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Windshear is a kind of microscale meteorological phenomenon which can cause danger to the landing and takeof of aircrafts.
Accurate windshear detection plays a crucial role in aviation safety. With the development of machine learning, several learning-
based methods are proposed for windshear detection, i.e., windshear and non-windshear classifcation. To obtain accurate
detection results, it is signifcant to extract features that can distinguish windshear and non-windshear properly from the obtained
wind velocity data. In this paper, we mainly introduce two statistical indicators derived from the Doppler Light Detection and
Ranging (LiDAR) observational wind velocity data by plan position illustrate (PPI) scans for windshear features construction.
Besides the indicators directly derived from the wind velocity data, we also study the visual information from the corresponding
conical images of wind velocity. Based on the proposed indicators, we construct three feature vectors for windshear and non-
windshear classifcation. Inspired by the idea of multiple instance learning, the wind velocity data collected in the 4minutes within
the reported time spot are considered in the procedure of feature vector construction, which can reduce the possibility of
windshear features missing. Both statistical methods and clustering methods are applied to evaluate the efectiveness of the
proposed feature vectors. Numerical results show that the proposed feature vectors have good efect on windshear and non-
windshear classifcation and can be used to provide more accurate windshear alerting to pilots in practice.

1. Introduction

Windshear refers to a sudden and sustained change of the
headwind/tailwind encountered by aircrafts in direction
and/or speed [1, 2]. A signifcant windshear occurring might
change the lift force that the aircraft would experience and
subsequently make the aircraft fy below or above the
intended fght path. Tis might cause difculties for the pilot
to control the aircraft safely. Accurate windshear alerts can
help pilots take timely and appropriate corrective actions to
ensure the safety of the aircraft. Hence, windshear detection
for airports are crucial for efcient and safe air trafc control
(ATC) [3].

Te occurrence of windshear strongly corresponds to
convection, frontal systems, thermal instabilities, and mi-
crobursts [3]. Generally, windshear could occur in both
rainy days and non-rainy days for diferent reasons [4]. In
rainy weather conditions, microbursts and gust fronts as-
sociated with severe convection can result in windshear,

which could be detected by anemometers and rain-detecting
Doppler weather radar. In non-rainy weather conditions,
windshear occurs mainly due to terrain efects, sea breezes,
low-level jets, dry microbursts, etc. However, since there are
few hydrometeors as refectors for microwaves in clear air
[2], it is difcult to obtain adequate wind velocity data by
Doppler weather radar on non-rainy days. In addition,
anemometers can only detect windshear within the lowest
couple of hundred meters [4, 5]. Terefore, it is inefective to
capture dry windshear events at higher altitudes only by
anemometers and Doppler weather radar during non-rainy
weather conditions. Although wind proflers can be used as
complementary tools to detect windshear to some extent,
they are unstable for windshear detection along glide and
takeof paths [4].

With the development of Light Detection and Ranging
(LiDAR) techniques [6, 7], a number of LiDAR-based
windshear detection methods have been proposed, which
are efective for dry windshear detection. Most of current
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LiDAR windshear detection algorithms are based upon
some indicators corresponding to the fight condition and
mathematical statistics of wind velocity. In reference [1],
Chan et al. introduced the operational LiDAR-based
windshear detection system for the Hong Kong Interna-
tional Airport (HKIA) in which a glide path scan method is
proposed to measure the headwind along the individual
glide paths and a wind ramp detection method is used to
detect windshear. Wind ramp refers to the change of wind
speed along a certain distance (ramp length) [8, 9]. In
practice, windshear ramps with diferent detected ramp
lengths (400, 800, . . . , 6400 m) will be detected. Some of
them will be picked out by ramp prioritization based on a
severity factor that corresponds to the ratio between wind
velocity change and the inverse cube root of the related ramp
length. If any one of chosen windshear ramps reaches or
exceeds 14 knots (the predetermined operational threshold
at HKIA), windshear alert will be generated. However, this
method neglects the internal features of the ramp waveform,
which may refect the true feelings of the pilot. To address
this issue, Li et al. [7] proposed a novel ramp algorithm based
on a weighted smoothing approach and a secondary
windshear recognition scheme, which can detect the fat
areas for windshear ramp. In reference [10], Hon et al.
introduced a “gentle ramp” removal method for the auto-
matic windshear detection algorithm at HKIA in which the
root-mean-square (RMS) of the original headwind profle
from its running mean will be additionally checked for a
selected windshear ramp whose intensity reaches or exceeds
14 knots and ramp length is greater than 3000m (about 39 s
for aircraft fight). Based on the consultation by aviation
users, if the RMS measure of velocity fuctuations falls below
1.2 knots, the windshear alert would be withheld. Due to the
transient and sporadic nature of terrain-disrupted airfow
disturbances, it is difcult for the pilots to clearly difer-
entiate between windshear and turbulence at times. In such
cases, wind ramp-based methods may not work and it is
advantageous to consider the gradient of headwind. F-factor
is such an indicator whose frst term is corresponding to the
headwind gradient and second term is about the vertical
acceleration term. Chan et al. investigated the performance
of LiDAR-based F-factor for windshear detection as well as
its statistics in reference [11]. However, they did not study
the aircraft response to the headwind change and the vertical
acceleration term of F-factor. In reference [12], Chan took
the aircraft response into account by preprocessing the
headwind profle using commercial fight simulator software
and established a new threshold (−0.05) of F-factor that is
less than the conventional threshold of F-factor for wind-
shear detection (−0.105) based on the dataset collected at
HKIA. In reference [13], the corresponding research is
further in-depth. Te center-averaging postprocessed
F-factor was investigated besides the consideration of fight
simulator-based F-factor. By selecting an optimal alerting
threshold specifc for each runway corridor, the successful
alerting rate of F-factor could reach 86%. In addition to the
wind ramp and F-factor-associated windshear detection
methods, there are some other methods to detect windshear.
For instance, Wu and Hon [14] applied the Fourier

transformation to decompose the headwind profle and
proposed to detect windshear by threshold based single/
multiple channel method. A regional divergence algorithm
based on LiDAR data was proposed by Li et al. in reference
[15] for windshear detection at Lanzhou Zhongchuan In-
ternational Airport which mainly concentrated on the re-
gional wind change size along the runway.

In the past few decades, due to the development of
machine learning, several machine learning methods for
windshear detection by LiDAR data are proposed. For in-
stance, Ma et al. [16] extracted the windshear features from
the partial LiDAR scanning image by an invariant moment
method and gray-gradient co-occurrence matrix. Ten, the
support vector machine (SVM) method, which can generate
a line or hyperplane to separate data into two classes based
on the input features, is used to validate the efectiveness of
the extracted features. However, the accuracy of this method
is too low (lower than 50%) to use in practice. In reference
[17], Huang et al. proposed a statistical indicator based on
the headwind profles which measures the maximal difer-
ence in wind velocities along the range of the measurement
LiDAR beam for diferent azimuth ranges. By employing a
one-side normal distribution based decision rule, the
threshold of this indicator is determined for windshear and
non-windshear distinguishing. However, this method only
considers the wind profle obtained at the nearest timestamp
to the reported time spot, which may miss some windshear-
related data.

In this paper, we will introduce two statistical indicators
of windshear from LiDAR observational data. One is derived
from the observed wind velocity data, and the other is
constructed by the texture feature of the LiDAR plan po-
sition illustrate (PPI) scan images. Based upon the idea of
multiple instance learning [18], we can construct several
feature vectors based on the proposed indicators. Tis re-
search is valuable in a number of aspects. First, the proposed
indicators are based on the LiDAR data obtained from PPI
scan whose requirements for elevation and azimuth angle
change are lower than the frequently used glide path scan.
Second, wind profles collected in 4 minutes near the re-
ported timestamp are considered, which could reduce the
possibility of windshear features loss. Tird, the application
of the image texture extraction method can improve the
identifcation efciency of sporadic windshear. Moreover,
numerical experiments based on real data collected at HKIA
validate the efectiveness of the proposed indicators.

Te outline of this paper is given as follows: in the second
section, we will introduce the information of the LiDAR
observational data we studied in this paper.Te construction
of statistical indicators and related feature vectors are pre-
sented in Section 3. In Section 4, numerical results and
discussion will be shown. Finally, we will give some con-
cluding remarks in Section 5.

2. LiDAR Observational Data

Te Hong Kong International Airport (HKIA) is located in
the northern part of Lantau Island, which is mountainous
between 300m and 900m above sea level. Windshear
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occurs frequently since the terrain near the airport is quite
complex. In 2002, the Hong Kong Observatory devised a
Doppler LiDAR system to HKIA for timely windshear
detection and alerting [5, 19]. Te wind velocity data
collected in PPI mode with elevation angles of 3° (landing)
and 6° (takeof) are provided for windshear detection.
20–30 seconds are required to get one PPI scan. In Figure 1,
we show two examples of the LiDAR radial velocity data of
PPI scan, where the radius and the polar angle of the scan
refer to the slant range and the azimuth angle of LiDAR
beam, respectively. Tere are mainly two sectors that cover
the airport approach/departure corridors including the
touchdown zones, with the eastern sector (10°–150°) for
tailwind of the aircraft and western sector (220°–340°) for
headwind of the aircraft. Although the slant ranges of the
LiDAR data are from 350m to 10, 000m, the LiDAR data
points with slant ranges over 4950m are neglected since
there are lots of missing Doppler velocities caused by the
complex terrain. Hence, in this paper, we focus on the data
collected from 10° to 150° and 220° to 340°, respectively,
with slant ranges less than 4950m.

3. Proposed Method

In this section, we will introduce the proposed indicators of
windshear and the corresponding feature vectors. First, we
will give a brief review of the physical property of windshear
and its characteristics on LiDAR PPI scans. Ten, we will
introduce the proposed indicators and the corresponding
feature vectors. Here, we use the LiDAR PPI data collected at
HKIA as an example. It is interesting to note that the
proposed methods can be widely applied to LiDAR PPI data
obtained at any airport.

3.1. Properties ofWindshear. Windshear can be caused by a
wide variety of meteorological phenomena, such as winds
blowing across terrain, sea breeze, microburst, gust front,
and low-level jet. Generally, most windshear cases are
terrain-induced. When the wind blows over rough terrain,
wind speed and direction might change in the lee side of
high obstacle, which may lead to alternating high-speed
and low-speed air streams. Aircraft traversing through the
alternating high-speed and low-speed air streams may
experience a large headwind gain/loss that afects the
aircraft lift. In addition to alternative high and low wind
speed, the cross mountain fow can also cause some more
complicated localized fows such as vortices or jumps,
which could bring signifcant windshear to the aircraft. Due
to the complicated characteristics of terrain-induced air-
fow disturbances, the corresponding windshear is transient
and sporadic. Tis property can be properly illustrated by
the LiDAR PPI scan of wind velocity for small-scaled areas
that have reversed fow embedded in the background wind.
Please refer to reference [1] and Figure 1 for more details. In
this paper, we mainly derive the indicators based on the
sustained change property of wind velocity and the tran-
sient and sporadic properties showed in the PPI scan
images.

3.2. Proposed Indicators. Figure 1 shows two LiDAR PPI
scans of Doppler velocities obtained at HKIA. Tere are
mainly two sectors in each LiDAR scan which can cover the
area around the whole corridors including the touch down
zones. Te sector with positive values denotes the Doppler
velocities of wind blow away from the LiDAR which is
actually the headwind encountered by aircraft, and the other
sector denotes the Doppler velocities of tailwind. Here, we
take both two sectors into account. To ensure the quality of
velocity data, the data points obtained over a predetermined
range value would be fltered out (4950m for HKIA data). In
references [20, 21], 2D wind feld has been verifed for
windshear detection. However, it is generally derived
quantity based on some assumptions of the nature of the
fow, which may not be totally accurate in reality. On the
other hand, using radial velocity, it is the direct measure-
ment of the atmosphere and must be accurate. Hence, we
mainly concentrate on the features corresponding to the
radial velocity data obtained by LiDAR PPI scan in this
paper. In addition to wind velocity, coherent Doppler Li-
DAR can retrieve multiple parameters, such as spectrum
width, spectrum skewness, EDR, windshear intensity, and so
on, which can also refect the features of windshear.
Nonetheless, future study may include 2D wind feld and
some other parameters retrieved by coherent Doppler Li-
DAR, to test the robustness of the algorithm and see if there
is any improvement in windshear feature detection.

First, we will introduce several mathematical notations
used in this paper.

For one LiDAR PPI scan, let xi ∈ Rn be the LiDAR data
observed at azimuth angle θi. For simplicity, we assume that
there are m1 azimuth angles (θ(1)

1 < θ
(1)
2 < · · · < θ(1)

m1
) to be

recorded in the tailwind sector and m2 azimuth angles
(θ(2)

1 < θ
(2)
2 < · · · < θ(2)

m2
) to be recorded in the headwind

sector, and also, there are n range values to be recorded along
fxed azimuth angle, i.e.,

x(1)
i � x

(1)
i,1 , x

(1)
i,2 , . . . , x

(1)
i,n , 1≤ i≤m1;

x(2)
i � x

(2)
i,1 , x

(2)
i,2 , . . . , x

(2)
i,n , 1≤ i≤m2.

(1)

Note that the locations of such range values are not
necessary to be uniform, and the distance between the Li-
DAR center and the observed value xi,j is equal to rj.

3.2.1. Indicator Based on Wind Velocity Data. Since the
main property of windshear is the change of wind speed and
direction, we can evaluate the characteristics of windshear by
the maximum variation of wind velocities along the LiDAR
beam, which can refect the wind velocity change in the
investigated area. For fxed azimuth angle θ(1)

i (θ(2)
i ), the

maximum variation of headwind (tailwind) velocities can
be evaluated by indicator max1≤j≤n(x

(1)
i,j ) − min1≤j≤n(x

(1)
i,j )

(max1≤j≤n(x
(2)
i,j ) − min1≤j≤n(x

(2)
i,j )). Te higher the value is,

the more likely windshear will occur. Note that we just take
the diference of the velocity values instead of the diference
of velocity magnitudes so that the sudden change of wind
direction can also be evaluated by this indicator. More
specifcally, for the case where there are areas of reversed
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fow embedded in the background wind, the sign of Doppler
wind velocity values would be diferent, which could make
the diference between velocity values be large. Here, we
extract the top k maximum variation values of each sector to
represent the change of wind velocity in the corresponding
sector (the determination of k will be illustrated in Section
3). Let V(1) � max1≤j≤n(x

(1)
i,j ) − min1≤j≤n(x

(1)
i,j ), i � 1, . . . ,

m1} denote the set of maximal velocity variation values
obtained in the tailwind sector andV(2) � max1≤j≤n(x

(2)
i,j ) −

min1≤j≤n(x
(2)
i,j ), i � 1, . . . , m2} denote the set of maximal

velocity variation values obtained in the headwind sector,
the associated indicator of each sector is calculated as
follows:

f(1)
p � V(1)

1 , . . . ,V(1)
k ,

f(2)
p � V(2)

1 , . . . ,V(2)
k ,

(2)

where V(1)
i denotes the i-th maximum value in set V(1) and

V(2)
i denotes the i-th maximum value in set V(2). Since the

windshear property mainly based on the great change of
wind velocity, to fnd the largest change of wind profle, we
select the one with larger L2 norm in between f(1)

p and f(2)
p as

the indicator fp for the corresponding wind velocity data
collected by one LiDAR PPI scan, i.e.,

fp �
f(1)

p , if f(1)
p ‖2 ≥

�����

�����f
(2)
p ‖2,

f(2)
p , otherwise.

⎧⎪⎨

⎪⎩
(3)

3.2.2. Indicator Based on the LiDAR PPI Scan Image of Wind
Velocity. By the LiDAR PPI scan image of wind velocity
(e.g., Figure 1), windshear can be detected visually based on
the image texture. Generally, there would be more textures
on the velocity images collected in windshear case. Hence,
we propose to use the image texture extraction method to

evaluate the property of windshear from the LiDAR PPI scan
image of wind velocity.

Gray level co-occurrence matrix (GLCM) [22] is a kind
of image texture feature extraction method, which is widely
used in remote sensing, biometric issues, and pattern rec-
ognition. It mainly describes the relative frequencies of pixel
pairs with gray-tone i and j, respectively, which can be
separated by distance d under a specifed angle occurring on
the image. One can get several diferent co-occurrence
matrices with diferent distances and angles. Each element p

with position (i, j) in a co-occurrence matrix denotes the
relative frequency where the pixel with grey level i is adjacent
to a pixel with grey level j horizontally, vertically, or di-
agonally with a specifed distance and angle.

p(i, j) �
# (p1, p2) ∈ I ∣ p1 � i&p2 � j 

#I
, (4)

where I denotes the image, p1, p2 denote two pixels, and #

denotes count function. Here, we set the distance to be one and
angles to be 0°, 45°, 90°, 135°. Ten, we can get four diferent
co-occurrence matrices. Tere are several texture features,
which are calculated by GLCM, such as energy, contrast,
dissimilarity, entropy, correlation, homogeneity, and so on.
Here, we calculate the contrast, dissimilarity, and correlation of
the four co-occurrence matrices as the statistical indicator f im

for LiDAR PPI scans, whose equations are given as follows:

(i) Contrast:



255

i,j�0
p(i, j)∗ (i − j)

2
. (5)

(ii) Dissimilarity:



255

i,j�0
p(i, j)∗ |i − j|, (6)
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Figure 1: LiDAR radial velocity (knots) images collected at HKIA in PPI mode with 3° elevation and 350 − 10, 000m slant ranges, where
positive radial velocities (brown/yellow/orange/pink) are away from LiDAR and negative radial velocities (green/blue/purple) are toward
the LiDAR. Each scan takes about 20–30 seconds. 400–500 beams are emitted to obtain one scan. Due to the complex terrain near HKIA,
data with good quality are not available at a high slant range (blank sectors).
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(iii) Correlation:



255

i,j�0
p(i, j)∗

i − μi(  j − μj 
��������
σ2i  σ2j 


⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦, (7)

where μi, μj and σi, σj denote the mean values and standard
deviation values, respectively.

3.3. Feature Vectors Based on the Proposed Indicators.
From the proposed two indicators, we can readily get three
feature vectors for windshear detection: f1 � fp, f2 � f im,
and f3 � [fp, f im].

Since the time stamps reported by pilots are not accurate,
one cannot fnd the LiDAR scan where windshear occurs
precisely. It is better for us to consider the wind velocity data
obtained by LiDAR scans within four minutes near the
windshear reported time stamp, which is also the same for
non-windshear cases. Inspired by the idea of multiple in-
stance learning in which several instances are arranged in
sets (bags) and a label is provided for the entire bag, we
consider treating the LiDAR scans collected in one time
period as a bag and constructing one feature vector for this
bag. Specifcally, after extracting the feature vectors from the
data collected by each single LiDAR scan in the corre-
sponding period, we propose to select the one that can
represent the most signifcant wind velocity variation (i.e.,
the one with the greatest L2-norm) as the feature vector of
the whole time period (bag).

3.3.1. Bag Feature Vector. Let F � f1, f2, . . . , fd
  be the set

of feature vectors obtained in one time period, i.e., one bag.
Te feature vector of this bag is the one with the maximum
L2-norm: f � fj and ‖fj

‖2 ≥ ‖f i
‖2,∀i � 1, 2, . . . , d.

4. Numerical Results and Discussion

In this section, we will do several numerical experiments to
evaluate the efectiveness of the proposed feature vectors,
i.e., their separability for windshear and non-windshear
distinction. For comparison, the corresponding numerical
results of feature vector proposed by Huang et al. [17] are
also shown, which is also for windshear detection. First, we
will introduce the dataset that we used for numerical ex-
periments. Ten, we will calculate the distances of the
proposed feature vectors between the test windshear and
non-windshear cases and then plot the histogram of these
distances. Note that efective feature vectors that can be used
for machine learning-based windshear detection methods
should distinguish windshear cases and non-windshear
cases properly by distance (dissimilarity), namely, the dis-
tance between features of same kind of cases should be small
and the distance between the features of diferent kind of
cases should be large. Finally, we apply several clustering
methods to do data clustering based on the proposed feature
vectors. Compared with the supervised classifcation
methods, clustering methods only focus on the information
given by the proposed feature vectors of the wind velocity

data, which can adequately evaluate how good the proposed
feature vectors are.

4.1. Dataset. Te set of wind velocity data used in this study
was collected at HKIA in the frst three months from 2017 to
2019. All of them are preprocessed by the quality control
method currently using at HKIA [1] to flter out the noisy
velocities. Pilot reports are referred as the ground truth of
windshear occurrence. Te non-windshear cases are col-
lected on days where there was no windshear. According to
the pilot reports from 2017 to 2019, there were overall 369
windshear cases in the frst three months. Correspondingly,
369 non-windshear cases are randomly selected on the days
with no windshear under the suggestion from the Hong
Kong Observatory. For each selected time stamp, LiDAR
observational Doppler velocity data collected in 4minutes
with an elevation angle of 3° are used for feature vector
construction. Note that there would be 3–6 LiDAR PPI scans
collected in most of investigated periods, which makes it
adequate for us to capture the statistical indicators proposed
in this paper.

4.2. Histogram of Distances. In this part, we will show the
histograms of distances between the proposed feature vec-
tors. Tree frequently used distance assessments are con-
sidered here. Te equations of them are given as follows:

(i) Euclidean distance: ‖u − v‖2;
(ii) City block distance: ‖u − v‖1;
(iii) Bray-Curtis dissimilarity: i|ui − vi|/i|ui + vi|,

where u and v are vectors.
In each histogram, the corresponding distance values

between arbitrary two feature vectors of the investigated
cases are calculated and the frequencies of the corresponding
distance values are shown by the heights of blue bar (y-label).
Tere are three kinds of distance histograms, including the
distance histogram of feature vectors between two wind-
shear cases, the distance histogram of feature vectors be-
tween two non-windshear cases, and the distance histogram
between one windshear case and one non-windshear case.
For efective feature vectors, the frequencies of small dis-
tance values should be large in the histograms of the
distances between feature vectors of two windshear/non-
windshear and be small in the histograms of distances
between feature vectors of one windshear case and one
non-windshear case.

In the construction of indicator fp, there is a variable k

which indicates the number of top maximum variation
indicators we take into account. Here, we plot several dis-
tance histograms of this indicator with
k ∈ 3, 5, 8, 10, 12, 15, 20{ }. Here, due to limit space, we only
show the histogram with k � 12. Te histograms for other
cases are almost the same as it.

Figures 2–4 show the histograms of the distances cor-
responding to the feature vectors f1 � fp, f2 � f im, and f3 �

[fp, f im], respectively. Figure 5 shows the histogram of the
distances corresponding to the feature vector proposed in
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reference [17] fh. From these results, one can readily fnd
that most of distance values between feature vectors of two
windshear/non-windshear cases are small and most of
distance values between feature vectors of one windshear
case and one non-windshear case are large. For the feature
vector proposed in reference [17], this phenomenon is
relatively trivial except for the result of the Bray–Curtis
distance. Terefore, the proposed feature vectors are valid
for learning-based windshear detection.

4.3. Clustering Results. To further evaluate the efectiveness
of the proposed features, we apply four clustering methods
to them, including the k-means clustering method, hierar-
chical clustering method, DBSCAN clustering method with
the Euclidean distance, and DBSCAN clustering method
with the city block distance. If the proposed features can be
properly clustered into two categories where windshear
cases or non-windshear cases are the majority, we can
consider further using them in other learning-based
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Figure 2: Histograms of diferent distances for feature vector f1 � fp with k � 12, where x label denotes the distance between two feature
vectors and y label denotes the frequency of the corresponding distance values in all the calculated distances. First column: distance
histogram between windshear cases. Second column: distances between non-windshear cases. Tird column: distances between windshear
and non-windshear cases. Top row: histograms of the Euclidean distance. Second row: histograms of the city block distance. Bottom row:
histograms of the Bray–Curtis distance.
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windshear detection methods. Since we clearly know
whether a feature vector corresponds to a windshear case or
not, it is easy for us to calculate the accuracy of the clustering
methods and evaluate the efects of the proposed feature
vectors.

First, we need to determine the best value of k for the
physical property based indicator fp. Here, we apply the
clustering methods to feature vector f1 � fp obtained with
k ∈ 3, 5, 8, 10, 12, 15, 20{ } and calculate the average accuracy.
Figure 6 shows the average accuracy curve corresponding to
diferent k. From Figure 6, we can fnd that the best average
accuracy will be reached when k � 12. In the following
section, we will set k � 12 for the indicator fp.

Tables 1–3 show the accuracy of these clustering
methods for the proposed feature vectors. Te clustering
results for the feature vector proposed by Huang et al. are
shown in Table 4 for comparison. To further show the
clustering results intuitively, the scatter plots of them are
shown in Figures 7–10.

From these results, we can readily fnd the following: (i) the
physical property-based feature vector f1 has the best clustering
results for most clustering methods except the k-means
clustering method. (ii) Te clustering accuracy of image-based
feature vector f2 is greater than 91% for most clustering
methods, but the hierarchical clustering method does not work
well on this feature vector whose accuracy is only 74.12%. In
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Figure 3: Histograms of diferent distances for proposed feature vector f2 � f im, where x label denotes the distance between two feature
vectors and y label denotes the frequency of the corresponding distance values in all the calculated distances. First column: distances between
windshear cases. Second column: distances between non-windshear cases. Tird column: distances between windshear and non-windshear
cases. Top row: histograms of the Euclidean distance. Second row: histograms of the city block distance. Bottom row: histograms of the
Bray–Curtis distance.
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practice, the results of classifcation method based only on this
feature vector might be bad. (iii) For the combining feature
vector f3, the clustering accuracy are all greater than 90%which
is quite robust for diferent clustering methods. (iv) Compared
with the clustering results of feature vectors proposed by
Huang et al., our proposed feature vectors can get much higher
accuracy. (v) From the scattering plots of the clustering results,

we can fnd thatmost of the points can be clustered correctly by
the k-means clustering method since the densities of both blue
and green points are almost the same. Both feature vector f1
and the combine feature vector f3 perform good in most of
clustering experiments. Terefore, we can consider to apply
feature vector f1 and the combined feature vector f3 in the
learning-based windshear detection methods in the future.
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Figure 4: Histograms of diferent distances for proposed feature vector f3 � [fp, f im], where x label denotes the distance between two feature
vectors and y label denotes the frequency of the corresponding distance values in all the calculated distances. First column: distances between
windshear cases. Second column: distances between non-windshear cases. Tird column: distances between windshear and non-windshear
cases. Top row: histograms of the Euclidean distance. Second row: histograms of the city block distance. Bottom row: histograms of the
Bray–Curtis distance.
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Figure 5: Histograms of diferent distances for the indicator proposed by Huang et al. fh, where x-label denotes the distance between two
feature vectors, and y-label denotes the frequency of the corresponding distance values in all the calculated distances. First column: distances
between windshear cases. Second column: distances between non-windshear cases. Tird column: distances between windshear and non-
windshear cases. Top row: histograms of the Euclidean distance. Second row: histograms of the city block distance. Bottom row: histograms
of the Bray–Curtis distance.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
n

1.000

0.975

0.950

0.925

0.900

0.875

0.850

0.825

0.800

A
cc
ur
ac
y

Figure 6: Te average accuracy curve for feature vector f1 with k ∈ 3, 5, 8, 10, 12, 15, 20{ }.

Advances in Meteorology 9



Table 1: Clustering results of diferent methods for feature vector f1 � fp(k � 12).

Clustering method Clustering result Ground truth windshear Ground truth non-windshear Accuracy (%)

K-means method Windshear 292 3 89.16Non-windshear 77 366

Hierarchical clustering Windshear 339 17 93.63Non-windshear 30 352

DBSCAN clustering (Euclidean distance) Windshear 345 27 93.09Non-windshear 24 342

DBSCAN clustering (city block distance) Windshear 349 29 93.36Non-windshear 20 340

Table 2: Clustering results of diferent methods for feature vector f2 � f im.

Clustering method Clustering result Ground truth windshear Ground truth non-windshear Accuracy (%)

K-means method Windshear 313 9 91.19Non-windshear 56 360

Hierarchical clustering Windshear 190 1 74.12Non-windshear 179 368

DBSCAN clustering (Euclidean distance) Windshear 349 40 91.87Non-windshear 20 329

DBSCAN clustering (city block distance) Windshear 351 44 91.60Non-windshear 18 325

Table 3: Clustering results of diferent methods for feature vector f3 � [fp, f im].

Clustering method Clustering result Ground truth windshear Ground truth non-windshear Accuracy (%)

K-means method Windshear 300 3 90.24Non-windshear 69 366

Hierarchical clustering Windshear 339 19 93.36Non-windshear 30 350

DBSCAN clustering (Euclidean Distance) Windshear 349 42 91.60Non-windshear 20 327

DBSCAN clustering (city block distance) Windshear 350 32 93.09Non-windshear 19 337

Table 4: Clustering results of diferent methods for feature vector proposed by Huang et al.

Clustering method Clustering result Ground truth windshear Ground truth non-windshear Accuracy (%)

K-means method Windshear 227 1 80.62Non-windshear 142 368

Hierarchical clustering Windshear 76 0 60.30Non-windshear 293 369

DBSCAN clustering (Euclidean distance) Windshear 316 24 89.57Non-windshear 53 345

DBSCAN clustering (city block distance) Windshear 312 16 90.11Non-windshear 57 353
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Results of Hierarchical Clustering (Euclidean distance)
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Figure 8: Continued.
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Figure 7: Clustering results of the k-means clustering method. (a) Feature vector f1, (b) feature vector f2, (c) feature vector f3, and (d) feature
vector fh.
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Results of Hierarchical Clustering (Euclidean distance)
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Figure 8: Clustering results of the hierarchical clustering method. (a) Feature vector f1, (b) feature vector f2, (c) feature vector f3, and (d)
feature vector fh.
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Figure 9: Clustering results of DBSCAN clustering (Euclidean distance). (a) Feature vector f1, (b) feature vector f2, (c) feature vector f3, and
(d) feature vector fh.
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5. Conclusion

In this paper, we propose two statistical indicators of
windshear from the LiDAR PPI scan observational wind
velocity data for windshear features construction. Both in-
dicators based on the physical properties of windshear and
the image processing method are researched in this paper.
To evaluate the efectiveness of the proposed indicators, we
construct 3 feature vectors based on them. Diferent from the
feature vectors used in previous learning-based windshear
detection methods, which only takes the wind profles ob-
tained at the nearest time spot to the windshear reported
timestamp, we consider the wind profles collected within
4minutes of the reported timestamp. Based upon the idea of
multiple instance learning, a feature vector of the scans in
one bag (time period) is constructed. Te distance histo-
grams for three frequently used distances are given to
preliminarily validate the separability induced by the pro-
posed feature vectors for windshear and non-windshear
classifcation. Ten, we apply four clustering methods to
further evaluate the efects of the proposed feature vectors by
the accuracy of these methods and the corresponding scatter
plots. Te corresponding numerical results of the feature

vector proposed by Huang et al. are also shown in this paper
for comparison. Numerical results show the following: (i) by
the histograms of the distances between the test cases, we can
readily fnd that most of distance values between feature
vectors of two windshear/non-windshear cases are small and
most of distance values between feature vectors of one
windshear case and one non-windshear case are large, which
indicate that one can distinguish windshear and non-
windshear properly by distances of the proposed feature
vectors. (ii) Feature vector based on the physical property
performs better than other feature vectors for most clus-
tering methods. (iii) One can get pretty high clustering
accuracy by using the feature vector extracted by the image
processing method except the hierarchical clustering
method. (iv) Te combined feature vector is quite stable to
diferent clustering methods whose accuracy are all greater
than 90%. (v) Our proposed feature vectors perform better
than the feature vectors proposed by Huang et al. [17]. In the
future, one can consider to use the proposed physical
property based feature vector or the combined feature vector
in other learning-based windshear and non-windshear
classifcation to achieve better detection results. Moreover,
we can also explore using some image processing methods
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Figure 10: Clustering results of DBSCAN clustering (city block distance). (a) Feature vector f1, (b) feature vector f2, (c) feature vector f3, and
(d) feature vector fh.
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based on deep learning to extract the feature vector of
windshear by the wind velocity LiDAR scans.
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