0.67 0.42 6

Dolphins Newman 0.55 0.39 0.51 5

Louvain 0.51 0.32 0.51 5

Walktrap 0.53 0.41 0.48 4

LICOD 0.41 0.32 0.35 2

Bold values indicate the best score by LICOD

good results only for the Dolphins network using also the

betweenness centrality.

Increasing ǫ results in diminishing the NMI and ARI. This

can be explained by the fact that high value of ǫ increases

the overlapping degree of obtained communities while real

communities we have here are all disjoint.

The best results are obtained for σ around 0.8, 0.9. This

argues for the validity the idea of introducing the σ threshold

and not to consider extreme cases where a node is qualified

as a leader if it has the highest centrality in its direct neigh-

borhood. We notice that the dynamic curves differ from one

network to another, and this is closely related to the speci-

ficities of each network. The choice of a configuration of the

proposed algorithm in function of the properties of the target

network constitutes one interesting topic to cope with.

We also compared the results of our algorithm with results

obtained by well-known algorithms: The Newman–Girvan

algorithm [58], the WalkTrap algorithm [70] and the Louvain

algorithm [7]. The configuration adopted for LICOD is the

following: Centrality metric is betweenness centrality, Voting

method is local Kemeny, σ = δ = 0.9, and ǫ = 0. Table 2

gives obtained results on the four datasets.

These results show that LICOD performs better than the

other algorithms for both Zachary and US Politics networks.

It also gives competitive results in the other two networks.

This could be explained by the absence of leaders in these

two networks, which makes the communities detection task

more difficult.

These results show also that the modularity metric does

not correspond to the best decomposition into communities

as measured by both NMI and ARI. For instance, the Lou-

vain method obtains always the best modularity (even bet-

ter than the modularity of the ground-truth decomposition),

however, it is ranked not first according to NMI . Best results

are obtained by our approach for high values of σ .

5.2 Data clustering-driven evaluation

We propose here to use the task of data clustering to apply

a task-driven evaluation of community detection algorithms.

The basic idea is to transform a data clustering problem into

a community detection one. Some earlier work has already

applied community detection algorithms to the clustering

task [17]. Figure 6 illustrates the overall approach. First, a

relative neighborhood graph (RNG), as defined in [84], is

constructed over the set of items to cluster. The choice of

RNG graph is motivated by the topological characteristics of

these graphs that are connexe and sparse. To build an RNG

graph, we first compute a similarity matrix between couple

of items in the dataset (Fig. 7). This results in a symmetric

square matrix of size n ×n where n is the number of items in

the dataset. A RNG graph is defined by the following simple

construction rule: two points xi and x j are connected by an

edge if they satisfy the following property:

d(xi , x j ) ≤ max
l

{d(xi , xl), d(x j , xl)}, ∀l �= i, j (8)

where d(xi , x j ) is the distance function. A community detec-

tion algorithm is applied on the obtained graph to cluster the

Fig. 6 Applying community

detection to data clustering
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Fig. 7 Example of the

generation of a RNG from a

cloud of data: α and β are two

relatifs neighbors because there

is no other node in the

intersection of the two circles

centered, respectively, in α and

β and with radius d(α, β)

Table 3 Characteristics of used datasets

Dataset Glass Iris Wine Vehicle Abalone

#Instances 214 150 178 846 772

#Attributes 10 4 13 18 8

#Classes 7 3 3 4 29

Table 4 Applied basic distance functions

Distance Formula

Euclidean distance disteuc(x, y) =
√

∑n
i=1 |xi − yi |2

Cosine similarity distcos(x, y) = 1 − x .y
|x ||y|

Chebyshev distance dcheb(x, y) = maxi (xi − yi )

given examples. Clustering evaluation criteria a-can then be

used to compare different algorithms.

We have tested our approach on five classical datasets

publicly available from UCI website.1 The selected datasets

are briefly described in Table 3.

We have constructed the different RNG graphs on these

datasets using the following classical distance cited in

Table 4.

Table 5 shows basic topological characteristics of obtained

graphs. We can see that these graphs have some characteris-

tics of real networks such as the small diameter and low den-

sity. However, the Chebyshev distance induces dense graphs

though the obtained clustering coefficient is also high. We

have also obtained graphs with a relatively high transitivity.

Based on these results, we have applied the community

detection algorithms on RNG graphs defined by the Cosine

distance function. We apply on the above generated graphs

four different community detection algorithms: Louvain [7],

the Newman–Girvan algorithm, the Walktrap algorithm and

LICOD. Results are evaluated in terms of NMI, and ARI com-

puted in function of the real classes defined in each dataset.

We compute also the modularity Q to show that it does not

always reflect the true quality of the community. Results

1 http://archive.ics.uci.edu/ml/datasets.html.

Table 5 Topological characteristics of obtained RNG graphs

Dataset Feature Euclidean Chebyshev Cosine

Iris # Edges 382 2,468 426

Diameter 33 14 25

Average degree 5.09 32.9 5.68

Density 0.034 0.220 0.038

Transitivity 0.055 0.340 0.011

Glass # Edges 558 7,786 552

Diameter 21 8 24

Average degree 5.21 72.76 5.15

Density 0.024 0.341 0.024

Transitivity 0.0139 0.252 0.011

Wine # Edges 380 514 438

Diameter 102 84 59

Average degree 4.26 5.77 4.92

Density 0.024 0.032 0.027

Transitivity 0 0.178 0

Vehicle # Edges 2,598 4,072 2,764

Diameter 63 54 45

Average degree 6.14 9.62 6.53

Density 0.007 0.011 0.007

Transitivity 0.002 0.091 0

Abalone # Edges 2,542 89,338 2,158

Diameter 38 22 50

Average degree 6.58 231.44 5.59

Density 0.008 0.30 0.007

Transitivity 0 0.49 0

given in the Table 6 show that LICOD is ranked first for the

two datasets: wine and abalone. It gives competitive results

for the other datasets.

6 Conclusion

In this work, we contribute to the state of the art on commu-

nity detection in complex networks by:

• Providing a new efficient algorithm for computing (even-

tually overlapping) communities.
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Table 6 Performance of LICOD vs Louvain, Walktrap, Newman–

Girvan algorithms

Dataset Algorithm NMI ARI Q # Communities

Iris Newman 0.66 0.44 0.72 9

Louvain 0.59 0.40 0.72 8

Walktrap 0.64 0.47 0.68 12

LICOD 0.59 0.42 0.64 8

Glass Newman 0.45 0.21 0.76 11

Louvain 0.47 0.21 0.75 12

Walktrap 0.49 0.15 0.73 22

LICOD 0.46 0.17 0.70 18

Wine Newman 0.32 0.14 0.79 11

Louvain 0.31 0.13 0.79 12

Walktrap 0.32 0.11 0.77 15

LICOD 0.34 0.21 0.72 14

Vehicle Newman 0.23 0.10 0.79 17

Louvain 0.25 0.11 0.78 14

Walktrap 0.23 0.06 0.75 32

LICOD 0.21 0.05 0.65 41

Abalone Newman 0.34 0.10 0.83 15

Louvain 0.35 0.10 0.83 19

Walktrap 0.33 0.08 0.82 21

LICOD 0.44 0.08 0.70 68

• Proposing a new approach for qualitative community

evaluation using classical data clustering tasks.

Results obtained on both small benchmark social network

and on clustering problems argue for the capacity of the

approach to detect real communities. Future developments

we are working include: testing the algorithm on large-scale

networks, develop a full distributed self-stabilizing version

exploiting the fact that major part of computations are made

in a local manner and finally adapt the approach for K-partite

and for multiplex networks [28].

Open Access This article is distributed under the terms of the Creative

Commons Attribution License which permits any use, distribution, and

reproduction in any medium, provided the original author(s) and the

source are credited.
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