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A perception system for pedestrian detection in urban scenarios using information from
a LIDAR and a single camera is presented. Two sensor fusion architectures are described,
a centralized and a decentralized one. In the former, the fusion process occurs at the fea-
ture level, i.e., features from LIDAR and vision spaces are combined in a single vector
for posterior classification using a single classifier. In the latter, two classifiers are em-
ployed, one per sensor-feature space, which were offline selected based on information
theory and fused by a trainable fusion method applied over the likelihoods provided
by the component classifiers. The proposed schemes for sensor combination, and more
specifically the trainable fusion method, lead to enhanced detection performance and, in
addition, maintenance of false-alarms under tolerable values in comparison with single-
based classifiers. Experimental results highlight the performance and effectiveness of the
proposed pedestrian detection system and the related sensor data combination strategies.

© 2009 Wiley Periodicals, Inc.

1. INTRODUCTION

Intelligent ground vehicles as well as mobile robots,
navigating in environments with static and dynamic
objects around, e.g., other vehicles, mobile robots,
and vulnerable road users (particularly pedestrians),
should be provided with perception systems whose
primary function is to detect and classify surround-
ing objects, having in view to avoid collisions and to
mitigate situations of risk during the navigation. A
key element of a perception system can be a single
and reasonable cost-affordable sensor or, on the other
hand, a set of multiple sensors for providing data

to higher decision levels in charge of performing
classification and/or situation assessment. The
complementary and redundant information that can
be obtained using a multisensor architecture should
be properly explored to maximize the inference
and confidence levels in object detection, which
constitute a prerequisite for a complete pedestrian
protection system.

The integration of a LIDAR (LIght Detection And
Ranging) sensor and a camera, to bring redundancy
and complementary characteristics for improving
the detection system’s reliability and accuracy, had
gained the attention of the intelligent vehicles (IV)
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Figure 1.

and mobile robotics research communities in the past
few years. Handling this multisensorial problem is
not just a matter of determining regions of interest
(RO in the image to perform vision-based classifica-
tion; in fact, many important steps have to be prop-
erly addressed before a high-level combination can
be achieved. This work attempts to contribute to the
solution of the pedestrian detection problem using
an ensemble of classifiers fusing LIDAR and vision
data.

This paper presents research results on central-
ized and decentralized schemes proposed to com-
bine range and visual information, gathered by a
Ibeo Alasca-XT LIDAR and an Allied Guppy camera
setup, mounted in an electrical vehicle (detailed in
Section 2), with the main goal of performing pedes-
trian detection in outdoor urban-like scenarios. The
proposed system is composed of three main modules:
preprocessing, feature extraction, and fusion mod-
ules (see Figure 1).

The preprocessing module, presented in
Section 2, is in charge of data acquisition, segmen-
tation (in the laser space), and ROI determination
in the image plane. Basically, this module generates
the entities/objects of interest for further classifi-
cation. The feature extraction module, detailed in
Section 3, calculates two categories of features: a
15-dimensional laser-based feature vector and the
image-based feature array composed of histogram
of oriented gradients (HOG) and covariance (COV)
features. The fusion module involves the classifica-
tion methods, described in Section 4, and the fusion
architectures: centralized and decentralized. In the
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Sensor fusion architecture composed of three modules: preprocessing, feature extraction, and fusion.

former, the best classifier, applied over the whole
feature space, is used to perform the final inference,
whereas in the latter the likelihoods provided by
two classifiers, one per feature space, are combined
through a set of fusion methods; the pair of classifiers
was selected based on a maximum relevance and
minimal redundancy criterion (mRMR) (Peng, Long,
& Ding, 2005). Finally, the fusion schemes, catego-
rized as trainable fusion methods and nontrainable
fusion rules, are outlined in Section 5.

The proposed fusion schemes for pedestrian de-
tection were validated using our data set, which was
previously separated in training and testing parts,
each part corresponding to different conditions under
which the data were collected. Experimental results
are reported and analyzed in Section 6, with empha-
sis on the results obtained with the proposed train-
able fusion methods. Finally, conclusions are drawn
in Section 7.

Table I surveys some significant related works
on pedestrian detection using LIDAR and monocu-
lar visible-spectrum cameras. Other relevant related
works are Gandhi and Trivedi (2007) on pedestrian
protection systems and Hall and Llinas (1997) on
multisensor data fusion.

This paper makes some contributions within
the pedestrian detection theme, which are mainly
threefold:

1. LIDAR-based classifiers: A set of consistent
methods is used to classify pedestrians using
a feature vector with 15 components, some of
them proposed in this work.
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Table I. Survey of some related work on vision and LIDAR-based perception systems for pedestrian and on-road object

detection/ classification in outdoor scenarios.

Ref.

Vision system

LIDAR system

Comments

Douillard et al.,
2007

Spinello and
Siegwart,
2008

Pangop,
Chapuis,
Bonnet,
Cornou, and
Chausse, 2008

Hwang, Cho,
Ryu, Park,
and Kim,
2007

Mabhlisch,
Schweiger,
Ritter, and
Dietmayer,
2006

Szarvas, Sakai,
and Ogata,
2006

Cheng, Zheng,
Zhang, Qin,
and van de
Wetering,
2007

Monocular color
camera. Conditional
random fields
(CRFs) trained with
virtual evidence
boosting (VEB).

HOG-SVM classifier
based on monocular
color images.

An Adaboost classifier,
trained with
Haar-like features, is
used to classify
pedestrians.

Monocular color
camera. A
multiple-SVM
classifier is used to
verify the hypothesis
candidates inside the
ROlIs.

Monocular color
camera. An
Adaboost, using
Haar-like features,
processes the images
delimited by the
ROIs.

Monocular gray-scale
camera. A
convolutional NN
classifier is used.

Two monocular color
cameras: one camera
for lane detection
and the other for
vehicle detection
using Gabor
features.

Single-layer LIDAR.

Geometrical information is
processed from the LIDAR

data to estimate/classify
the objects as vehicles or
nonvehicles.

A multilayer LIDAR (Ibeo
Alasca XT) is employed to
detect on-road objects
whose positions are
projected into the image
plane.

An Ibeo Alasca XT LIDAR is
employed for object
segmentation, tracking,
and detection.

Single-layer LIDAR. The
entities detected by the

LIDAR generate hypothesis

candidates, which are
projected in the image
plane (ROI) by means of
perspective mapping.

Multilayer LIDAR. The
objects detected by the
LIDAR define the ROI in
the image plane.

Multilayer LIDAR. Objects
detected in the LIDAR
space are projected to the
image plane (ROI) using
perspective mapping
(intrinsic—extrinsic
parameters are obtained).

Single-layer LIDAR and
radar. Using an extended
Kalman filter (EKF), local
tracking techniques are
used in LIDAR and the

radar reference system and

fused to form a global
tracking approach.

To deal with the problem of object scale
variations in the images, the range
information provided by the LIDAR is
used during the CREF classification. The
classification method was evaluated and
compared in several features:
geometrical (from laser data), visual
(color and texture), and combination of
both. The CRF and a LogitBoost classifier
were also compared.

The object’s position is detected by the
LIDAR, and the vision-based system
classifies the detected objects as
pedestrian or nonpedestrian. A Bayesian
decomposed expression is used as the
reasoning fusion rule.

The speed, estimated during the tracking
process, and the vision score-based
likelihood are fused in a Bayesian
framework using an autoregressive (AR)
formalism to model the observations.

The image plane is subdivided into five
areas, where different trained SVMs are
employed to classify the vehicles. A
comparison study between single-SVM
and five-SVM approaches is presented.

The paper is focused on the newly
proposed method designated
“cross-calibration.” The idea behind this
method is to facilitate the
correspondence between the LIDAR
space and the image plane projection.

A relaxed flat world is used to model the
road. Some comparisons are presented
considering some variations of the
system: vision, vision and LIDAR-based
ROJ, flat model, and nonrestricted road
model.

The fusion strategy using LIDAR and radar
information, for on-road object detection,
constitutes the focus of this paper, with
emphasis on a local and global tracking
approach. The vision-based obstacle
detection system uses range information
available from global tracks, in the form
of RO, as a decision-making system.

Journal of Field Robotics DOI 10.1002/rob
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Figure 2. Electric vehicle and the sensors used in data set acquisition.

2. Mutual-information-based classifier selec-
tion method: A classifier selection approach
based on maximum relevance and minimal
redundancy is proposed here as an attempt
to obtain an “optimal” classifier ensemble,
avoiding brute-force selection methods.

3. Trainable fusion methods: A set of train-
able fusion methods is used here to fuse
the selected classifiers. The trainable fusion
outperformed the nontrainable-based fusion
rules.

We have made our data set available online' for
further comparison studies and public usage. It is
important to clarify that those contributions are still
ongoing approaches that will be further explored
and improved bearing in mind feasible and reliable
pedestrian protection systems.

2. PREPROCESSING MODULE

The LIDAR used in our system is the Ibeo Alasca-
XT, a four-layer laser scanner that was mounted in
a “rigid” platform on the frontal part of the vehi-
cle, working at 12.5 Hz (scans per second). The data
stream is sent to the host laptop by means of an
Arcnet-PCMCIA adapter, and the acquisition algo-
rithm is based on the Ibeo Linux-API. The acquired
scans consist of raw range data that are treated as
clouds of points.

Thttp: //www.isr.uc.pt/~cpremebida/dataset.
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The second sensor in use is an Allied Guppy
camera, with Bayer-type sensor and IEEE 1394 pro-
tocol. The images are acquired using openCV-based
libraries in a sequential way, having the Ibeo API
thread priority over the process. The images were
transformed to red—green-blue (RGB) standard for
offline processing purpose, i.e., for feature extraction
and pedestrian detection.

The data set has been recorded in the Institute for
Systems and Robotics—University of Coimbra (ISR-
UC) Campus? open surrounding areas, with many
static and moving pedestrians and cars around, using
the vehicle, driven manually, and the sensor appara-
tus shown in Figure 2.

For each scan delivered by the LIDAR, some pre-
processing tasks have to be processed in advance be-
fore the calculation of the feature vectors and the sub-
sequent object classification. The tasks performed in
the LIDAR preprocessing module are prefiltering, co-
ordinate transformation, and segmentation.

Prefiltering is applied to filter the incoming
raw data in order to detect isolated /spurious range
points, discarding measurements that occur out of
a predefined field of interest, and to perform per-
tinent data processing that leads to decreased com-
plexity and processing time of subsequent stages.
Coordinate transformation, in our case, is a conver-
sion from polar to Cartesian coordinates. The seg-
mentation stage constitutes a critical part in such

Zhttp: // www.isr.uc.pt/~cpremebida/Pololl-Google-map.pdf.
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perception systems and can be performed by means
of specific methods as presented in Premebida and
Nunes (2005), Spinello and Siegwart (2008), and
Streller and Dietmayer (2004).

For allowing a better generalization of the meth-
ods, all the range data are considered as two-
dimensional (2D) measurements; for multilayer laser
scanners (e.g., Ibeo Alasca), the scanned points are
projected to a single reference plane.

Expressing a 2D full scan as a sequence of Ns
measurement points in the form Scan = {(r;, &y)|l =
1,..., Ns}, where (r;, ;) denotes the polar coordi-
nates of the I/th scan point, a group of scan points that
constitute a segment S, can be expressed as

Sk ={(rp, o)}, nellilfl, n=1,...,np, @
where np is the number of points in the current
segment and /; and /s are the initial and the final
scan points that define the segment. A segment can
also be defined in Cartesian coordinates x = (xx, yx),
where (x; = r, cosa,, yr = r,sing,). Henceforth, a
segment is explicitly related to a group of range points
related to one, unambiguously, object of interest and
expressed by S.

It is important to mention that to use a multilayer
laser conveniently, each layer has to be processed sep-
arately, especially to avoid false alarms due to pitch
oscillations or road inclinations, and when the vehi-
cle is driving on irregular roads. Furthermore, as we
have used the raw data (i.e., without the Ibeo pro-
cessing unit), we faced another problem: the acquired
data came in a nonordered sequence, forcing the us-
age of some additional processing steps to separate
the vertical layers properly and to order the data.

As this paper is mainly focused on the fusion and
combination of LIDAR and vision data for pedestrian
detection, all the extracted segments S that constitute
our data set were validated under user supervision to
guarantee that each laser segment represents unam-
biguously a single object (positive or negative). It is
relevant to note that in realistic situations some prob-
lems invariably will arise, such as data association er-
rors, oversegmentation, missing measurements, and
tracking inconsistencies.

On the other hand, the images extracted from
the ROIs in the image plane were not postprocessed;
this means that all the cropped images in the data
set were extracted automatically from ROIs obtained
using LIDAR segments projected in the image plane
and, as a consequence, are prone to error due to cali-

bration imprecision, road irregularities, vehicle vibra-
tions, and so on. Nevertheless, we decided to allow
those cropped images with no user intervention or
any correction, resulting in a closer realistic image-
based data set.

The calibration procedure is necessary to obtain
a mapping to transform points in the laser reference
system {L} to the camera reference system {C} and
then to the image plane. In the calibration process
it was considered that both sensors were stable and
that the mechanical vibrations and oscillations were
negligible. Using a flat target (“checkerboard”), po-
sitioned at different distances from the laser-camera
setup, the transformation between {L} and {C} was
obtained under a quadratic error minimization crite-
rion using the method proposed by Zhang and Pless
(2004). A set of images and laser measurements taken
at different positions of the target were used to esti-
mate the coordinate transformation and also the cam-
era’s intrinsic and extrinsic parameters.

With the LIDAR data it is possible to obtain only
the horizontal limits of the object position in the im-
age. If it is assumed that the vehicle moves on a “flat”
surface, and knowing the distance from the laser to
the ground, it is easy to calculate the bottom limit of
the ROL. The top limit of the ROI was estimated using
the distance to the object and the maximum height for
a pedestrian.

The following estimated matrix, necessary to
make a rigid correspondence between the laser scan-
ner and the camera reference system, was obtained:

TL
c
0.99986 —0.014149 —0.0093947 11.917
= [ 0.014395  0.99954 0.026672  —161.26 |,
0.009013 —0.026804 0.9996 0.77955
2)

where the translational vector components are in
millimeters. The extrinsic and intrinsic pinhole cam-
era model, as well as the scripts with all the pertinent
variables necessary to accomplish Eq. (2), are avail-
able online.

3. FEATURE EXTRACTION

A 15-dimensional LIDAR-based feature vector and
the well-known HOG and COV image descriptors are
addressed in the next subsections.

Journal of Field Robotics DOI 10.1002/rob
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Table Il. LIDAR features for pedestrian classification.

fi Formula Comments

f1 np * Fmin The product of the number of range points (np) with the minimum range distance
(rmin)-

f2 np Number of points. This “simple” feature is here considered just for comparison

purposes.

f3 VAXZ + AY?

Normalized Cartesian dimension: this feature corresponds to the root mean square

of the segment width (AX) and length (AY) dimensions.

Internal standard deviation: denotes the standard deviation of the range points (x,)

with respect to the segment centroid x.

Radius: denotes the radius of a circle extracted from the segment points. Guivant’s

method (Guivant, Masson, & Nebot, 2002) was used in fitting the circle and to
extract the corresponding radius.

Mean average deviation from the median X.

The inscribed angle variance (IAV), proposed by Xavier, Pacheco, Castro, Ruano,

and Nunes (2005), corresponds to the mean of the internal angles along the
extreme points and the in-between points that constitute the segment.

Standard deviation of the inscribed angles calculated previously.

Linearity: this feature measures the straightness of the segment and corresponds to

the residual sum of squares to a line %; ,, fitted into the segment in the

r4 A5 et X — X
f5 Radius « fitted circle
16 i L Ixn =X
7 IAV
f8 std(f7)
19 A5 Lne O = R1.0)?
least-squares sense.
f10 o5 oty O — Ken)?

Circularity: this feature measures the circularity of a segment. Like for the f9

feature, we sum up the squared residuals to a fitted circle X .

np - (x, =)t
i Zn:l np

Second central moment: it is the second moment taken about the mean uy, where ko

is order of the moment, i.e., ko = 2.

f12 —
f13 —

f14 S 1% — X1l

Third central moment, f11 with ko = 3.
Fourth central moment, 11 with ko = 4.

Segment length: this feature is defined as the summation over the norm of the

Euclidean distance between adjacent points.

f15 std(f14)

Standard deviation of the segment length.

3.1. LIDAR-Based Features

Feature extraction from LIDAR data and its utiliza-
tion for pedestrian detection in urban environments
is a subject that has not been investigated signifi-
cantly, although some works are worthy of mention:
Douillard, Fox, and Ramos (2007), Premebida and
Nunes (2006), and Streller and Dietmayer (2004).
Nevertheless, in the mobile robotics field, the work

Journal of Field Robotics DOI 10.1002/rob

by Arras, Mozos, and Burgard (2007) is a reference on
using purely LIDAR features® for human detection
in indoor environments. The components of the
laser-based feature vector used in the present work,
many of them based on Arras’s work, are detailed in
Table II.

*The object speed could be considered an exception.
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Figure 3. An example that illustrates a pedestrian perceived by the laser, as a segment of range points, with its ROI in the
image plane and the corresponding laser features. The images are depicted to facilitate understanding of the scene.

The feature vector extracted from a segment S; is
calculated using only 2D information in polar and /or
Cartesian space; hence as said previously for the case
of a multilayer LIDAR, the “vertical” information has
to be projected on a common 2D plane, which means
that all these features can be used in the case of single-
layer lasers. Figure 3 illustrates range readings from a
scene where a pedestrian, its corresponding segment,
and the image ROI are highlighted as well as the re-
lated laser features.

3.2. HOG Features

HOG descriptors (Dalal & Triggs, 2005) are reminis-
cent of edge-oriented histograms, scale-invariant fea-
ture transform (SIFT) descriptors (Lowe, 2004), and
shape contexts. To compose HOG, the cell histograms
of each pixel within the cell cast a weighted vote, ac-
cording to the gradient L2-norm, for an orientation-
based histogram channel. In this work the histogram
channels are calculated over rectangular cells (i.e., R-
HOG) by the computation of unsigned gradient. The
cells overlap half of their area, meaning that each cell
contributes more than once to the final feature vector.
To account for changes in illumination and contrast,
the gradient strengths were locally normalized, i.e.,
normalized over each cell. The HOG parameters were
adopted after a set of experiments performed over the
training data set using a neural network (NN) as clas-
sifier. The highest area under the receiver operating
characteristic (ROC) curve (AUC), computed over the
validation data set, was achieved by means of nine
rectangular cells and nine bin histograms per cell. The
nine histograms with nine bins were then concate-
nated to make a 81-dimensional feature vector.

3.3. COV Features

The utilization of covariance matrix descriptors
in classification problems was followed by Tuzel,
Porikli, and Meer (2006, 2007). Let I be the input im-
age matrix and z, the corresponding d-dimensional
feature vector calculated for each pixel p:

242 1yl
2p =X, ¥, [l |\ IE + 15, el [yl arctanm ,
X

3)

where x and y are the pixel p coordinates; I, and I,
are the first-order intensity derivatives regarding x
and y, respectively; I, and I, are the second-order
derivatives; and the last term is the edge orientation.

In this work, four subregions are computed
within a region R, which represents the area of a
cropped image. Each subregion overlaps half of its
area, meaning that each subregion contributes more
than once to the final feature vector. For the ith rect-
angular subregion R;, the covariance matrix Ck, is ex-
pressed by

1
Cg, = ﬁ ;(Zp — M)(Zp - //L)T, 4)

where u is the statistical mean of z; and N; is the
number of pixels of the subregion R; (in this case
i =1...4). Notice that, due to the symmetry of Cg,,
only the upper triangle part needs to be stored, and
hence the covariance descriptor of a subregion is
an 8 x 8 matrix. The features of the whole region R
are also calculated; therefore a feature vector with

Journal of Field Robotics DOI 10.1002/rob
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180 features is generated, i.e., 4 subregions R;, to-
taling 144 features, plus 36 features of the whole
region R.

4. CLASSIFIERS

Five classifiers are discussed in this section: naive
Bayes, GMMC, MCI-NN, FLDA, and RBF-SVM.
These classifiers are used in two situations: as single
classifiers and as the basis of trainable fusion meth-
ods.

4.1. Naive Bayes

Based on the assumption that each feature is statis-
tically independent, the probability density function
(pdf) that characterizes the object class m is mod-
eled as the product of each feature-based pdf. A one-
dimensional Gaussian 6;(uy, o) was considered in
modeling each pdf:

1 —(x — Mk)z]
ms Or) = . 5
POk |Gm s Ok) o) eXp[ 207 (5)

where u; is the mean and oy is the statistical vari-
ance for the kth feature x; and g, corresponds to the
“object” class of interest, i.e., pedestrians ¢; and non-
pedestrians g5.

For the case ¢;, the likelihood £ is obtained by the
normalization

Pxelgr, 6)
pOxelqr, 0k) + pixelga, k)’

L(xilq1) = (6)

and therefore, the combined likelihood is expressed
by

d
LxlgD) = [ ] £lgn), )

k=1

where x corresponds to a d-dimensional feature
vector.

4.2. GMMC

For the GMMC classifier, the likelihood is calculated
considering a mixture of M Gaussian pdf, defined by
®;(pi, 1i, X;), where p; is a weight vector, such that
Zf‘i 1 pi = 1, p; is the d-dimensional mean vector, and

Journal of Field Robotics DOI 10.1002/rob

¥; is the covariance matrix. The pdf for a single com-
ponent i is modeled as

exp[ — 30 — 1) ()71 — )]

(xlgm, ©;) = . (8)
p\xiq /;(27_[) =
Finally, the likelihood is the linear composition
M
Lxlg) =) pi - plxlgr, ©)). ©
i=1
4.3. MCI-NN
Minimization of interclass interference (MCI)

(Ludwig and Nunes, 2008) is a maximum-margin—
based training algorithm for NN. MCI aims to create
a NN hidden layer output (i.e., feature space) in
which the patterns have a desirable statistical distri-
bution. Regarding the neural architecture, the linear
output layer is replaced by the Mahalanobis kernel
in order to improve generalization. MCl is applicable
on a neural network model with two sigmoidal
hidden layers and one output nonlinear layer:

yhf = oWy - x + by), (10)

yhs = o(Wa - yhf + b)), (11)
dy — dq

y = , 12

Y dr + dq (12)

where yhf is the output vector of the first hidden
layer; yhs is the output vector of the second hid-
den layer; Wy (k = 1,2) is the synaptic weights ma-
trix of the layer k; b is the bias vector of layer k;
x is the input vector; ¢(.) is the sigmoid function;
dy = (yhs — )" " (yhs — w,,) is the Mahalanobis
distance between yhs and p,,; X is the covariance ma-
trix over all the output vectors yhs, presented by the
second hidden layer in response to the training data
set; fm = 5= >y yhsn (i) is the prototype of class m;
N,, is the number of training patterns that belong to
class m; and yhs,, (i) is the second hidden layer out-
put for an input that belongs to class m. Analyzing
Eq. (12), we can observe that § varies continuously
from —1, for yhs = uy, to 1, for yhs = uq. This contin-
uous approach enables ROC curve calculation.

The MCI creates a hidden space where the Eu-
clidean distance between the prototypes of each class
is increased and the pattern dispersion of each class
is decreased. The goal is to maximize the objective
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function
J = (w1 — 1) (w1 — o) — 83 — 83, (13)

where 862 = 3"V [yh, () — wn]" [yhn () — ] is the
deviation of class m patterns in the hidden space. The
weights and biases are updated based on the gradient
ascendant algorithm.

4.4. FLDA

Let us consider w a vector of adjustable gains and
{x.} the set of feature vectors that belong to class c,
(c =1, 2) with mean g, and covariance ). The lin-
ear combination w - x, has mean w - u. and covari-
ance w’ X.w. The ratio, J(w), of the variance between
the classes, alf, by the variance within the classes, a‘f,,
is a suitable measure of separation between these two
classes:

J(w) = op  w-(up — )P

—_— = — (14)
o2 wl (T 4+ Zo)w
To obtain the maximum separation between classes,
one has to find the vector w that solves the optimiza-
tion problem:

max J(w), (15)

whose solution is
w = (1 + ) (a2 — ). (16)

To find the plane that best separates the data, w’ u; +
b = —(w” o + b) has to be solved for the bias b.

4.5. SVM

Support vector machines (SVM) are based on the
statistical theory of learning, developed by Vapnik
(1998). This theory provides a set of principles to be
followed in order to obtain classifiers with good gen-
eralization, defined as its ability to predict correctly
the class of new data in the same area where the learn-
ing occurred. Table III presents three usual SVM ker-
nels, where nd is a natural number denoting the poli-
nomial degree.

Table lll. Usual SVM kernels.

Kernel name Kernel function

Linear H(x,x)=xTx'
Polynomial H(x,x') = (xTx' 4 1)nd
RBF H(x,x") = exp(—y|lx — x'||?)

SVM is very sensitive to the margin parameter
C,* and therefore it is not appropriate to adjust this
parameter based on the SVM performance on the test
data set; otherwise we will bring information from
the test data set to the SVM. The usual approach is to
apply K-fold cross validation over the training data
set.

5. FUSION MODULE

In this section we will cover the following subjects:
nontrainable rules and trainable fusion techniques,
centralized and decentralized schemes, and, finally,
a classifier selection approach.

5.1. Nontrainable Fusion Rules

A fusion strategy is necessary to combine informa-
tion from each classifier in order to provide a final
classification reasoning. The likelihoods £; yielded
by each classifier ©;, (i = 1, nc), where nc is the num-
ber of classifiers, are fused by three nontrainable fu-
sion rules: average Fayage(®;), maximum Fyax(©;),
and naive-product Fnprod(®;) (naive Bayes inspired).
The former two are simple and intuitive rules, how-
ever important for comparative purposes, and the lat-
ter deserves some explanation.

Considering the recursive Bayesian updating ap-
proach, the joint probability of the class being a
pedestrian (g1) is computed as

P(q1)P(O1]|q1) P(®;|01 ... BOp)

P O, ...
(Q1| 1 P(®1,...,0p)

s ®nc) -

(17)

“Margin parameter that determines the trade-off between maxi-
mization of the margin and minimization of the classification error
(Abe, 2005).
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Assuming classifiers’ independence, Eq. (17)
becomes
P [T%, P(©ilg1)
P(CI1|®1, e ®nc) = 4 l_[l_] |q1 . (18)

P(®1,...,0n)

Equations (18) depend on the prior information P(g1)
about the actual detected object being a pedestrian,
which can be based on a predefined model or esti-
mated during a tracking process. Under the strong
assumption of P(g;) = P(g2), the naive-product rule
becomes

-7:Nprod = l_[ »Ci- (19)

i=1

5.2. Trainable Fusion Methods

The trainable fusion algorithm (Ludwig, Delgado,
Gongalves, & Nunes, 2009) (represented by the fu-
sion scheme block in Figure 1) is also a classifier
that receives the likelihoods from the single classifiers
(Classifier_Vision and Classifier_LIDAR in Figure 1)
and outputs the likelihood of the classifier ensemble
(decentralized-fusion scheme case). In this work, five
trainable fusion algorithms were tested, each one cor-
responding to one of the five classifiers described in
Section 4. All the single classifiers and the trainable
fusion algorithms are trained with the same training
data set. However, the single classifiers are trained
before, in order to create a likelihood training data set
{Uirain}, which is used together with the training la-
bels {yirain} in the fusion algorithm training process.
Algorithm 1 details the training process of the fusion
classifier.

5.3. Centralized Fusion Scheme

In this type of fusion scheme the fusion occurs at the
feature level, i.e., the LIDAR and the vision-based
features are combined in a single vector. The classi-
fiers are trained with all the available features, and
the best classifier is chosen to assess the final object
classification.

In our case, three single classifiers, FLDA, RBF-
SVM, and MCI-NN, have been trained with the com-
plete feature set (all-features vector with 276 compo-
nents) and the classifier selection has been done con-
sidering the accuracy (Acc) and the balanced error
rate (BER), both of them calculated over the training
data set.

Journal of Field Robotics DOI 10.1002/rob

Algorithm 1 Training process of the fusion methods

Input: {Xtrain}, {¥train}: training data set and the ground-
truth labels
nc: number of single classifiers
NF: number of fusion methods (NF = 5)
ns: number of training examples
©y: set of single classifiers; (k =1---nc)
Output: set of trained model {F}; (k =1---NF)
1: Uirain < empty matrix;
2: fork = I:nc do
3:  process {xirain} through the previous trained
classifier ©;, to obtain the ns-dimensional
likelihood vector £¥ , ;
4 Uprain < [Utrainlﬁfrain]: concatenate the likelihood
vector to create the likelihood training matrix;
end for
for k=1:NF do
apply Uirain and {ytrain} to train the kth fusion
method Fj.
8: end for

AN

5.4. Decentralized Fusion Scheme

In this fusion scheme, each classifier is supposed to be
specialized in a part of the feature set. In the present
case, it is a straightforward decision to separate the
feature space in LIDAR and vision-based subspaces
(see Figure 1). The five single classifiers, described in
Section 4, were used in the LIDAR space. As concerns
vision space, FLDA, RBF-S5VM, and MCI-NN classi-
fiers were employed. To avoid singularities on the co-
variance matrices and/or likelihoods tending to zero,
GMM and naive-Bayes classifiers were discarded.

A Kkey issue is to select the pair of single clas-
sifiers, aiming to have one expert in LIDAR space
and the other expert in vision space. Instead of using
heuristics or empirical approaches for the classifier
selection process, we propose to use a method based
on information theory, explained in the next section.

The classifier selection criterion is based on the
principle of minimal-redundancy-maximal-relevance
(mRMR) (Peng et al., 2005). Therefore, considering
the random variable £; as the likelihood of classifier
i and Y as the respective target output (Iabel), the rel-
evance V of a set of nc classifiers is the mean value of
the mutual information 7(£;; Y) between the classifier
likelihood and the labels:

1 nc
V=— I1(L;;Y), 20
mg( ) (20)
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Table IV. Data sets used to train and to evaluate the classifiers.

Designation N frames N pos. N neg. Description
Training data set

ISR — UC_train 1,100 550 550 Sunny day, winter, collected between 15:30 and 16:30
Testing data set

ISR — UC _test 1,400 400 1,000 Sunny day, winter, collected between 12:00 and 17:30

and the redundancy P is the mean value of the mu-
tual information I(£;; £;) among classifier outputs:

nc nc

1
P=— YO>I L. 1)

i=1 j=1

The application of the mRMR principle corresponds
to searching a set of classifiers to satisfy the maxi-
mization problem

max P, (22)
ﬁl ~~~£nc

where ® = V — P. The solution of expression (22) is
attained when the classifier likelihoods £; are mutu-
ally exclusive and totally correlated to the target out-
put Y. In other words, the idea is to take advantage of
the classifier diversity.

6. EXPERIMENTAL RESULTS

The proposed detection system was evaluated
in terms of Acc, AUC, BER, and ROC -curves.
Data sets, employed in the training and evalua-
tion of the classifiers, are summarized in Table IV.
The ISR — UC_train and ISR — UC_test data sets
were acquired in the ISR-UC Campus, under
the following configuration: the LIDAR field of
view (FOV) was restricted to 180 deg, with a
horizontal angular resolution of 0.5 deg, vertical
resolution of [—1.2 deg, —0.4 deg, 0.4 deg, 1.2 deg],
and measurement range up to 30 m; the cam-
era FOV was 67 deg approximately. The data
sets and the corresponding ground truth, gener-
ated under user supervision, are available online
(http:/ /www.isr.uc.pt/~cpremebida/dataset).

The training and the testing data sets were col-
lected on different dates. Although both data sets
were acquired around the same area, the positives
(pedestrians) and the negatives are clearly different;

another relevant aspect is that on the testing part,
some samples were acquired at dusk, when the illu-
mination condition changed drastically. Some images
of the data sets are shown in Figure 4.

6.1. Centralized Fusion Scheme:
Feature-Level Fusion

The centralized fusion scheme, in which all the fea-
tures are concatenated in a single vector, was tested
with the FLDA, RBF-SVM, and MCI-NN classifiers.
Table V summarizes the results obtained by the sin-
gle classifiers and the classifier ensemble with the
centralized fusion structure. Regarding single classi-
fiers, the naive-Bayes classifier had the best perfor-
mance in the LIDAR space and the FLDA achieved
the best scores in the vision feature space. Regarding
the centralized scheme, the FLDA obtained the best
results. ROC curves of the best single classifier and of
the FLDA-based centralized fusion classifier are de-
picted in Figure 5. Additionally, Figure 6 illustrates
some missing detections using single classifiers in the
LIDAR and vision feature spaces, giving some insight
about the missing occurrences.

Accuracy, BER, and AUC performance metrics
are used throughout the paper. It is important to keep
in mind that such metrics are calculated over all sam-
ples presented on the testing data set; hence those
scores serve as a global indicator of the classifier per-
formance. As a suggestion, we have selected a metric
based on a useful percentile of the AUC, up to 10% of
false positives, named AUC;yy, because the optimal
operator point for ROC curves often does not occur
out of that interval.

6.2. Classifier Selection for the Decentralized
Fusion Scheme

Intuitively, the combination of the best LIDAR clas-
sifier with the best vision classifier would result in

Journal of Field Robotics DOI 10.1002/rob
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Figure 4. Some samples to illustrate the different conditions and situations in which the data set has been acquired.

Table V. Performance metrics: testing data set.
FLDA Naive-Bayes GMMC RBF-SVM MCI-NN

LIDAR-based features

Acc 0.786 0.883 0.875 0.840 0.861

BER 0.154 0.108 0.130 0.204 0.124

AUCqgq, 0.128 0.476 0.464 0.370 0.336

TPr199 0.304 0.835 0.842 0.688 0.765
Vision-based features

Acc 0.846 — — 0.841 0.813

BER 0.172 — — 0.236 0.157

AUC1g9, 0.178 — — 0.314 0.475

TPrig9, 0.63 — — 0.60 0.65

Fused features (all features): centralized scheme

Acc 0.880 — — 0.846 0.810

BER 0.115 — — 0.231 0.226

AUC09, 0.237 — — 0.324 0.198

TPrig9, 0.80 — — 0.60 0.60
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Figure 5. ROC for the best single classifiers and for FLDA-
based centralized fusion scheme.

the optimal approach. However, the diversity among
classifiers must be taken into account, i.e., redun-
dancy has to be avoided in order to achieve better
accuracy during the fusion process. According to the
mRMR criterion, the fusion of the classifier GMMC,
in the LIDAR space (LIDAR-GMM) with the FLDA
in the vision space (vision-FLDA), is the “optimal”
option, with ® = —0.1665. The value of ® can be cal-
culated by expressions (20)-(22) using nc = 2 and the
values of mutual information, highlighted in bold,
in Tables VI and VII. On the other hand, the fusion
of the best LIDAR classifier (naive-Bayes) with the
best vision classifier (FLDA) had a value of ® (® =
—0.1885) lower than the previous pair combination.
Experimental results reinforce the mRMR criterion,
because the best accuracy of 89.92% was achieved by
the trainable fusion scheme LIDAR-GMMC/vision—
FLDA using the Fomm fusion method (see Table VIII),
whereas the classifier ensemble using the “intuitive
best” set of single classifiers (LIDAR-naive-Bayes
and vision—-FLDA) achieved a maximum accuracy of
89.78%, below that of the former combination.

LIDAR: missing

Vision: missing

Figure 6. Some examples of miss detections using single classifiers: the LIDAR-naive and vision-LDA.
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Table VI. Mutual information among classifiers (redundancy).
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LIDAR feature space Vision feature space
LDA Naive GMM SVM NN LDA SVM NN

LIDAR

LDA 1.000 0.602 0.621 0.585 0.615 0.574 0.590 0.570

Naive 0.602 1.000 0.516 0.593 0.528 0.529 0.529 0.477

GMM 0.621 0.516 1.000 0.625 0.609 0.661 0.661 0.608

SVM 0.585 0.593 0.625 1.000 0.642 0.598 0.668 0.697

NN 0.615 0.528 0.609 0.642 1.000 0.652 0.653 0.570
Vision

LDA 0.574 0.529 0.661 0.598 0.652 1.000 0.710 0.622

SVM 0.590 0.529 0.661 0.668 0.653 0.710 1.000 0.715

NN 0.570 0.477 0.608 0.697 0.570 0.622 0.715 1.000
Table VII. Mutual information between classifiers and the over the training data set (LIDAR-GMMC and

target output (relevance).

Feature space Target output
LIDAR
LDA 0.498
Naive 0.466
GMM 0.642
SVM 0.502
NN 0.580
Vision
LDA 0.686
SVM 0.615
NN 0.521

6.3. Decentralized Fusion Scheme:
Classifier Fusion

The proposed decentralized fusion architecture was
tested with different fusion methods, trainable and
nontrainable ones, using the classifiers with maxi-
mum relevance and minimal redundancy estimated

vision—-FLDA).

Here, the most demanding task is the selection
of the 15 possible combinations, five classifiers in the
LIDAR space and three in the vision space. This
aspect reinforces the need to avoid heuristic, or
force-brute, methods and to consider a mutual
information-based approach to aid in such labor, as
described in the preceding section.

Once the most relevant and less redundant pair
of classifiers has been selected, the set of proposed
trainable fusion techniques, denoted Fipa, Fnaives
Fomm, Fsvm, and Fnn, and the nontrainable rules,
Favager FMax, and Fnprod, were applied over the test-
ing data set. The results concerning each fusion tech-
nique are shown in Table VIII, and corresponding
ROC curves are depicted in Figures 7(a) and 7(b).

7. CONCLUSION

Most of the works on pedestrian and on-road ob-
ject detection using vision and LIDAR (see Table I
for some relevant cases) employ a LIDAR to detect

Table VIll. Performance metrics for the fusion strategies: testing data set.
Trainable methods Nontrainable rules
FLDA FNaive FomMm Fsvm FNN F Avage FMax FNprod
Acc 0.894 0.897 0.899 0.877 0.890 0.878 0.859 0.878
BER 0.109 0.108 0.096 0.124 0.102 0.122 0.109 0.122
AUCqpq 0.391 0.460 0.465 0.412 0.421 0.282 0.178 0.197
TPrig9 0.861 0.892 0.912 0.855 0.850 0.684 0.633 0.710
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(a) ROC: fusion with nontrainable rules
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(b) ROC: fusion with trainable methods

Figure 7. The ROC using the decentralized fusion scheme.

objects and to generate target hypotheses inside the
camera FOV, whereas a vision-based classifier is in
charge of object validation or final classification. The
present work contributes a sensor fusion strategy
composed of centralized and decentralized fusion
schemes. In the former the fusion process occurs at
the feature level followed by a single classifier ap-
plied over the whole feature vector, and in the latter
the pair of classifiers with max-relevance and min-
redundancy is fused by means of a set of trainable
methods and nontrainable rules to improve the final
classification stage.

Regarding the experimental results, the follow-
ing conclusions can be highlighted:

1. Trainable fusion methods: These fusion tech-
niques got better results than the usual non-
trainable rules, evidencing the feasibility of
the proposed methods.

2. mRMR criteria: To prevent redundancy and
to take advantage of the classifier diversity,
avoiding empirical approaches, this method
is very useful during the classifier selection,
aiding in choosing the better combination in
terms of mutual information.

3. LIDAR-based detection missing: The miss-
ing detections for the LIDAR-based classi-

fiers are related mainly to the range distance
to the object; the farther the object is from the
LIDAR, the less range information is avail-
able and consequently the system is prone to
false-negative classifications. Moreover, sit-
uations in which pedestrians appear very
close to each other or close to or between
other objects (especially cars) originate prob-
able missing detections.

4. Vision-based detection missing: Most of
the cases occur on low-contrast images
and when the ROI background has intense
texture.

5. Fusion strategy: The proposed fusion strate-
gies achieved higher performance than the
single classifiers, for which the decentralized
scheme obtained the best result.

Moreover, in terms of practical applications, as the fu-
sion schemes do not depend entirely on a single sen-
sor space, this brings more robustness and safety to
systems employing such detection schemes.
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