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Abstract: Our study objectives were to model the aboveground biomass in a xeric shrub-steppe

landscape with airborne light detection and ranging (Lidar) and explore the uncertainty associated

with the models we created. We incorporated vegetation vertical structure information obtained from

Lidar with ground-measured biomass data, allowing us to scale shrub biomass from small field sites

(1 m subplots and 1 ha plots) to a larger landscape. A series of airborne Lidar-derived vegetation

metrics were trained and linked with the field-measured biomass in Random Forests (RF) regression

models. A Stepwise Multiple Regression (SMR) model was also explored as a comparison. Our results

demonstrated that the important predictors from Lidar-derived metrics had a strong correlation with

field-measured biomass in the RF regression models with a pseudo R2 of 0.76 and RMSE of 125 g/m2

for shrub biomass and a pseudo R2 of 0.74 and RMSE of 141 g/m2 for total biomass, and a weak

correlation with field-measured herbaceous biomass. The SMR results were similar but slightly better

than RF, explaining 77–79% of the variance, with RMSE ranging from 120 to 129 g/m2 for shrub and

total biomass, respectively. We further explored the computational efficiency and relative accuracies

of using point cloud and raster Lidar metrics at different resolutions (1 m to 1 ha). Metrics derived

from the Lidar point cloud processing led to improved biomass estimates at nearly all resolutions in

comparison to raster-derived Lidar metrics. Only at 1 m were the results from the point cloud and

raster products nearly equivalent. The best Lidar prediction models of biomass at the plot-level (1 ha)

were achieved when Lidar metrics were derived from an average of fine resolution (1 m) metrics to

minimize boundary effects and to smooth variability. Overall, both RF and SMR methods explained

more than 74% of the variance in biomass, with the most important Lidar variables being associated

with vegetation structure and statistical measures of this structure (e.g., standard deviation of height

was a strong predictor of biomass). Using our model results, we developed spatially-explicit Lidar

estimates of total and shrub biomass across our study site in the Great Basin, U.S.A., for monitoring

and planning in this imperiled ecosystem.

Keywords: above ground carbon; machine learning; Lidar; above ground biomass; drylands;

semi-arid; rangelands

1. Introduction

Aboveground biomass (‘AGB’ or ‘biomass’ hereafter) is a strong indicator of ecosystem structure,

function, and productivity. In dryland ecosystems, AGB is important for estimating fuel loads,
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measuring carbon storage, assessing habitat quality, and monitoring changes in native species [1–3].

Although AGB per unit area in drylands is relatively low compared to other ecosystems, drylands

cover one fifth of the earth’s land area and thus play a significant role as a carbon sink and provider of

essential ecosystem services [4,5].

In western North America, semiarid sagebrush communities once extended across >500,000 km2,

but the ecosystem is now one of the most imperiled on the continent [6,7]. An increase in invasive

species, fire frequency, and other disturbances has resulted in a decrease in the extent of native

shrub-steppe communities [7–10]. Indeed, the risk of permanent habitat loss from fire is so great,

especially in the Great Basin, that in 2015, the secretary of the U.S. Department of Interior (DOI)

released a secretarial order (SO3336; https://www.forestsandrangelands.gov/rangeland/index.shtml)

that directed wildland fire prevention, suppression, and restoration in sagebrush-steppe ecosystems to

protect the greater sage-grouse and other sagebrush-associated species. However, one limitation to the

effective implementation of SO3336 is a lack of accurate and timely estimates of the distribution of

AGB in sagebrush-steppe ecosystems, information that is critical for fuel management and fire risk

planning at regional to landscape scales [11].

Various direct and indirect methods are available for in-situ measurements of AGB of shrubs

and herbaceous (forb and grass) species [12–14]. Some of the most common methods include

harvesting [12]), clip-and-weigh [14], visual estimations [15], and point-intercept sampling [13].

These methods are labor intensive [13,14], which limits their scale of application. Although these

field-based methods perform reasonably well (i.e., acceptable accuracy, precision, and reproducibility)

at small spatial extents, at larger extents, such as landscapes greater than about 1 ha, performance

declines because of the natural heterogeneity of dryland soils and vegetation. Hence, field-based

measurements may misrepresent actual AGB values (as well as vegetation structure and composition)

and are certainly inefficient and expensive when applied across entire landscapes. Techniques to

improve the accuracy, precision, repeatability, and efficiency of AGB estimates over large areas

(10 s of km) are needed, particularly in sagebrush-steppe and similar ecosystems that are experiencing

landscape-level changes associated with invasive species, fire, and climate change.

Remote sensing has the potential to meet this need by providing multi-scale contiguous estimates

of AGB, which are ideally suited for modeling over broad spatial [16,17] and temporal scales [18].

For more than a decade, light detection and ranging (Lidar) has been successfully used to measure

forest volume, height and AGB [19–23], and the vegetation characteristics of shrubs (e.g., shrub height,

canopy cover, leaf area index) in rangelands [24–26]. In some shrub species, there is a strong link

between shrub height and other biophysical characteristics (e.g., cover, AGB, canopy volume [27]),

thus making Lidar advantageous for vegetation structure measurements.

Metrics derived from Lidar (e.g., mean height, variance of height, canopy relief ratio) can be

correlated with biophysical vegetation characteristics in the field using statistical methods such as

Classical Multiple Linear Regression (CMLR) [28], Partial Least Square Regression [29], Hierarchical

Bayesian [30], Random Forests [31], and Artificial Neural Networks [32]. The machine learning

algorithm Random Forests (RF) assembles the analysis of Classification and Regression Trees (CART)

by bootstrapping samples to iteratively construct a large number of decision trees, each grown with

a randomized subset of predictors [33]. RF has been widely used in non-linear relational models

and high dimensional data sets [34,35]. Recently, RF has gained attention in the field of remote

sensing due to the classification and computational accuracy, the potential to capture complex and

non-linear relationships between predictors, the ability to support small sizes of training data relative

to a large number of predictors, and because it provides a measure of variable importance [36,37].

RF has been demonstrated to be more accurate than simple regression techniques for forest biomass

estimations [18,38] and a number of studies have demonstrated that RF provides low prediction

variance and bias, and strong model performance, e.g., [39–41].

Statistical and machine learning methods for Lidar remote sensing studies are typically

implemented on raster-based datasets instead of point cloud data. Raster-based models of Lidar

https://www.forestsandrangelands.gov/rangeland/index.shtml
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data are relatively easy to process and store in comparison to point clouds [42]. A raster dataset is

created by the aggregation of irregularly distributed points, typically starting with the upper-left points

of the grid cell. Interpolation is performed for cells that contain no points. Therefore, vegetation metrics

derived from rasterized imagery over a specific plot will differ from those calculated directly from the

point cloud due to the likely mismatch between the field plot and grid cell boundaries. As an example

of these effects. El-Ashmawy and Shaker [43] found that the overall accuracy of land cover classification

in British Columbia was slightly higher using point clouds than raster-based classifications.

The research objectives of this study were to model AGB in the sagebrush-steppe by linking

field-measured biomass with 35 airborne Lidar-derived vegetation metrics using RF and Stepwise

Multiple Regression (SMR), explore the uncertainty associated with Lidar-derived metrics and the

models tested, and ultimately develop a spatially-explicit estimate of biomass across the xeric study site

in the Great Basin. To accomplish these objectives, we compared the vegetation metrics from both Lidar

point clouds and rasterized Lidar images as a proxy for the estimation of AGB to determine which

processing method introduced a lower uncertainty and produced better results. We also compared

different Lidar-derived metrics at a range of spatial scales to identify the best model for biomass

prediction across a regional area. In addition, the RF and SMR models were compared to explore their

relative strengths for predicting total and shrub biomass. All our analyses were performed to estimate

biomass at the 1-ha plot scale since the in-situ biomass was measured across 1-ha plots.

2. Study Area and Data

2.1. Study Area

The 75,164 ha study area is located within the 243,000 ha U.S. DOI Morley Nelson Snake

River Birds of Prey National Conservation Area (NCA) in the Snake River Plain ecoregion of

southwestern Idaho, USA (Figure 1). The NCA receives approximately 20 cm of precipitation

annually, and has an average annual maximum and minimum temperature of 20 ◦C and 6 ◦C,

respectively [44]. Native vegetation is generally composed of an open canopy of shrubs dominated

by big sagebrush (A. tridentata) of up to 1.5 m tall [45], with a generally sparse cover of native

bunchgrass (e.g., P. secunda, Festuca idahoensis) and forbs. Other native shrub species include shadscale

(Altriplex confertifolia), winterfat (Ceratoides lanata), budsage (Artemisia spinescen), and rabbitbrush

(Chrysothamnus visciflorus). Since 1980, about half of the NCA has burned, resulting in a mosaic of plant

communities, with compositions spanning a gradient between intact native shrublands, shrublands

degraded by biological invasion and wildfire, and grasslands where native perennial plants have

been fully replaced by nonnative annuals, including cheatgrass (Bromus tectorum), medusahead

(Taeniatherum caput-medusae), and various forbs (e.g., tall tumblemustard, Sisymbrium altissimum).

Nonnative annuals have likely increased the amount of litter, fine fuel loads, and fuel continuity

on the NCA compared with historical conditions. Likewise, the amount of bare mineral soil

and biological soil crusts have likely diminished. Currently 37% or less of the NCA retains an

intact native shrubland community; the remainder is predominantly a mixture of nonnative annual

grasslands (i.e., Bromus tectorum) or a mosaic of native perennial (i.e., Poa secunda) and nonnative

annual grasslands with occasional forbs and shrubs [46].
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Figure 1. The Morley Nelson Snake River Birds of Prey National Conservation Area (NCA), located in

southwestern Idaho, USA. This study area is located in the northwestern portion of the NCA where

the 2012 and 2013 Lidar data were obtained.

2.2. Field Sampling

In the summers of 2012 and 2013, we established forty-six (n = 46) 100-m by 100-m (1 ha) field

plots at locations throughout the northwestern NCA. We used a stratified random sampling approach

within unburned, burned-treated, and burned-untreated areas over the Lidar coverage to capture

invasion and successional gradients as part of a related study [47]. We located the corners of each

plot using a survey-grade GNSS (Global Navigation Satellite System). We tested a point-quarter

sampling design and deemed it suitable to quantify the cover of sparse plants such as shrubs in early

successional habitats [48]. Each 1-ha plot included a three by three grid of nine subplots of 1 m2 each,

with 25 m spacing between subplots (Figure 2). The subplots were sampled to represent the 1-ha plot.

Vegetation within each subplot was classified as either herbaceous or shrub, then clipped at ground

level, bagged, and labeled. We oven-dried and weighed the harvested vegetation. If shrubs were too

large to be harvested, a portion was collected for reference and the number of equivalent portions

remaining in the quadrat was estimated. We calculated the biomass across each 1-ha plot as the average

of the nine subplots for the herbaceous and shrub classes. We combined the data collected in 2012 and

2013 into one dataset (n = 46 plots) to compare with Lidar collected in the same years. We assumed

negligible differences in shrub biomass between years due to the slow growth of shrubs in our study

area (e.g., [16]). We estimated the herbaceous and shrub cover and biomass across the 46 field plots.

Herbaceous and shrub cover ranged from 0 to 100% and 0 to 87%, respectively. The herbaceous class

had a mean biomass of ~144 g/m2 and the shrub class had a mean biomass of ~208 g/m2 (Table 1).

Table 1. Statistics of vegetation cover and biomass from the field sites, n = 46 (1-ha plots).

Herbaceous
Cover (%)

Shrub
Cover (%)

Herbaceous
AGB (g/m2)

Shrub AGB
(g/m2)

Total AGB
(g/m2)

Minimum 23.4 0 31.1 0 36.8
Maximum 98.6 46.9 489.4 954.4 1116.8

Mean ± Std. 65 ± 20 12 ± 13 144 ± 87 208 ± 253 352 ± 281
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Figure 2. Schematic of the field sampling procedure. The nine squares represent the 1 m2 subplots

distributed in the 1 ha plots.

2.3. Airborne Lidar Data Acquisitions

The Lidar data were collected over 65,194 ha in 2012 and 9970 ha in 2013, with an

ALS60 system (Leica Geosystems, Heerbrugg, Switzerland) operated by Watershed Sciences

(Corvallis/Portland, Oregon), with a small-footprint Lidar of an 18 cm diameter at nadir and a point

density of approximately eight points per m2. The Lidar system was ≥148 kHz and was flown at 1500 m

above ground level, with a scan angle of 48◦ (±12◦) from nadir (field of view). An opposing flight

line side-lap of ≥50% (i.e., 100% overlap) was maintained to increase the point density. The absolute

vertical accuracy was ~0.03 m and the relative accuracy was ~0.024 m. The vertical accuracy was

primarily assessed from ground check points on open, bare earth surfaces with level slope (<20◦) by

the vendor.

3. Methodology

3.1. Data Processing

We buffered and height filtered the Lidar point cloud data using the BCAL Lidar Tools developed

for vegetation analysis (http://bcal.boisestate.edu/tools/Lidar; [24]). The height filtering classifies

Lidar points into ground and vegetation points. The height filtering was performed using a 5-m

canopy spacing, which has previously been shown to perform well in the semi-arid sagebrush-steppe

environment [24], a 5-cm ground threshold, nearest neighbor interpolation, and 40 iterations.

Two groups of metrics were calculated from resulting Lidar vegetation points: metrics based on

numerical values (e.g., canopy height) and metrics based on the density of points (e.g., canopy density).

We calculated 35 metrics using the BCAL Lidar Tools (Table 2). We conducted two separate analyses of

the 35 metrics to explore the effect of rasterization of the point cloud on the ability of the vegetation

metrics to predict biomass. The first averaged the metrics derived from the rasterized vegetation

products (created at a range of scales) of the plot and the second averaged the metrics directly from the

point cloud of the same plot, with no rasterization. We used 1-m, 7-m, 30-m, and 1-ha resolutions to

test the appropriate scale to represent biomass and to explore the differences between deriving metrics

with the Lidar point cloud and rasterized data. The 1-m and 1-ha resolutions were chosen as they

matched the field subplot and plot sizes, respectively. The 7-m resolution was chosen because a related

study used RapidEye 7-m resolution data [49] and the 30-m resolution was chosen as a potential to

compare and fuse with Landsat imagery in future studies (also see [50]). In addition, testing the input

metrics at coarser scales (e.g., 7 m, 30 m, and 100 m spatial resolutions) for the biomass modeling will

provide a possible strategy for using several of NASA’s previous and future space-based Lidar missions

with large footprint sizes. For example, ICESAT-1’s GLAS had a footprint size of ~70 m; whereas

ICESAT-2’s ATLAS and GEDI will have ~12 and ~25 m footprint sizes, respectively. While our study

http://bcal.boisestate.edu/tools/Lidar
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does not simulate the full waveform or photon counting lasers of these instruments, we can provide a

measure of the uncertainty of vegetation biomass estimates at these coarser scales. In addition, earth

system models are now beginning to use Lidar data, but at coarser scales (e.g., the iSNOBAL snow

model used with airborne Lidar data from NASA’s Airborne Snow Observatory uses 50 m grid cells of

Lidar derived information [51]).

In the point cloud processing approach, the metrics were derived from the point cloud data at 1 m,

7 m, 30 m, and 100 m. We then used the average of these metrics at the different scales to represent the

1-ha plots (e.g., an average of the 1-m metrics across the 1-ha plot). In the raster processing approach,

the Lidar point cloud data were rasterized at the same resolutions (1 m, 7 m, 30 m, and 100 m) and we

then averaged the rasterized metrics to represent the 1-ha plot. The resulting 1-ha scale metrics, derived

from different scales using either the point cloud or rasterization approach, were then compared to the

field-based biomass average at the 1-ha plot level.

Table 2. Lidar metrics (n = 35) and their descriptions.

Lidar Metric Description

Hmin The minimum of all height points within each pixel

Hmax The maximum of all height points within each pixel

Hrange The difference of maximum and minimum of all height points within each pixel

Hmean The average of all height points within each pixel

HMAD
The Median Absolute Deviation from Median Height value (HMAD) of all height points within each pixel,
where HMAD = 1.4826 × median (|height − median height|)

HAAD
The Mean Absolute Deviation from Mean Height (HAAD) value of all height points within each pixel,
where HAAD = mean (|height − mean height|)

Hvar The variance of all height points within each pixel

Hstd The standard deviation of all height points within each pixel

Hskew The skewness of all height points within each pixel

Hkurt The kurtosis of all height points within each pixel

HIQR
The Interquartile Range (HIQR) of all height points within each pixel, where HIQR = Q75 − Q25, where Qx is
xth percentile

HCV The coefficient of variation of all height points within each pixel

H5, H10 etc. The 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of all height points within each pixel

nAll The total number of all points within each pixel

nV The total number of all the points within each pixel that are above the specified Crown Threshold value (CT)

nG The total number of all the points within each pixel that are below the specified Ground Threshold value (GT)

Veg_density The percent ratio of vegetation returns and ground returns within each pixel

Veg_cov The percent ratio of vegetation returns and total returns within each pixel

pG Percent of points within each pixel that are below the specified Ground Threshold

pH1, pH2.5 etc.
Percent of vegetation in height ranges 0–1 m, 1–2.5 m, 2.5–10 m, 10–20 m, 20–30 m, and >30 m within
each pixel

CRR Canopy relief ratio of points within each pixel, where CRR = ((Hmean − Hmin))/((Hmax − Hmin))

Htext Texture of height of points within each pixel, where Htext = St. Dev. (Height > GT and Height < CT)

FHDall

Foliage arrangement in the vertical direction (Foliage Height Diversity), where FHDall = −∑pi *lnpi

where pi is the proportion of horizontal foliage coverage in the i-th layer to the sum of the foliage
coverage of all the layers

FHDGT FHD calculated only from the points above GT

3.2. Moldeing Plot-Scale Biomass

3.2.1. RF Regression Model

The non-parametric machine learning approach, Random Forests (RF), was used to assess the

relationship between field-level biomass with vegetation metrics developed from Lidar. We used
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SPM Suite (Salford Predictive Modeler Software Suite version 7, Salford Systems, San Diego, CA, USA)

for the implementation of the RF algorithm. Each RF regression run generated 2000 trees and the

maximum number of variables considered per node was kept equal to the square root of the number

of variables for the run [33]. All 35 predictor variables (Table 2) were used to perform the initial RF run

and ranked based on their predictive power. The predictive power of the variable or variable ranking

was performed by a ‘Standard Method’: testing the variable stepwise and retaining it only if the error

gain exceeds a certain threshold. This means that if a variable substituted with incorrect values can

predict the target accurately, then the variable has no relevance for predicting the outcome and hence

is assigned a low score (SPM user guide, 2013). For the best variable selection, we used the backward

feature elimination method where the lowest performing variables were iteratively removed until

the best model was obtained. The best models for total AGB, shrub AGB, and herbaceous AGB were

determined based on the highest coefficient of determination (R2) (referred to as pseudo R2 in RF)

and lowest root-mean-square error (RMSE) estimated using “out-of-bag” (OOB) testing. The OOB

error provided an internal leave-one-out cross-validation using the ‘boot’ package in R statistical

software (R Development Core Team 2013) and has previously been used as an unbiased estimate

of error [39,52,53]. The number of predictor variables in the models was kept as low as possible to

maintain model parsimony. The variable selection was performed to reduce the number of predictor

variables and to understand which predictor variables are most suitable to estimate biomass [54].

The analyses were performed for all four resolutions (i.e., 1 m, 7 m, 30 m, 100 m) for both raster and

point cloud derived metrics.

3.2.2. SMR Model

In stepwise regression, predictor variables are entered into the regression equation one at a time

based on given statistical criteria. At each step in the analysis, the predictor variable with the highest

correlation to the dependent variable is entered into the regression equation first [55]. When the

additional variables do not statistically improve the regression equation and increase R2, the process

ends. Based on results from the RF, the SMR model was used to model the relationship between the

35 Lidar derived metrics at a 1 m raster resolution and field AGB at the plot level (1 ha). A common

problem with linear regression and its use in biomass estimation is multicollinearity between the

independent variables, possibly leading to the violation of basic assumptions [55]. Hence, we used

the SMR approach adopted by Lefsky et al. [56], which selects the two most important independent

variables that were not collinear using the Pearson’s correlation coefficient.

3.3. Imputation of Regional Biomass and Uncertainty

A Nearest Neighbor (NN) imputation technique developed in the R statistical computing

environment (R Development Core Team 2013) was used to apply the optimal RF model to scale

biomass estimates to the larger study area. In the NN imputation, the best predictor variables

selected by the optimal RF model form an attribution space. Missing data are then computed using

biomass estimates produced as weighted averages of the neighbors, which are determined by the

similarity (distance) [35,57]. Nearest Neighbor imputation methods can use different distance metrics

to determine the similarity between target and reference records, including Euclidean, Mahalanobis,

Minkowski, and fuzzy in the attribution space [58]. We used the R imputation package, yaimpute,

with the available Lidar coverage to obtain a contiguous map of predicted biomass. The yaimpute

package has a built-in function to calculate NN distances based on the RF proximity matrix [31,59].

A detailed explanation of imputation, its types, and its fundamental difference with interpolation can

be found in Hudak et al. [31]. Our RF biomass model was trained and developed at the 1-ha plot

scale, hence a spatially-explicit plot-scale average biomass map was developed at this scale. We also

developed a spatially-explicit map of the coefficient of variation (CV, equal to the value of the standard

deviation divided by the mean) for shrub and total AGB estimates in RF [17]. The imputed AGB for a

given pixel was estimated by averaging all estimates produced by all regression trees for that pixel and
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the standard deviation of each pixel estimate across all trees was calculated by retaining the individual

pixel estimates from all trees.

4. Results

4.1. Plot-Scale Biomass from Raster-Derived Vegetation Metrics

Lidar-derived metrics using rasterization were found to have a strong relationship with total AGB

and shrub biomass using RF regression models. Lidar metrics, including HAAD and Hstd from the

1-m raster image, predicted total biomass with an R2 of 0.74 and RMSE of 141 g/m2, whereas shrub

biomass was predicted with an R2 of 0.76 and RMSE of 152 g/m2 (Table 3).

As the raster resolution decreased, the prediction capability of the Lidar metrics also decreased

with an R2 of 0.70, 0.58, and 0.52 at 7 m, 30 m, and 100 m, respectively, for total AGB. Similarly, the

RMSE increased as the resolution decreased. We observed a similar trend for the shrub biomass.

Table 3. Results of the RF regression using raster data processing for total and shrub biomass at

different resolutions representing 1-ha plots.

Scale (m) Pseudo R2 RMSE (g/m2) Predictors

Total AGB

1 0.74 141 Hstd, HAAD, H90, HSkew, Hvar, Htext

7 0.70 152 Htext, FHDGT, H95, HAAD

30 0.58 180 FHDGT, nV, HAAD, H5

100 0.52 188 FHDGT, nV, H16, HAAD

Shrub AGB

1 0.76 125 Hstd, HAAD, HCV, Hrange, FHDall

7 0.67 143 Htext, FHDGT, HAAD

30 0.50 176 FHDGT, HAAD, HCV

100 0.40 184 Htext, H50, pG, nG

4.2. Plot-Scale Biomass from Point Cloud-Derived Vegetation Metrics

Unlike the raster processing, the coarsening of the pixel size had a smaller effect on the total and

shrub AGB prediction capability of the point cloud-derived metrics. Whereas the AGB estimation

ability of the RF model from point clouds was not statistically different from raster processing at the

1-m resolution, the predictions at 7-m, 30-m, and 100-m resolutions improved using the point cloud

data (Table 4). Notably, the RMSE of the shrub AGB estimates was lower in the point cloud processing

at the 7-m, 30-m, and 100-m scales in comparison to the raster processing.

Table 4. Results of the RF regression using point cloud processing for total and shrub biomass at

different resolutions representing 1-ha plots.

Scale (m) Pseudo R2 RMSE (g/m2) Predictors

Total AGB

1 0.71 147 HMAD, HSkew, HIQR, HAAD, Hstd, Hkurt, H90, HCV

7 0.71 148 Htext, HIQR

30 0.70 151 HAAD, H95, HIQR, pH1, pG
100 0.67 160 H90, H95, Htext, Veg_density

Shrub AGB

1 0.73 129 HIQR, Hstd, HMAD, HCV

7 0.72 132 Htext, H90, HIQR, HCV

30 0.65 146 H90, HIQR, Htext, pH1

100 0.64 151 H95, Htext, pH1, GIQR, FHDGT

In contrast to shrub and total biomass, herbaceous biomass was poorly predicted by Lidar metrics.

This result fitted our expectations as herbaceous vegetation types are short in stature and differentiating

ground from herbaceous returns in Lidar is difficult. The results were consistent across all scales and

all processing approaches and hence only the results from the 1-m raster and point cloud datasets are

listed in Table 5.
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Table 5. Results of the RF regression for herbaceous biomass representing 1-ha plots.

Scale (m) Source Pseudo R2 RMSE (g/m2) Predictors

Herbaceous
AGB

1 Raster 0.20 6.86 HSkew, Htext

1 Point Cloud 0.19 7.54 HCV, Htext, HSkew

4.3. Comparison of RF Model and SMR Model

The Pearson’s correlation analysis identified the metric Hstd as the variable with the highest

correlation with total AGB (Pearson’s correlation r = 0.85) and shrub biomass (Pearson’s correlation

r = 0.84). A regression analysis of total AGB with Hstd provided us with the following equation, with

an R2 of 0.72 and p-values < 0.001.

Total AGB = 12,374.67 × Hstd − 142.058 (1)

An analysis of the residuals obtained from the above equation was correlated with the remaining

34 metrics and Hskew was found to have the highest correlation (Pearson’s correlation r = 0.39). Hence

Hskew was added to the equation, resulting in an R2 of 0.79, RMSE of 129 g/m2, and p-value < 0.001

(Figure 3).

Total AGB = 10,230 × Hstd + 386 × Hskew − 226.416 (2)

Applying the same methodology to the shrub biomass, provided the following model with an R2

of 0.77, RMSE of 120 g/m2, and p-value < 0.001 (Figure 3).

Shrub AGB = 25,655.23 × Hstd − 19,052.4 × HMAD − 169.62627 (3)

−

−

− −

Figure 3. Scatterplots between the observed AGB (field-measured biomass) and the AGB with

Equations (2) and (3) for total (A) and shrub (B) biomass.

−

−

− −

Figure 4. Scatterplots between the observed AGB (field-measured biomass) and the predicted AGB

with the RF regression model for total (A) and shrub (B) biomass.
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Comparing the pseudo R2 using OOB testing with the R2 from the linear regression model, we

found the RF results to be slightly worse than the SMR models for both total and shrub AGB. We then

used the optimal RF model (1 m raster scale) to estimate the predicted biomass for each observed

(field) biomass. This resulted in the RF predicted total AGB of R2 = 0.80 and shrub AGB of R2 = 0.84

with RMSE values of 124 g/m2 and 102 g/m2, respectively (Figure 4).

4.4. Analysis of Imputed Regional Biomass

Using RF, total and shrub biomass were best modeled with 1-m Lidar-derived metrics (Tables 3 and 4).

For total AGB, raster processing and point cloud processing had an R2/RMSE of 0.74/141 g/m2 and

0.71/147 g/m2, respectively. For shrub AGB, raster processing and point cloud processing had an

R2/RMSE of 0.76/125 g/m2 and 0.73/129 g/m2, respectively. There was no significant difference

between the two data processing methods used (raster or point cloud). Based on these results and

because raster processing is computationally more efficient, spatially-explicit, contiguous total and

shrub aboveground biomass maps over the Lidar coverages were produced by imputation using

predictors associated with the 1-m raster-derived metrics. Figures 5A,B and 6A,B show that the

shrub-dominant regions had higher biomass values in comparison to the sparse shrub and grass

dominant areas. Note the crops depicted in the northeast corner of the 2013 Lidar were not masked as

they had a small influence on the overall mean biomass values calculated for the study area. In this

study area, the mean shrub biomass is 50–60 g/m2 and the mean total biomass is 210–263 g/m2

(Table 6). There are wide expanses of no shrub cover across the NCA (more discussion below) and

in fact, the shrub biomass imputation represents large regions of 0–50 g/m2 of biomass. These areas

are likely representative of regions where the herbaceous class was present; this is confirmed by the

total biomass imputations where biomass pixels in the ~0–200 g/m2 are more abundant. The CV maps

(Figures 5C,F and 6C,F) illustrate the variation of the model estimates, represented as a percentage of

the estimated biomass in each pixel. Larger biomass estimates had a higher standard deviation and

lower CV (Figures 5–7). Given the poor modeling results of the herbaceous cover class, and considering

that the total biomass model includes both herbaceous and shrub components, the uncertainty in the

total biomass imputation is higher than the shrub biomass imputation.

 

Figure 5. Imputed total AGB (A), standard deviation of the imputed total AGB (B) and coefficient

of variation (CV) of the imputed total AGB (C) and imputed shrub AGB (D), standard deviation of

the imputed shrub AGB (E) and coefficient of variation (CV) of the imputed shrub AGB (F), across a

sub-area (middle portion) of the 2012 Lidar.
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Figure 6. Imputed total AGB (A), standard deviation of the imputed total AGB (B) and coefficient of

variation (CV) of the imputed total AGB (C) and imputed shrub AGB (D), standard deviation of the

imputed shrub AGB (E) and coefficient of variation (CV) of the imputed shrub AGB (F), across the

coverage of the 2013 Lidar.

 

Figure 7. Scatterplots of the imputed biomass values and the standard deviation for total AGB (A) and

for shrub AGB (B) and scatterplots of the imputed biomass values and the coefficient of variation for

total AGB (C) and for shrub AGB (D).
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Table 6. Statistics of total and shrub imputed AGB and associated CV at 1-ha

2012 Lidar 2013 Lidar

Total AGB Shrub AGB Total AGB Shrub AGB

Biomass (g/m2)

Minimum 36.8 0 36.8 0
Maximum 1116.8 954.4 1116.8 662.5

Mean ± Std. 263 ± 204 60 ± 149 210 ± 238 51 ± 126

CV (% biomass per area)
Minimum 34.9 23.9 46.0 31.4
Maximum 389.2 499.9 347.9 495.0

Mean ± Std. 121 ± 48 148 ± 102 136 ± 58 190 ± 90

5. Discussion

5.1. RF Biomass Regression Model

5.1.1. Uncertainty

Processing of the point cloud data significantly improved the estimation of total and shrub

AGB using coarser scales (7 m, 30 m and 100 m) in comparison to the raster image processing

(based on R2 and RMSE, Tables 3 and 4). However, 1-m scale point cloud and raster image

processing provided nearly equivalent estimates of 1-ha plot average biomass. At the 1-m scale,

the rasterization approach incorporates fewer points outside of the pixel boundary (and in close

proximity). Furthermore, rasterization at 1 m had a greater probability of aligning with field plots and

was less influenced by values from adjoining pixels in comparison to coarser pixel sizes. The similar

RF regression model results indicate that the rasterization method preserves most of the 3D point

cloud vegetation characteristics and thus is essentially equivalent to using point cloud data at the

1-m scale. At coarser raster scales, we attribute the declining results to boundary effects and alignment

with field plots.

In contrast, the pixel size in which point cloud processing was performed had negligible effects

on the total and shrub AGB estimation. There is almost no loss of detail while extracting or averaging

information from the original point cloud. Furthermore, the point cloud processing significantly

reduced the RMSE at all scales in comparison to the rasterized approach. However, based on the R2

alone, at a 1-m resolution, the point cloud processing was not significantly different to raster data

processing. The coarse-scale raster results may be more representative of expected results from large

footprint Lidar than the point cloud analyses. This is because a large footprint Lidar is an integrated

waveform (or photons in the case of ICESAT-2) of the canopy profile over the entire footprint.

The bias in in-situ data also introduces uncertainty into the biomass models. As shown in

Figure 2, averaging the biomass from the subplots to obtain the in-situ plot level biomass takes

into account areas of no sampling in the outer 30-m buffer of the subplots. Because the predictors

will adapt to the attribution space of the training samples [60], the RF imputation includes similar

uncertainties as those in the training samples. This is likely the reason behind the appearance of the

long linear features of a relatively high biomass in the resulting imputation map (Figures 5 and 6).

Although the average biomass over the nine 1-m subplots may represent herbaceous and small shrubs

across a 1-ha plot (e.g., [48]), error in the field data may have been introduced because of relatively

larger shrubs close to the subplot edge which were not fully accounted for in the field sampling.

Moreover, estimating the biomass from Lidar without corresponding species level classification can be

a disadvantage when different species have similar structural arrangements but substantially different

AGB (e.g., in this landscape, low-AGB nonnative forbs, such as tumble mustard, can be incorrectly

quantified as shrub, [39]).
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5.1.2. RF Regression Model Variables

Previous research in similar ecosystems has shown volume (e.g., [61–63]) or the approximation of

volume (the product of basal area and height or the product of percent vegetation cover and height)

(e.g., [16,64]) to be a strong proxy of shrub biomass. A related study by Li et al. [16] compared percent

cover and height, but did not account for height variability metrics in their linear regression model

to estimate biomass. Their results showed that the percent cover of shrubs was the best predictor for

biomass. Yet in our sparse vegetation area, height variability-related metrics (including Hstd, HAAD,

and HMAD) scored higher than other predictors for both total and shrub biomass in all RF models, with

high R2 and low RMSE values. Considering the Lidar acquisition parameters in this study as equal

to those in Li’s study [16], a higher number of Lidar returns from the vegetation canopy will occur

in denser and larger shrubs (represented in the study in [16]) compared to the sparse canopies with

smaller shrubs in our study. Vegetation Lidar returns are also more likely to be mixed with those of

annual grasses, perennial bunchgrasses, litter, or bare ground in our study area. Hence, shrub height

underestimation is likely more pronounced in this study due to constraints related to the laser pulse

length [24,26,65,66]. Yet the variability of height may still be sufficiently captured by the Lidar to

represent the spatial pattern of biomass with smaller shrub canopies in our study site.

In this study, five predictors (Hstd, HAAD, HCV, Hrange, and FHDall) at the 1-m scale explained

roughly 76% of the variability in shrub AGB (Table 3) in the optimal RF regression model. For the RF

model for shrub biomass, the remaining 24% error may be credited to uncertainties associated with

sparse vegetation distribution, the misclassification of canopy as ground, and the underestimation of

the vegetation height [24,67]. Similar results were found by Estornell et al. [68] in a Mediterranean

shrubland ecosystem. In their research, the median height, standard deviation of height, and percentile

of height derived from airborne Lidar were the best predictors, explaining up to 78% and 84% of

variability for biomass and volume, respectively. Greaves et al. [17] also reported a similar finding in

an arctic shrubland, in which Lidar volume and canopy metrics coupled with vegetation indices from

optical data explained roughly 71% of the variability of shrub biomass.

Given the prominence of Hstd in the SMR and RF models, we further tested the ability of

Hstd alone to estimate AGB biomass. Using univariate linear regression, we found that Hstd

explained 73% and 71% of the variance of total and shrub AGB, respectively (Figure 8). While this

relationship is likely oversimplified and the model fit is erroneous at low shrub biomass estimates,

it is interesting to conceptualize that a vegetation roughness measure may coarsely approximate

biomass. Notably, previous studies in this ecosystem have found vegetation roughness to be a proxy

for classifying sagebrush [69] and sagebrush heights [24].

Figure 8. Linear regression of observed total AGB (A) and shrub AGB (B) with standard deviation of

heights (Hstd).

In sum, most of the shrub biomass models were based on variables associated with vegetation

structure (e.g., height and cover) and related metrics (e.g., standard deviation of height and

percentile of height). In this study, the complexity of the RF model made interpreting the model
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challenging, but demonstrated the non-linearity of the relationship between biomass and its related

driving variables, while also providing a variable importance to better understand the nature of

the relationships.

5.2. Model Performances of RF and SMR

Both RF and SMR have been widely used in ecology [70,71] and remote sensing [40,50]. As a

non-parametric machine learning method, RF has no formal distributional assumptions. It approaches

the issue of non-linearity by using numerous trees and the “small observations large predictors”

problem. However, when the trees become larger (e.g., due to a larger number of input variables),

the resulting models are more difficult to interpret, resulting in a dynamic predictor set when the

training data change a little. As shown in Tables 3 and 4, the best RF model with metrics using

point cloud processing has different important predictors from the best RF model with metrics using

raster processing, even at a fine resolution. On the other hand, there are also limitations associated

with SMR [70]. For example, SMR assumes a normal distribution of the error between observed and

predicted values (i.e., the residuals of the regression) and that there is no multicollinearity in the

predictor variables. Also, in linear regression, the constant value of predictor(s) will result in constant

biomass values; yet different shrubs may have the same biomass but different 3D structures [17].

In addition, a common assumption is that a large number of predictors will require a large number of

observations, otherwise the linear regression may fit the randomness that is inherent in most datasets.

Interestingly, the best SMR model was more parsimonious (two predictors) than the best RF models

(e.g., five predictors for shrub biomass) and had high model R2; and the two predictors in the best

SMR model were included in the five important predictors in the best RF model. Yet, a high variable

importance of an input variable (HAAD) in RF was not included in the SMR. This result may indicate

that this variable represents interactions that are too complex to be captured by parametric regression

models or simply because of correlation between the variables. If the former is true, RF’s non-linear

model fit for biomass may be more appropriate as biomass is not controlled simply with one or two

driving variables but a complex environment. Moreover, the RF model constrains predicted biomass

within the range of the observed biomass (in comparison, SMR may represent invalid biomass values

when the value of predictors is beyond the model range). Based on the results of this study, and

understanding that advantages and disadvantages exist with most statistical representations, we

recommend exploring a number of statistical approaches that may shed light on the behavior of the

response variable, as well as the relative importance of predictor variables.

5.3. Broader Application of the Imputed Shrub Biomass

Our imputation models estimated mean shrub biomass values of 51 ± 126 g/m2 and

60 ± 149 g/m2 with 2013 Lidar and 2012 Lidar, respectively. While there are not many studies

in similar xeric sagebrush-steppe ecosystems to compare these results to, our estimates are similar to

those by Uresk et al. [72]. They estimated the total phytomass of big sagebrush in Eastern Washington

to be 69 g/m2 when they converted the individual sagebrush biomass to area based on density. As a

comparison, Brown [73] estimated much higher shrub biomass values in Montana and Idaho, ranging

from ~55 to 1490 g/m2, but their numbers are based on intact big sagebrush sites that included

relatively mesic locations with mountain big sagebrush (A. t. vaseyana). Cleary et al. [74] estimated

shrub biomass in Wyoming to be ~655 g/m2, also in mountain big sagebrush. They also converted

their individual biomass estimates to mass per area based on density. It is important to note that our

shrub biomass estimates (in a consistently arid landscape) included scattered shrub species other than

big sagebrush.

All things considered, there is a significant gap in baseline data on aboveground biomass across

a range of growing conditions in sagebrush ecosystems, that can be used for fuel management and

restoration. Our imputations provide the first spatially-explicit Lidar estimates of biomass across

rangelands in the Great Basin and in more xeric conditions, in general. Considering that the areas of
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Lidar acquisition in this study are representative of the larger NCA, our estimates of shrub biomass of

51–60 g/m2 may be used as a baseline for the larger NCA. However, additional field and Lidar data

are necessary to develop models across larger areas representing more diverse growing conditions.

Biomass estimates of the herbaceous cover class were not well predicted at any scale in this study.

The low predictive power was likely caused by the lack of signal (returns) in the Lidar from the short

herbaceous community. Due to the complexity of the 3D structure in shrub-grass mixed compositions,

Lidar-derived metrics may have more variability or even the same biomass values that were observed

for some field plots. In the RF attribution space, the variability of metrics led to more variations of

biomass predictions among the RF trees and led to more uncertainties (higher CV). A previous study in

a similar environment demonstrated that spectral information can represent herbaceous communities

well [41]. Therefore, the synergistic use of multispectral and hyperspectral data is likely to fill the

deficiencies of herbaceous biomass estimates with Lidar data [50]. In addition, the total biomass

estimates, which include the herbaceous class, are likely skewed by the high performance of the shrub

biomass. Thus, to develop a strong model of total biomass, challenges associated with estimating

herbaceous biomass will need to be overcome.

6. Conclusions

Lidar coupled with field training data explained more than 74% of the variance in shrub biomass

in this shrub-steppe ecosystem. Further, the use of point cloud processing reduced uncertainties

between 5% and 15% of the mean biomass at scales coarser than 1 m. Whereas rasterization is much

easier to perform, we warn that it should only be used when the Lidar data can support fine scale

pixel sizes (e.g., 1 m in studies similar to ours). Further development of analysis tools for Lidar point

cloud processing, including efficient data processing (e.g., [42]), will encourage the use of point cloud

processing over raster processing.

Our results are sufficiently robust to support the contiguous mapping of biomass at the regional

scale using Lidar-derived vegetation metrics coupled with machine learning RF. Further validation

of the imputation maps can be conducted with additional data captured manually or with TLS

(terrestrial Lidar) or UAS (unmanned aerial systems). As Lidar becomes more readily available

through programs such as USGS 3DEP and from GEDI and ICESAT-2, future studies in the Great

Basin and similar dryland ecosystems can implement our approach to estimate biomass. The use of

height variability/roughness or percent vegetation cover in the RF models could be selected on the

basis of the shrub structure (e.g., cover, height, density) observed in field plots. Lidar can also be used

to map biomass in areas of pinyon-juniper (e.g., [75]), aspen (e.g., [76]), and coniferous communities

(e.g., [35]), thus collectively providing biomass estimates across common community types in the

Great Basin. These Lidar-derived biomass maps coupled with biomass estimates of herbaceous cover

from optical data (e.g., [50]) will provide the necessary level of detail and accuracy to make effective

management decisions relevant to SO 3336 and other directives. Quantification of biomass in this and

similar rangelands can be applied to modeling vegetation dynamics, estimating pre-fire and post-fire

fuel loads, measuring carbon storage, assessing habitat quality, and quantifying changes in native

species. The next steps for this important region are to integrate multi-source and scale data (airborne

Lidar, imaging spectroscopy, time-series multispectral imagery) to extend the biomass estimates across

the wider Great Basin.

Acknowledgments: This study was supported by NSF EAR 1226145, Joint Fire Science Program (Project ID:
11-1-2-30), and NASA TE NNX14AD81G. We thank Charles Baun, Idaho Army National Guard for use of the
2012 Lidar data. Any use of trade, product, or firm names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.

Author Contributions: The article is a result of collaboration with all listed co-authors. The overarching project
idea was formulated by Glenn, Shinneman, Pilliod, and Arkle. Li, Dhakal, Glenn, and Spaete designed the remote
sensing analysis; Li and Dhakal analyzed the data and led the writing; Shinneman, Pilliod, Arkle, and McIlroy
provided field data and writing contributions and contributed valuable advice and comments.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2017, 9, 903 16 of 19

References

1. Angell, R.F.; Svejcar, T.; Bates, J.; Saliendra, N.Z.; Johnson, D.A. Bowen ratio and closed chamber carbon

dioxide flux measurements over sagebrush steppe vegetation. Agric. For. Meteorol. 2001, 108, 153–161.

[CrossRef]

2. Shrestha, G.; Stahl, P.D. Carbon accumulation and storage in semi-arid sagebrush steppe: Effects of long-term

grazing exclusion. Agric. Ecosyst. Environ. 2008, 125, 173–181. [CrossRef]

3. Rengsirikul, K.; Kanjanakuha, A.; Ishii, Y.; Kangvansaichol, K.; Sripichitt, P.; Punsuvon, V.; Vaithanomsat, P.;

Nakamanee, G.; Tudsri, S. Potential forage and biomass production of newly introduced varieties of leucaena

(Leucaena leucocephala (Lam.) de Wit.) in Thailand. Grassl. Sci. 2011, 57, 94–100. [CrossRef]

4. Perez-Quezada, J.F.; Delpiano, C.A.; Snyder, K.A.; Johnson, D.A.; Franck, N. Carbon pools in an arid

shrubland in Chile under natural and afforested conditions. J. Arid Environ. 2011, 75, 29–37. [CrossRef]

5. Zandler, H.; Brenning, A.; Samimi, C. Quantifying dwarf shrub biomass in an arid environment: Comparing

empirical methods in a high dimensional setting. Remote Sens. Environ. 2015, 158, 140–155. [CrossRef]

6. Barbour, M.G.; Billings, W.D. North American Terrestrial Vegetation; Cambridge University Press: Cambridge,

UK, 2000; ISBN 0-521-55027-0.

7. Miller, R.F.; Knick, S.T.; Pyke, D.A.; Meinke, C.W.; Hanser, S.E.; Wisdom, M.J.; Hild, A.L. Characteristics of

sagebrush habitats and limitations to long-term conservation. Greater sage-grouse: Ecology and conservation

of a landscape species and its habitats. Stud. Avian Biol. 2011, 38, 145–184.

8. Anderson, J.E.; Inouye, R.S. Landscape-scale changes in plant species abundance and biodiversity of a

sagebrush steppe over 45 years. Ecol. Monogr. 2011, 71, 531–556. [CrossRef]

9. Creutzburg, M.K.; Halofsky, J.E.; Halofsky, J.S.; Christopher, T.A. Climate change and land management in

the rangelands of central Oregon. Environ. Manag. 2015, 55, 43–55. [CrossRef] [PubMed]

10. Pyke, D.A.; Chambers, J.C.; Beck, J.L.; Brooks, M.L.; Mealor, B.A. Land uses, fire, and invasion: Exotic annual

Bromus and human dimensions. In Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US:

Causes, Consequences, and Management Implications; Germino, M.J., Chambers, J.C., Brown, C.S., Eds.; Springer

International Publishing: Basel, Switzerland, 2016; pp. 307–336. ISBN 978-3-319-24928-5.

11. Integrated Rangeland Fire Management Strategy Actionable Science Plan Team. The Integrated Rangeland

Fire Management Strategy Actionable Science Plan; U.S. Department of the Interior: Washington, DC, USA,

2016; p. 128. Available online: https://www.fs.fed.us/rm/pubs_journals/2016/rmrs_2016_berg_k001.pdf

(accessed on 29 August 2017).

12. Sala, O.E.; Lauenroth, W.K. Small rainfall events: An ecological role in semiarid regions. Oecologia 1982, 53,

301–304. [CrossRef] [PubMed]

13. Clark, P.E.; Hardegree, S.P.; Moffet, C.A.; Pierson, F.B. Point sampling to stratify biomass variability in

sagebrush steppe vegetation. Rangel. Ecol. Manag. 2008, 61, 614–622. [CrossRef]

14. Bonham, C.D. Measurements for Terrestrial Vegetation; John Wiley & Sons: Chichester, UK, 2013;

ISBN 978-0-4709-7258-8.

15. Waite, R.B. The application of visual estimation procedures for monitoring pasture yield and composition in

exclosures and small plots. Trop. Grassl. 1994, 28, 38–42.

16. Li, A.; Glenn, N.F.; Olsoy, P.J.; Mitchell, J.J.; Shrestha, R. Aboveground biomass estimates of sagebrush

using terrestrial and airborne Lidar data in a dryland ecosystem. Agric. For. Meteorol. 2015, 213, 138–147.

[CrossRef]

17. Greaves, H.E.; Vierling, L.A.; Eitel, J.U.; Boelman, N.T.; Magney, T.S.; Prager, C.M.; Griffin, K.L.

High-resolution mapping of aboveground shrub biomass in Arctic tundra using airborne Lidar and imagery.

Remote Sens. Environ. 2016, 184, 361–373. [CrossRef]

18. Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of

live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of

empirical modeling approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [CrossRef]

19. Lefsky, M.A.; Cohen, W.B.; Parker, G.G.; Harding, D.J. Lidar remote sensing for ecosystem studies. Bioscience

2002, 52, 19–30. [CrossRef]

20. Hall, S.A.; Burke, I.C.; Box, D.O.; Kaufmann, M.R.; Stoker, J.M. Estimating stand structure using

discrete-return Lidar: An example from low density, fire prone ponderosa pine forests. For. Ecol. Manag.

2005, 208, 189–209. [CrossRef]

http://dx.doi.org/10.1016/S0168-1923(01)00227-1
http://dx.doi.org/10.1016/j.agee.2007.12.007
http://dx.doi.org/10.1111/j.1744-697X.2011.00213.x
http://dx.doi.org/10.1016/j.jaridenv.2010.08.003
http://dx.doi.org/10.1016/j.rse.2014.11.007
http://dx.doi.org/10.1890/0012-9615(2001)071[0531:LSCIPS]2.0.CO;2
http://dx.doi.org/10.1007/s00267-014-0362-3
http://www.ncbi.nlm.nih.gov/pubmed/25216989
https://www.fs.fed.us/rm/pubs_journals/2016/rmrs_2016_berg_k001.pdf
http://dx.doi.org/10.1007/BF00389004
http://www.ncbi.nlm.nih.gov/pubmed/28311731
http://dx.doi.org/10.2111/07-147.1
http://dx.doi.org/10.1016/j.agrformet.2015.06.005
http://dx.doi.org/10.1016/j.rse.2016.07.026
http://dx.doi.org/10.1016/j.rse.2009.12.018
http://dx.doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
http://dx.doi.org/10.1016/j.foreco.2004.12.001


Remote Sens. 2017, 9, 903 17 of 19

21. Ku, N.W.; Popescu, S.C.; Ansley, R.J.; Perotto-Baldivieso, H.L.; Filippi, A.M. Assessment of available

rangeland woody plant biomass with a terrestrial LIDAR system. Photogramm. Eng. Remote Sens. 2012, 78,

349–361. [CrossRef]

22. Lin, Y.; Hyyppä, J.; Kukko, A.; Jaakkola, A.; Kaartinen, H. Tree height growth measurement with single-scan

airborne, static terrestrial and mobile laser scanning. Sensors 2012, 12, 12798–12813. [CrossRef] [PubMed]

23. Zheng, G.; Moskal, L.M.; Kim, S.H. Retrieval of effective leaf area index in heterogeneous forests with

terrestrial laser scanning. IEEE Trans. Geosci. Remote Sens. 2013, 51, 777–786. [CrossRef]

24. Streutker, D.R.; Glenn, N.F. Lidar measurement of sagebrush steppe vegetation heights. Remote Sens. Environ.

2006, 102, 135–145. [CrossRef]

25. Su, J.G.; Bork, E.W. Characterization of diverse plant communities in Aspen Parkland rangeland using Lidar

data. Appl. Veg. Sci. 2007, 10, 407–416. [CrossRef]

26. Glenn, N.F.; Spaete, L.P.; Sankey, T.T.; Derryberry, D.R.; Hardegree, S.P.; Mitchell, J.J. Errors in Lidar-derived

shrub height and crown area on sloped terrain. J. Arid Environ. 2011, 75, 377–382. [CrossRef]

27. Bork, E.W.; Su, J.G. Integrating LIDAR data and multispectral imagery for enhanced classification of

rangeland vegetation: A meta analysis. Remote Sens. Environ. 2007, 111, 11–24. [CrossRef]

28. García-Gutiérrez, J.; González-Ferreiro, E.; Mateos-García, D.; Riquelme-Santos, J.C.; Miranda, D.

A comparative study between two regression methods on Lidar data: A case Study. In Hybrid Artificial

Intelligent Systems HAIS 2011, Proceedings of the International Conference on Hybrid Artificial Intelligence Systems,

Wrocław, Poland, 23–25 May 2011; Corchado, E., Kurzyński, M., Woźniak, M., Eds.; Lecture Notes in Computer
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