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Abstract—Self-driving vehicle require a high level of situational
awareness in order to maneuver safely when driving in real world
condition. This paper presents a LiDAR based real time perception
system that is able to process sensor raw data for multiple target
detection and tracking in dynamic environment. The proposed
algorithm is nonparametric and deterministic that is no assumptions
and priori knowledge are needed from the input data and no
initializations are required. Additionally, the proposed method is
working on the three-dimensional data directly generated by LiDAR
while not scarifying the rich information contained in the domain of
3D. Moreover, a fast and efficient for real time clustering algorithm
is applied based on a radially bounded nearest neighbor (RBNN).
Hungarian algorithm procedure and adaptive Kalman filtering are
used for data association and tracking algorithm. The proposed
algorithm is able to run in real time with average run time of 70ms
per frame.

Keywords—LiDAR, real-time system, clustering, tracking, data
association.

I. INTRODUCTION

EFFECTIVE and reliable environment perception is one of

an important role in many intelligent vehicle applications

such as self-driving vehicle and many other vehicle control

applications. Although camera based system has outstanding

features that using sophisticated techniques and low operation

cost, it is less effective under complex circumstance such

as bad weather conditions [1]. Radar has advantages of

longer range detection and higher reliability but low angular

resolution constrains its field of view [2]. Within the last

few years, fully three-dimensional laser scanners have been

introduced. Rather than scanning in 2D space, 3D space is

scanned resulting in a cloud of 3D points. A Light Detection

and Ranging (LiDAR) based on laser scanner has proven

efficient due to its high accuracy in ranging, its wide-area

view, and low data-processing requirements. Additionally,

theirs capabilities in adverse weather conditions have also

been improved [3]. However, processing the large amount

of 3D data points is a great challenge that demanding

efficient algorithms and fast data structures. In DARPA Urban

Challenge, the laser 3D data is usually converted into lower

dimension. For example, by using a 2 1
2 occupancy grid map

to project 3D points to a 2D plane where segmentation and

classification of objects are processed in terms of occupancy

grid map [4], [5]. One of the advantages is that several

sensors can be fused easily and the mapping strategy will

become straight-forward. Segmentation of 3D point clouds

is a another critical step in a number of environmental
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perception tasks. A simple solution is to define the density

of the points within a cell as occupant value [4]. This

easily extract features from each cell, yielding connected

components not belonging to the ground surface. Base on

the same compressed data in a 2 1
2 occupancy grid, Frank

and Oliver presents a segmentation algorithm in terms of

the concept of local convexity which scan 4-neighborhood

surface and compared their attributes such as normal vector

[6]. Object separation is then usually performed by applying

clustering algorithm. Douillard and Underwood compare a

set of clustering techniques designed for different 3D point

clouds [7]. The best selected candidate they propose is the

cluster-all with variable neighborhood method where points

are partitioned by the local voxel adjacency only and the size

of the local neighborhood is the only parameter. However, the

computation time is still very high considering for the real time

application. In [8], an algorithm is presented that efficiently

segments a given 3D point cloud using a radially bounded

nearest neighbor (RBNN) cluster method while maintain its

ability for real time processing based on the static kd-tree.

Data association is then performed to identify measurements

from a sequence of frames belonging to the same target.

In [9], multiple hypothesis tracking (MHK) is adopted to

handle the challenging problem of tracking multiple vehicles

in urban environment with dense traffic. But the performance

in time-consuming would not be able to compute in real time.

Robustness and stable tracking of vehicle is another challenge

to be concerned, the popular Kalman filter(KF) was introduced

in the 1960s and remains one of the most popular estimation

methods since it yields a statistically optimal solution for linear

systems and measurements [10].

The developed method is decomposed into three steps:

Segmentation, clustering and tracking (see Fig. 1). The first

step is ground segmentation which is useful for object

classification and dynamic obstacle detection and tracking.

As a result, an accurate segmentation in different scenes is

generated. In the second clustering step, the nearest neighbor

clustering algorithm is presented to distinguish the generated

non-ground point set. We chose kd-tree as spatial data structure

because it offers competitive look-up times for radially

bounded queries. In order to reduce computation time such

as the number of queries as much as possible, RBNN is

used to achieved this. Given the selected clusters, the tracking

method needs to retrieve real objects among those targets

and sets an identification for each of them in every frame.

To deal with such data association problems, the Hungarian

algorithm is adopted get an optimal matching between targets

and detected objects. Our tracking method is adaptive KF
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based on covariance matrix estimation. The evaluation results

will illustrate that the developed approach achieves a close

performance to the state-of-art techniques, which will have

great potentials in future autonomous navigation systems.

This paper is structured as follows: Section II describes

the technology utilized in this research. Section III explains

the overview of proposed approach. Section III A explain the

spatial data structure, Section III B illustrates segmentation

algorithm, Section III C describes the refinement version

of radially bounded nearest neighbor algorithm (RBNN) for

our real-time application. Section III D demonstrates data

association and adaptive KF is achieved to solve linear

assignment problem in different frames. Experiential result in

Section IV and conclusion in Section V are provided.

II. TECHNOLOGY

As an introduction to LiDAR, a basic understanding of laser

is required. The word “laser” stands for “light amplification

by stimulated emission of radiation”. A laser is a device which

generates a stream of high energy particles (photons) within an

extremely narrow range of wavelengths. A laser light source

forms the basis for a LiDAR system. The wavelength chosen

for most lasers is 905 nanometers, which is in the near-infrared

band of the electromagnetic spectrum [11]. LiDAR uses pulsed

lasers to rapidly create a three dimensional image or map of

a surrounding area (See Fig. 1). The essential measurement

made by a LiDAR sensor is of time, the time that elapses

from the moment the pulse is emitted until it returns after

being reflected by the target surface. Because the laser pulse

travels at the speed of light, time can be directly converted to

distance.

Fig. 1 An example of 3D point cloud map generated by Velodyne HDL-32E
LiDAR

The Velodyne HDL-32E LiDAR is an ultra-compact and a

more cost-effective version of LiDAR sensor (See Fig. 2). The

dimensions of the HDL-32E is 8.5cm×8.5cm×15cm(L×W ×
H) and the net weight is 1.3 kg. It comprises a vertical array

of 32 radially-oriented lasers, resulting in an effective 41.3◦
vertical field of view (FOV) from +10.67◦ to -30.67◦. The

entire unit can spin about its vertical axis at speeds up to 10 Hz

to provide a full 360◦ azimuthal field of view. The maximum

range of the sensor is 70 meter and it captures approximately

700,000 points per second.

III. PROPOSED METHODOLOGY

Our object is using the direct raw data from LiDAR sensor

and provide robust tracking list of potential targets. In our

approach, the dense data from sensor is first simplified by

segmentation step. Moreover, the points which are beyond the

data resolution is removed in the same step. Then clustering

algorithm is applied to obtain vehicle-like object. Additionally,

data association analysis is assigned to handle measurements

in different frames. The detail of these steps are described in

the following sections.

A. Spatial Data Structure

A LiDAR dataset is composed of a large number of

sparse 3D points. A kd-tree, or k-dimensional tree, is a data

structure used in computer science for organizing points in a

k-dimensional space [12]. For our purposes we will generally

deal with point clouds in three dimensions. kd-tree is very

useful for searching nearest neighbor. Considering the number

of dimensions k is fixed (k = 3), and dataset size is n, we

can estimate complexity of the most important operations with

kd-tree

• building a kd-tree has O(nlogn) time complexity and

O(kn) space complexity

• nearest neighbor search - close to O(logn)
• m nearest neighbors - close to O(mlogn)
The advantage of kd-tree is that it has been proved the

usefulness in the reduction of complexity of already existing

three-dimensional models in an automatic and unsupervised

way [13].

B. Segmentation

Instead of establishing complicated neighborhood relations

and computing cell-based in a grid elevation map [14], In our

current method we partition the data in a way such that each

single laser can be processed individually. Since the Velodyne

HDL-32E has composed of 32 lasers with each laser has a

fixed pitch angle, the data from each single laser forms a circle

(See Fig. 4 (a)). The diameter of the circle is depending on

the height and pitch angle of each laser. Therefore, we can

utilize this information as a threshold value in order to separate

ground and non-ground points. Considering the symbol S is

representing the set of non-ground points. Because the height

(H) and the pitch angle (α) are fixed values, so the distance

(Li) is invariant for each single laser by equation

Li =
H
α

(1)

In other words, if no occlusions occurred during the travel

of light between emitter and receiver, the distance from the

emitter to the ground is settled in terms of the current slope

of the road. So if opi is less than the settled value Li, the point

pi is belonging to non-ground point set. As we can see from

Fig. 3, the point pi ∈ P maps to S if and only if

S = {pi|∀pi ∈ P,opi < Li} (2)
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Fig. 2 The Velodyne HDL-32E LiDAR Model

Fig. 3 The formula to distinguish non-ground points

By the elevation threshold, we can discriminate the ground

point and non-ground point for each single laser. The

selected non-ground points are passed through the false alarm

mitigation module using a rule based scheme (e.g., minimal

road width requirement) to further reduce false alarms. In

Fig. 4 (b), the selected non-ground points are indicated by

color red. Then our segmentation approach models the ground

in every single laser. Thus, we grouped all the selected

non-ground point sets from 32 laser data and result in a

classified road segmented sets (See Fig. 4 (c)).

C. Clustering

Matching 3D point clouds to geometrical shapes such as

planes, cylinders or cube can only succeed if the point clouds

are already reasonably segmented. For large 3D point clouds

obtained from complicated geometry, graph-based approaches

are the most popular class of algorithm for robust and

efficient segmentation of 3D laser data, because it can capture

arbitrarily shaped clusters. Klaas presents RBNN algorithm

by only using the concept of local neighborhood [8]. Our

proposed clustering algorithm is refined version based on

this method. Since Klaas’s method is non parametric and

deterministic. Therefore, the proposed algorithm does not need

initialization. The only parameters of RBNN that needed to

predefined are the cluster radius and the number of minimum

points in one cluster. In RBNN, if neighbor points lies within

a predefined radius, the neighbor nodes belongs to the same

group. If the number of points in one cluster is less than

threshold, the cluster is considered as outliers. One of the

advantages of RBNN is that it is dependent on Euclidean
distance. The algorithm can be described by the following

steps

1) scan through all points from the data set.

2) for current point which is not assigned to any cluster

• search all neighbor points within radius predefined.

• if any of these neighbors is already assigned to a

cluster, mark the current point to the same cluster.

Assign the rest of unassigned neighbors to the same

cluster.

• if no neighbor points are assigned, then create a new

cluster. Thus assign both current point and neighbors

to the new cluster.

3) for current point which is assigned to cluster

• search all neighbor points within radius predefined.

• if there exist neighbors assigned to different clusters,

merge all these clusters.

• if no neighbor points are assigned, assign neighbor

points to the cluster of current point.

The implementation of RBNN on sample frame data is show

at Fig. 5.
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(a)

(b)

(c)

Fig. 4 (a) Raw point cloud from one single laser. (b) Non-ground points
separated from raw data. (c) All non-ground points collected from 32 laser

point cloud

D. Data Association and Tracking

The problem of data association is to determine the

correspondence between measurements and tracked objects.

The data association problem arises at time t when the task

is to match the set of tracked objects T = {t1, t2, ..., tn} with

the set of measurements O = {o1,o2, ...,om} observed in the

current frame (See Fig. 6). In the easiest case, the relationship

is bijective, which means all objects present are also observed

and each measurement was due to a previously tracked object.

This is an unrealistic scenario in our application. Surjective

or injective mappings that is n �= m are occurring more

often in our application. Surjective associations occur if all

measurements can be matched to a previously tracked object

n > m. In this case, no new objects were detected, but tracked

objects may have disappeared. In particular, tracked object ti
may not be visible in frame t because

• object ti left the LiDARs field of view,

• object ti is temporarily missing due to a false negative

detection by the feature detector,

• object ti is occluded by an object t j , which results in a

single measurement.

Injective associations occur if all previously tracked objects

can be matched to the observations n < m. In this case,

additional objects may have been detected in the current

frame. The additional objects may be new objects entering the

LiDARs field of view, or previously tracked objects missing

due to false negative detection or occlusion.

The approach traditionally applied to the data association

problem is the Hungarian algorithm, which can be used to

find the measurement-to-track mappings in O(m3) time [15].

The algorithm solves the weighted bipartite graph matching

problem. Since all measurements are compared with all active

tracks, the method is also called the global nearest neighbor
(GNN) approach. To realize an estimation position of target

at the current frame and further predict the position of target

for the next frame, Kalman filter is implemented. The general

model is given below:

xk+1 = Akuk +Bω ωk (3)

yk =Cxk + vk (4)

where x is the system state vector, y is the measurement vector,

u is the input vector, ω is the process noise vector and v
is the measurement noise vector. A, Bω and C are matrices

of appropriate dimensions. ω in this case is considered as

constant. So, the state equation is given by:

x =

⎡
⎢⎢⎣

x
y
vx
vy

⎤
⎥⎥⎦ (5)

which is equivalent to:⎡
⎢⎢⎣

x
y
vx
vy

⎤
⎥⎥⎦

k+1

=

⎡
⎢⎢⎣

1 0 dk 0

0 1 0 dk
0 0 1 0

0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
vx
vy

⎤
⎥⎥⎦

k

+

⎡
⎢⎢⎣

wx
wy
wvx

wvy

⎤
⎥⎥⎦

k

(6)

The control input model which is applied to vector u is

given in (11):

B =

⎡
⎢⎢⎣

dk2

2
dk2

2
dk
dk

⎤
⎥⎥⎦ (7)

In our application , the control vector u is zero

u = 0 (8)

where dk is equal to 0.1 since our LiDAR frame is 10Hz

and wk−1 is the Gaussian noise of zero mean. Since we

only estimate the vehicle position, the measurement matrix

is containing only position measurements. Therefore, the

measurement matrix, the noise covariance matrix and state

noise covariance matrix are given below respectively:

C =

[
1 0 0 0

0 1 0 0

]
(9)

Ez =

[
zx 0

0 zy

]
(10)

Ex =

⎡
⎢⎢⎢⎣

dk4

4 0 dk3

2 0

0 dk4

4 0 dk3

2
dk3

2 0 dk2 0

0 dk3

2 0 dk2

⎤
⎥⎥⎥⎦ (11)
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Fig. 5 RBNN clustering result, running time is 0.118916 seconds

Fig. 6 Data association porblem for multiple target tracking

where the measurement noise in the x axis and y axis is 0.1

and 0.1 respectively. For each set of detections at frame t we

first predict the next state of the targets by using the last state

estimate and the predicted trajectory:

x̂k = A · xk−1 +B ·u (12)

Next we predict the next covariance matrix:

P̂k = A ·Pk−1 ·AT +Ex (13)

And Kalman gain is calculated by:

Kk = P̂k ·CT · (C · P̂k ·CT +Ez)
−1 (14)

In the standard KF, all the system characteristics have to be

specified a priori [16]. However, if there is uncertainty in any

of these characteristics, the filter may not be robust enough.

For example, the measurement data for KF is processed by

classification algorithm that is applied to detect vehicle-like

cluster. However, since false positive points are introduced

into classified dataset by our algorithms, the measurement

noise covariance in KF is uncertainty. We note that the density

of cluster that represents vehicles is strong when the vehicle

is close to host vehicle, but become extremely weak as the

distance between them increases. Consequently, the actual

center is variant depends on the distance and direction of

the vehicles (See Fig. 7). The blue dot represent the center

point of cluster that is being tracked. In fact, the blue point
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Fig. 7 Red color represents detection clusters; Blue color single point represents tracking location; Black color represents trajectories of tracked vehicles

Fig. 8 Covariance based KF result: Red color represents detection clusters; Blue color single point represents tracking location; Black color represents
trajectories of tracked vehicles

that is moving from top-right to center-right to bottom-right is

depending on where the concentration of the cluster’s density.

Therefore, to locate the actual center instead of so call data

center point is the key challenge for real time tracking.

Instead of following the common practice in vehicle

tracking, we will process each vehicle with a general filter to

adjust the center point to approximate the actual center point.

Thus v is the case that we need to refine. The covariance of v
is given as

E[vkvT
k ] = R (15)

Usually, this matrix is a constance value. In our case, as

false positive data is increasing as distance increases. Thus an

adaptive measurement covariance matrix is proposed in terms

of the error propagation. The bigger the value of covariance,

the more uncertainty of the measurement. And the maximum

constance value for measurement covariance matrix is set to

1. The covariance matrices of the measurement noise are

changing from nominal covariances to using scalars R to R
as follows

R = 0.00225∗ (d2
y )+0.1 (16)

where the absolute distance from vehicle to host vehicle

in y-axis is dy. Because the distance is variant from frame

to frame, so the measurement covariance matrix value is

changing from frame to frame. In addition, the center point is

needed to be adjusted in terms of the actual size of vehicle.

Therefore, the offset error equation is

e = γ ∗ (d2
y ) (17)

where γ is a constant. In this case, we choose γ = 1
200 .

Combine equation 3.11 and equation 3.12 and update to the

KF. The pseudo code is the following

Algorithm 1 Covariance Based Kalman Filter

Require: yo f f set ≥ 0∧ yo f f set ≤ 2

dy ← absolute distance

a ← covariance measurement noise matrix coefficient

e = (γ)∗ (d2
y )

if y > 0 then
dy = dy + e

else
dy = dy − e

end if
a = 0.1+0.00225∗ (d2

y )

TABLE I
COMPARISON OF RESULT

Method X-axis error(m) Y-axis error(m)

Normal KF 0.95 1.5
Covariance Based KF 0.45 0.55
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In Fig. 8, the estimated center point (blue dot) is moving to

close to real center. From the comparison table, both the error

of x-axis and y-axis have been improved by covariance based

KF algorithm. Since the size of each sedan is differ from the

manufacturer and model. So there is no so called ”bench mark”

to determine how good the refined algorithm is. However,

from the real time 3D point clouds. We can visually see the

improvement of the estimated center. Therefore, a combination

of the adaptive KF and Hungarian algorithm is introduced. The

proposed algorithm consists of the following steps

1) given the positions of measurement objects O =
{o1,o2, ...,om} in the current frame t with the set of

tracked object’s predicted positions T = {t1, t2, ..., tn}.

Form the assignment matrix A ∈ ℜOm×Tn based on

Euclidean distance

2) define the auxiliary matrix Zi j ∈ {0,1}, auction the

matrix A by satisfying following formulations

minimize
m

∑
i=1

Zi jAi j.

subject to
n

∑
j=1

Zi j = 1;
m

∑
i=1

Zi j = 1,

(18)

3) output the matching score matrix M
4) create or delete the track objects from track list due

to either injective or surjective matching, modify the

number of track objects n
5) update associated measurements from M to Adaptive

KF.

6) process adaptive KF to predict center positions for frame

k+1

7) repeat from beginning

IV. EXPERIMENTAL RESULT

The experimental data set was collected on QEW highway,

Ontario, Canada (see Fig. 10). A Velodyne HDL-32E LiDAR

was mounted on the top of the Ford Escape vehicle (see Fig.

3). In order to validate robustness of our proposed algorithm,

different scenario were conducted on the highway. The

proposed tracking solution was implemented in the MATLAB

environment. The ego-vehicle was drove with approximate

constant speed at 110km/h.

Fig. 9 (a) presents one scenario of one vehicle at the right

lane decelerating and passed by our ego-vehicle. The red

color indicates the target is detected and the small green dot

means this target is tracked. The black line shows the target’s

trajectory on the highway. The next scenario showed in Fig.

9 (b) is that a speeding car was detected and tracked when

it accelerating on the left lane. Fig. 9 (c) illustrate how the

proposed algorithm work for complex situation when multiple

vehicles detected and tracked process.

For all the above three scenarios, as the point cloud

resolution is decreasing rapidly along the distance. So the

perception area is limited to 20m in width and 70m in

length in order to reduce the chance of false detection due

to the bushes, trees and non regular objects. Consequently, the

average process time of our proposed algorithm is about 0.03s

compared to 0.1s of LiDAR frame period.

(a)

(b)

(c)

Fig. 9 (a) Slow traffic detected and tracked. (b) Speeding traffic detected
and tracked. (c) Multiple vehicles detected and tracked

V. CONCLUSION

In this paper, we proposed a novel real time multiple

vehicle detection and tracking algorithm. The algorithm

is purely based on a Velodyne HDL-32E LiDAR sensor.

The proposed algorithm is processing directly on 3D data,

not discarding any important information but allowing for

fast and efficient processing. We demonstrated that the

proposed algorithm achieves good results on data acquired in

expressway environment.

Future work will consist of automatically road boundary

detection in order to reduce the number of data points and road

surface detection for robust segmentation. In addition, Further
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Fig. 10 Real time implementation

step include complex scenario such as urban environment.
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