
LIDAR-based 3D Object Perception

M. Himmelsbach, A. Müller, T. Lüttel and H.-J. Wünsche

Abstract— This paper describes a LIDAR-based perception
system for ground robot mobility, consisting of 3D object
detection, classification and tracking. The presented system
was demonstrated on-board our autonomous ground vehicle
MuCAR-3, enabling it to safely navigate in urban traffic-like
scenarios as well as in off-road convoy scenarios. The efficiency
of our approach stems from the unique combination of 2D and
3D data processing techniques. Whereas fast segmentation of
point clouds into objects is done in a 2

1

2
D occupancy grid,

classifying the objects is done on raw 3D point clouds. For
fast switching of domains, the occupancy grid is enhanced to
act like a hash table for retrieval of 3D points. In contrast to
most existing work on 3D point cloud classification, where real-
time operation is often impossible, this combination allows our
system to perform in real-time at 0.1s frame-rate.

I. INTRODUCTION

In this paper we address the problem of segmenting 3D

scan data into objects of known classes. Given the set of

points in 3D acquired by a range scanner, the goal of

segmentation is to attribute the points to a set of candidate

object classes. In the context of ground robot mobility, this

segmentation capability is not only essential for high-level

tasks like scene understanding and planning, but can also

be used for scan registration and robot localization, e.g. in a

SLAM framework [1]. Besides, knowing the object’s class is

especially useful in dynamic environments, both for planning

and estimation: estimation can be improved by making use

of appropriate dynamic models, and planning can incorporate

knowledge about the behavior or intentions typical of a

certain object class.

Our approach to perception is decomposed into three main

steps: segmentation, classification and tracking. The segmen-

tation step is performed on an occupancy grid, yielding con-

nected components of grid cells not belonging to the ground

surface. In an efficient operation, we determine all the 3D

LIDAR point measurements corresponding to the segmented

objects. In the classification step, we extract features from

an object’s point cloud, capturing the distribution of local

spatial and reflectivity properties extracted over a fixed-size

support volume around each point. In a supervised learning

framework, a support vector machine (SVM) classifier is

trained to discriminate the classes of interest, e.g. other traffic

participants in our case, given hand-labeled examples of

point clouds.

The method is not restricted to a particular robot or sensor,

however we describe and demonstrate it using our vehicle

This work was supported by COTESYS cluster of excellence.
All authors are with department of Aerospace Engineering, Autonomous

Systems Technology (TAS), University of the Bundeswehr Munich, Neu-
biberg, Germany.

Contact author email: michael.himmelsbach@unibw.de

Fig. 1. Inertially corrected cloud of 100000 3D points for one revolution
(0.1s) of the Velodyne LIDAR, mounted on the roof of MuCAR-3. Note
the different scales of gray, corresponding to the intensity of the reflected
beam. All figures are best viewed in color.

MuCAR-3 (Munich Cognitive Autonomous Robot Car, 3rd

generation), a VW Touareg equipped with a Velodyne HDL-

64 LIDAR (see Fig. 1).

A. Related Work

With range scanning devices becoming standard equip-

ment in mobile robotics, the task of 3D scan segmentation

and classification is one of increasing practical relevance.

Interestingly, although range scanners were the primary

sensor at the DARPA Urban Challenge 2007, segmentation

was primarily done on 2 1

2
-D occupancy grids. If at all, clas-

sification of segmented objects was done in the 2D domain,

by fitting L-shapes or bounding boxes and verifying them

against simple rules [2], [3]1. Classification was probably

omitted because of the strict rules of the competition, that

ensured that every object detected within the road boundaries

could only correspond to another vehicle.

In contrast, both Anguelov et. al. [4] and Lalonde et.

al. [5] describe methods where every single point of a

scan is assigned a class label. Given a labeled point cloud,

segmenting the scan is then straight-forward. While the

features extracted for each point do not differ considerably

– both methods use local point cloud statistics for feature

extraction, to be detailed later –, different classification

paradigms are followed. Anguelov et. al. [4] model a point’s

1Most of the finalist teams have not yet published the relevant work. This
insight is based on talks given at numerous workshops.

class label by a probability distribution conditioned on the

local features and the labels in the point’s neighborhood.

They thus enforce spatial contiguity, exploiting the fact that

adjacent points in the scan should have similar labels. This

distribution is modeled by a Markov Random Field (MRF),

whose parameters are determined in a supervised learning

stage such that the resulting classifier maximizes the margin

between the classes learned, like SVMs do. Although no

timing results are given in [4], it can be concluded from [6]

that the method does not permit real-time use.

Lalonde et.al. [5] learn a parametric model of the feature

distribution for each class by fitting a Gaussian mixture

model (GMM) using the Expectation Maximization (EM)

algorithm on a hand labeled training data set. Spatial con-

tiguity is accounted for by running simple rule-based filters

after classification, e.g. by changing a point’s label to the

most frequent class among its neighbors. However, to make

their method perform in real-time, some modifications are

necessary. Especially, they no longer classify individual

points, but an artificial prototype point of all points contained

in a 3D voxel grid cell, such that 7000 voxels/sec. can be

classified.

We take a quite different, unique approach to object

classification in 3D point clouds, in that segmentation is

based on the compressed data contained in a 2 1

2
D occupancy

grid. We then make use of the rich information contained

in the Velodyne’s 3D point clouds by again switching the

domain to 3D, now classifying only subsets of the scan’s

total point cloud, with evidence that each subset represents an

individual object. Thanks to the efficient combination of 2D

and 3D data processing techniques, classification of objects

represented by their 3D point clouds is possible in real-time

on-board an autonomous vehicle.

II. OBJECT DETECTION

A. Occupancy Grid

We use a 2 1

2
-D ego-centered occupancy grid of dimension

100m×100m, each cell covering a small ground patch of

0.15m×0.15m. Each cell stores a single value expressing the

degree of how occupied that cell is by an obstacle. In our

implementation this value is a metric length with the physical

unit [m]. Before we detail its meaning and calculation, note

that in our approach we create a new occupancy grid on

each new LIDAR revolution, i.e. every 0.1s. Thus, we do

not accumulate data for a longer time. The reasons for this

decision are twofold. First, one revolution of the Velodyne

supplies about 100000 3D points, which proved to be suffi-

cient. Second, the quality of an accumulated occupancy grid

can easily deteriorate if the physical movement of the sensor

is not estimated with very high precision. Small angular

deviations in the estimate of the sensor’s pose can result

in large errors. Registering scans against each other, e.g.

using the ICP algorithm [7] or some of its derivatives, could

solve this problem, but would require substantial additional

computational load.

For calculating the occupancy values, we first inertially

correct the LIDAR scan, taking the vehicle’s motion into

Fig. 2. Occupancy grid (with only profoundly occupied cells shown in red)
and superimposed point cloud. The geometric relation between discrete grid
coordinates and real ego coordinates remains static.

account (exploiting IMU and odometric information). This is

done by simultaneously moving the coordinate system of the

vehicle while transforming the local LIDAR measurements

to global 3D space. After a frame is completed, all points

are transformed back into the last local coordinate system of

the vehicle, simulating a scan as if all measurements were

taken at a single point of time instead of the 0.1s time period

of one LIDAR revolution.

Similar to Thrun et. al. [8], each cell’s value is then

calculated to be the maximum absolute difference in z-

coordinates of all points falling into the respective grid cell.

When a grid cell is hit by a laser beam and its occupancy

value is updated, we store the laser read at the cell such

that it can be queried for later processing, to be detailed in

Sec. III. Fig. 2 shows the occupancy grid with superimposed

point cloud.

B. Object Hypotheses from Segmentation

To get initial object hypotheses, we next perform a seg-

mentation of the occupied grid cells by finding connected

components of grid cells. In order to apply the connected

components algorithm, the grid first needs to be binarized.

This is achieved by simply thresholding the occupancy values

of all cells against a suitable value (0.15m for MuCAR-3,

derived from the diameter of its tires), setting all cells below

the threshold to zero and all others to one. Then, standard

connected component algorithms known from machine vi-

sion [9] can be applied, that assign each grid cell ci the

label labeli of the connected component it belongs to.

For each connected component cck, we formulate an

object hypothesis of unknown class, represented as a 3D

bounding box. The x- and y-axis of the object’s bounding

box can be calculated from the discrete grid coordinates

gci = (u, v)T of all cells ci belonging to the respective

connected component, cck = {gc
ego
i |labeli = k}. Here, the

“ego” superscript is used to denote that all grid coordinates

are now expressed in the ego coordinate system, a conversion

Fig. 3. Occupancy grid with objects detected by segmentation, represented
by 3D bounding boxes (green).

greatly simplified by the static geometric relation between

the ego and the grid cells. The axes then correspond to the

orthonormal eigenvectors e1, e2 of the coordinates’ covari-

ance matrix Σcck
, sorted in descending order w.r.t. to the

corresponding eigenvalues, i.e. d1 ≥ d2.

The boxes’ dimensions in the plane are found by lin-

early transforming all gc
ego
i ∈ cck into the coordinate sys-

tem defined by the eigenvectors (the so-called eigenspace),

gc
ego∗

i = (e1|e2)gc
ego
i , and taking the extremes over the

resulting coordinates. The position posk of the object hy-

pothesis is simply the center of gravity of the connected

component, i.e. posk = |cck|
−1

Σ(gc
ego
i ∈ cck). This 2D

box is assured to enclose all grid cells of the connected

component, but lacks some desirable properties, such as

having the minimum area of all possible enclosing boxes.

Although the current boxes work well, this could be subject

to future improvement.

With the assumption that the object’s z-axis is orthogonal

to the xy-plane and setting its z-dimension to the maximum

z-coordinate of all cells part of the connected component,

we obtain the final 3D bounding box object hypothesis.

Fig. 3 shows the result of applying the outlined object

detection algorithm to the occupancy grid shown in Fig. 2.

Note that detecting objects this way does not involve any

assumptions about an object’s shape, but rather performs

free-form object detection. This is in contrast to most work

on object detection for autonomous vehicles, where it is often

explicitly assumed that all interesting objects take on “L-

shape”, thus limiting the number of different types of objects

that can be recognized.

III. CLASSIFICATION

As mentioned earlier, we want to classify the detected

objects based on their 3D point measurements. However,

object detection just provides us with a bounding box rep-

resentation of an object. In this section we show how the

required points can be queried from the occupancy grid

given an object hypothesis and what features are extracted

Fig. 4. Querying data from the occupancy grid, with the query formulated
as a polygon. The polygon (with vertices shown blue) gets split into triangles
(2 in this example, white) and scan conversion is issued on all triangles
(yellow scan lines). The query is answered by returning all data within the
scanned grid cells (i.e. the laser reads, shown grey). Note that not all laser
reads fall into cells part of the connected component (red).

from the resulting point clouds. Finally, we show how we

train our object classifiers and briefly present some results

of classification.

A. Object Point Clouds

Remember that when updating a grid cell with a laser read,

we store the laser read at the cell2. The naive approach to

obtain the point cloud corresponding to an object would thus

be to simply collect all laser reads stored at the respective

connected component. This, however, is not expedient in

our case. The reason is that connected components are only

made of cells for which a certain z-coordinate difference

was observed, and it can not be taken for granted that all

measurements of an object fall into such cells. Thus, taking

only the points from the connected component cells would

probably miss a large number of object measurements and

harden the following classification step.

Instead, we would like to extract all laser reads contained

in the object’s 3D bounding box. To do so, we augment the

grid with a facility to answer queries for data formulated as

arbitrary (convex and non-convex) polygons, with vertices

defined in the ego coordinate system. Given such a query,

we first transform the vertex coordinates from ego to grid

coordinates and split the resulting polygon into triangles. We

next issue the triangle scan conversion algorithm on each

resulting triangle, such that every grid cell contained in the

original polygon formulation will be visited. Answering the

query is then a simple matter of collecting all the laser reads

stored at the visited cells.

This is illustrated in Fig. 4 for the case of extracting laser

reads for an object hypothesis, where the query is given

in terms of a polygon representation of the bottom plane

of the object’s 3D bounding box. Note that, as expected,

not all laser reads fall into grid cells that are part of the

corresponding connected component.

2In fact, the occupancy grid is implemented general enough to allow
storage of any kind of data at the cells. For this application, however, storing
laser reads is appropriate, and we use the terms “data” and “laser read(s)”
interchangeably.

B. Point Cloud Feature Extraction

The next step in the design of the object point cloud

classifer is to extract meaningful features from point clouds.

Here, the main difficulty is to find a compact representation

of a point cloud, thereby dramatically reducing dimension-

ality compared to the original point cloud. Otherwise, the

resulting classifier will not perform in real-time. At the same

time, discarding too much of the original data may cause the

classifier to make too many wrong decisions to be useful at

all.

The features used by Anguelov et.al. [4] and Lalonde et.

al. [5] provide us with a basis for this step. However, they

can not be applied directly, as in our case the extracted

features must provide a compact description of a cloud

of possibly many points, whereas the features used in the

works of Anguelov and Lalonde only need to describe

prominent properties of single points. On the other hand,

the features that can be computed from point clouds are

not restricted to local point properties. Instead, some of the

features should also capture global object properties, like the

object’s dimensions or volume etc.. Hence, we will use both

local and global features to describe the point clouds.

Formally, a point cloud P can be written as P =
{l1, ..., lM}, where li = {xi, yi, zi, Ii} denotes a single

laser read, consisting of the coordinates xi, yi, zi of the

measured 3D point and the intensity Ii ∈ [0, 255] of the

reflected beam. For real data, the size of an object’s point

cloud typically ranges from M = 100...1000. However, with

objects closer to the sensor, point clouds of M = 10000
points are possible in the extreme. Computing local statistics

for every laser read is intractable for such a large number of

points when targeting real-time operation. We thus perform

uniform down-sampling of each point cloud to reduce the

number of points to a constant of M := 200 prior to feature

extraction.

We now describe the features extracted from these reduced

point clouds in detail.

1) Object Level Features: We call features not involving

any local computations “object level feature”. We include

four of them in our final feature vector, all of which are

scalar valued.

• Maximum object intensity Imax = max Ii

• Mean object intensity µI = M−1ΣiIi

• Object intensity variance σI = Σi(Ii − µI)
2

• Object volume V , computed from the corresponding 3D

bounding box

Obviously, i = 1...M in all the above computations.

2) Histograms of Point Level Features: Whereas object

level features do not involve local point properties, we now

turn to the types of features capturing local point cloud

statistics, evaluated at all points of the object point cloud. To

transfer the features from the point level to the object level,

we introduce a histogram for every point feature and update

the feature’s histogram with the evaluation of the feature

at every single point. After a feature has been computed

for all points, we normalize the corresponding histogram by

dividing every bin value by M . We then include the bins of

the resulting histograms into our final feature vector. To be

able to define the histogram bins over a fixed finite range,

we require that all point features be normalized to only take

values in the range 0...1.

• Lalonde features L1, L2 and L3

Lalonde et. al. [5] compute local point features express-

ing the scatter-ness (L1), linear-ness (L2) and surface-

ness (L3) at a point by inspecting the distribution

of neighboring points. To compute the features, they

perform an eigenvalue analysis of the covariance matrix

of the neighboring points’ 3D coordinates, yielding

eigenvectors e1, e2, e3 with eigenvalues d1 ≥ d2 ≥ d3.

They then set L1 = d1, L2 = d1−d2 and L3 = d2−d3.

As there is no practical upper bound to any of these

features, we make the substitution di 7→ di

Σidi
such

that ∀hi : 0 ≤ hi ≤ 1, as required3. For transforming

these point-level features to the object-level, we add 3

histograms to the final feature vector, each consisting

of 4 bins equally spaced over the range 0...1.

• Anguelov feature A1

Anguelov et. al. [4] describe two features, but only one

is used in our work as the other do not differ signifi-

cantly from the ones calculated above. The feature we

take defines a vertical cylinder of height 2m and radius

0.1m around the point the feature is computed for. This

cylinder is then vertically divided into 3 parts A1,i of

equal size, and each is assigned the fraction of all points

in the cylinder falling into it. This adds another three

4-bin histograms to the final feature vector, capturing

the distribution of A1 in the given point cloud.

We haven’t yet given a precise definition of the term “point

neighborhood” used in the above computations. This refers to

the point’s 20 nearest neighbors within a fixed-bound radius

of 0.5m. These are efficiently found by constructing a kD-

tree from the object’s point cloud once and doing the nearest

neighbor searches in this tree.

With regard to the final feature vector, we have four scalar

object-level features. In addition, we have six histograms

over point-level features, each contributing four bins. The

final feature vector thus has dimension 28 and takes the form

f = (Imax, µI , σI , V, H4

L1
, H4

L2
, H4

L3
, H4

A1,1
, H4

A1,2
, H4

A1,3
),

where Hb
v denotes the b bin values of the histogram over the

scalar valued variable v.

C. Training the SVM classifier

For classifying objects, next a support vector machine

(SVM) classifier is trained on a hand-labeled training

data set. Like the maximum margin MRFs (M3) used by

Anguelov et. al., the SVM also maximizes the margin

between the different classes it is trained on, but lacks the

concept of spatial contiguity. However, segmentation is done

prior to classification in our approach, rendering the spatial

3This is possible as the covariance matrix is positive semi-definite, hence
all its eigenvalues are nonnegative.

contiguity property less important. We use the common ν-

SVM variant, that allows for some mislabeled examples in

case the classes are not completely separable in feature space

[10]. The approach taken to multi-class classification is that

of one-against-all classification, where one binary SVM is

trained for every class, separating it from all other classes.

The operation of the ν-SVM depends on two parameters:

C is a penalty parameter for weighting classification errors

and γ is a kernel function parameter. To also determine

the optimal choice of these parameters, we perform a grid-

search in a suitable subspace of parameter values. At each

grid resolution, the classification performance for different

pairings of C, γ, given by the grid cells, is evaluated by

randomly splitting the training data set into two folds of equal

size. Applying the concept of cross-validation, one fold is

then used for training the SVM using the current parameter

choices and the other fold for evaluation. The search then

iterates by refining the resolution of the grid and centering

it at the best parameter choices of the last iteration.

D. Two-class Classification Results

This framework for object classification has been tested on

a simplified task, the discrimination of objects belonging to

the class of passenger cars from all other objects. Bearing in

mind that the classifier will be presented features f extracted

from automatically detected objects in a real application,

semi-automatic data labeling was done. We ran our object

detection algorithm on the scans of diverse urban and non-

urban traffic scenes and visualized the detected objects in a

GUI. Via simple user interaction, each detected object could

be assigned one of the labels “vehicle” or “non-vehicle”. For

each labeled object, we extracted the corresponding point

cloud as described above and stored the points together with

the label for later training the SVM.

To get an impression of how such training data looks like,

Fig. 5 shows a few of the extracted examples. The complete

training set contained a total of 284 examples, split into 109

positive and 175 negative ones. As can be seen, the training

data set contained positive examples for vehicles sensed from

different viewing directions and distances. Also, comparing

the intensities across both classes, separating the classes

based on intensity information alone seems impossible.

We then run the described SVM training procedure on

the collected data. Note that the cross-validation result of

the last grid-search iteration already expresses the accuracy

of the trained classifier, where the classifier’s performance

is evaluated on data different from the one it was trained

on. We thus report the accuracy achieved in cross-validation

in the last iteration of grid-search. Here, only 6 of the 182

examples of the evaluated fold are assigned the wrong class

label, resulting in an accuracy of 176

182
≈ 96.7%.

Unfortunately, we have not yet tested our method on

standard point cloud data sets known in the literature. A

comparison of the results with those obtained by other

methods can thus not be presented. This is left for future

work. Instead, we briefly describe a real-world application

Fig. 5. Some hand-labeled examples of point clouds used for training
a vehicle classifier. Positive examples (top 4 rows) and negative examples
(bottom 4 rows).

built on top of the presented perception system in the next

section.

IV. APPLICATION: OBJECT TRACKING

One example application of the presented perception sys-

tem is object tracking, as needed e.g. in a convoy scenario.

In a convoy scenario, MuCAR-3 is to autonomously follow

the path taken by the vehicle leading the convoy. Thus, the

task of the perception system is to constantly perceive the

convoy leader object and keep track of it.

Especially, when loosing sight of the leader object, the

perception system must guarantee that no other perceived

object is assigned the role of the leader by fault. Instead, in

this case the robot should stop and wait until it has again

found the leader object.

Fig. 6. A snap-shot of the on-board visualization of vehicle tracking. The
tracked vehicle and some position and velocity estimates are shown green.

To achieve this, the perception system makes use of the

classifier introduced in the previous section. Then, only

detected objects classified as a vehicle will be considered as

a convoy leader. To further improve robustness of perception

and to both allow smooth longitudinal (via adaptive cruise

control) and lateral control, the convoy leader’s pose and

velocity is estimated in a multiple model Kalman Filtering

framework4. At each iteration, i.e. at 10Hz, gated nearest

neighbor data association is performed to select one of

the possibly many vehicles as the one corresponding to

the current convoy leader, and the estimates are updated

accordingly. Fig. 6 shows a snapshot of vehicle tracking.

With this system, autonomous convoy following at speeds

up to 20m/s could be demonstrated for runs over distances of

up to 60km, leading through different kinds of environments,

including inner city, country roads, forest tracks, sharp

serpentines and trails with large potholes causing violent

pitch motions of the follower vehicle. Even in forests, where

the many tree trunks cast the detection and classification

of hundreds of objects, processing (including tracking and

evaluating “tentacles” [13] for local obstacle avoidance)

could always be finished before the arrival of the next scan,

i.e. within 0.1s.

Figures 8, 9, 10, 11 show some detailed results of con-

voy driving obtained for the scenario shown in Fig. 7.

A video showing a visualization of the processing going

on on-board MuCAR-3 during autonomous convoy driving

can be found at http://www.unibw.de/lrt13/tas/

medien/AudioVideo at the entry for Elrob 20085.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We presented a complete system for perception of 3D

objects in LIDAR data. The success of the system was

demonstrated in an object tracking application used for

4An IMM estimator [11] based on an Unscented Kalman Filter [12].
5European Land-Robot Trial, http://www.elrob.org/

Fig. 7. Map view of the driven convoy scenario (blue: leader path,
red: follower path). The total length of the track is 5937m, driven at an
average speed of 6.9m/s, with 17.7m/s top speed. Both vehicles’ position
and heading were measured by two Inertial Navigation Systems (INS) with
D-GPS accuracy.

15 20 25 30 35 40

−496

−494

−492

−490

−488

−486

−484

−482

−480

−478

x [m]

y
 [
m

]

x

y
Fig. 8. Details of convoy driving during a sharp turn-over around t = 300s.
Convoy leader (dark green), convoy follower (blue), tracked convoy leader
(red) and target lane fit used to generate control commands (light green).

0 100 200 300 400 500 600 700
−0.5

0

0.5

1

1.5

2

time [s]

a
b
s
o
lu

te
 p

o
s
it
io

n
 e

rr
o
r

[m
]

Fig. 9. Absolute position estimation error over the complete time of convoy
driving. Note the largest errors appear when driving sharp curves, where the
appearance of the convoy leader keeps rapidly changing (compare Fig. 10).

autonomous convoy following during the Elrob 2008. While

segmentation and classification of objects in 3D point clouds

has been done by several authors before, the way we combine

2D and 3D data processing techniques seems to be unique

to our approach. While more experiments are necessary to

thoroughly evaluate the classification performance, the main

benefit of our approach becomes obvious even at this stage

http://www.unibw.de/lrt13/tas/medien/AudioVideo
http://www.unibw.de/lrt13/tas/medien/AudioVideo
http://www.elrob.org/

0 100 200 300 400 500 600 700
−2

−1

0

1

2

time [s]

re
la

ti
v
e

 h
e

a
d

in
g

 [
ra

d
]

Fig. 10. Relative heading of convoy leader (blue) and estimates (green)
over the complete time of convoy driving.

0 100 200 300 400 500 600 700
−20

−15

−10

−5

0

5

10

15

20

time [s]

v
e

lo
c
it
y
 [

m
/s

]

0 100 200 300 400 500 600 700
0

5

10

15

20

25

30

35

40

d
is

ta
n

c
e

 t
o

 l
e

a
d

e
r

v
e

h
ic

le
 [

m
]

Fig. 11. Convoy leader velocity (light green), estimated leader velocity
(blue), follower velocity (red, all left y-axis) and distance between follower
and leader vehicle (green, right y-axis). Note that the distance increases
with leader velocity, a property of the applied adaptive cruise control.

of development: being able to detect, classify and track

objects based on large-sized 3D point clouds, containing as

much as 100000 measurements, while still reaching real-time

performance of better than 10Hz.

B. Future Works

The paper introduced some issues worth to be considered.

Evidently, more object classes must be learned in order to

analyze the potential of the presented classification method.

This will truly show if transferring local point features to the

object level is general enough to describe and discriminate

various object classes. In this context, it would further be

interesting to see how the classification accuracy depends on

the resolution of the point level feature histograms. Besides,

research on more types of object level features should be

carried out, independent of the success of using point feature

statistics for object classification.

There are a number of immediate improvements possible,

at different stages of processing: For example, computing

minimal-area bounding boxes could improve segmentation of

the 3D point cloud. Also, the naive sampling approach for

reducing the number of points in feature extraction could

be augmented with models for point cloud saliency [14],

sampling points of higher saliency with higher probability. It

could further be investigated whether some of the parameters

involved can be determined automatically from the data. For

example, choosing the size of a point’s neighborhood for

local feature computation should depend on the distance to

the point, due to the low angular resolution typical to LIDAR

systems. The work of Unnikrishnan et. al. [15] on selecting

scale from point cloud data already points into that direction.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge funding by german

cluster of excellence COTESYS.

REFERENCES

[1] C.-C. Wang, C. Thorpe, and S. Thrun, “Online Simultaneous Local-
ization and Mapping with Detection and Tracking of Moving Objects:
Theory and Results from a Ground Vehicle in Crowded Urban Areas,”
in Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), 2003.
[2] S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent,

J. Schröder, M. Thuy, M. Goebl, F. von Hundelshausen, O. Pink,
C. Frese, and C. Stiller, “Team AnnieWAY’s autonomous system for
the DARPA Urban Challenge 2007,” International Journal of Field

Robotics Research, 2008.
[3] D. Ferguson, M. Darms, C. Urmson, and S. Kolski, “Detection, Predic-

tion, and Avoidance of Dynamic Obstacles in Urban Environments,”
in Proceedings of the IEEE International Conference on Intelligent

Vehicles (IV08), 2008, pp. 1149–1154.
[4] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta,

G. Heitz, and A. Ng, “Discriminative Learning of Markov Random
Fields for Segmentation of 3D Scan Data,” in CVPR ’05: Proceedings

of the 2005 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’05) - Volume 2. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 169–176.

[5] J.-F. Lalonde, N. Vandapel, D. Huber, and M. Hebert, “Natural terrain
classification using three-dimensional ladar data for ground robot
mobility,” Journal of Field Robotics, vol. 23, no. 10, pp. 839 – 861,
November 2006.

[6] B. Taskar, “Learning structured prediction models: a large margin
approach,” Ph.D. dissertation, Stanford, CA, USA, 2005.

[7] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239–256, 1992.

[8] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont,
L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niek-
erk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney, “Stanley: The robot that
won the DARPA Grand Challenge: Research Articles,” J. Robot. Syst.,
vol. 23, no. 9, pp. 661–692, 2006.

[9] L. G. Shapiro and G. Stockman, Computer Vision. Upper Saddle
River, NJ: Prentice Hall, 2001.

[10] B. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett, “New
support vector algorithms,” Neural Computation, vol. 12, no. 5, pp.
1207–1245, 2000.

[11] Y. Bar-Shalom, T. Kirubarajan, and X.-R. Li, Estimation with Applica-

tions to Tracking and Navigation. New York, NY, USA: John Wiley
& Sons, Inc., 2002.

[12] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter
to nonlinear systems,” in Proc. SPIE Vol. 3068, p. 182-193, Signal

Processing, Sensor Fusion, and Target Recognition VI, I. Kadar, Ed.,
vol. 3068, July 1997, pp. 182–193.

[13] F. von Hundelshausen, M. Himmelsbach, A. Müller, and H.-J.
Wünsche, “Driving with Tentacles - integral structures of sensing and
motion,” International Journal of Field Robotics Research, 2008, to
appear.

[14] D. Cole, A. Harrison, and P. Newman, “Using Naturally Salient
Regions for SLAM with 3D Laser Data,” in Proc. International

Conference on Robotics and Automation, ICRA, 2005, 2005.
[15] R. Unnikrishnan and M. Hebert, “Multi-Scale Interest Regions from

Unorganized Point Clouds,” in Workshop on Search in 3D (S3D),

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
June 2008.

	INTRODUCTION
	Related Work

	OBJECT DETECTION
	Occupancy Grid
	Object Hypotheses from Segmentation

	CLASSIFICATION
	Object Point Clouds
	Point Cloud Feature Extraction
	Object Level Features
	Histograms of Point Level Features

	Training the SVM classifier
	Two-class Classification Results

	Application: Object Tracking
	CONCLUSIONS AND FUTURE WORKS
	Conclusions
	Future Works

	ACKNOWLEDGMENTS
	References

