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A first inversion of the backscatter profile and extinction-to-backscatter ratio from pulsed elastic-
backscatter lidar returns is treated by means of an extended Kalman filter ~EKF!. The EKF approach
enables one to overcome the intrinsic limitations of standard straightforward nonmemory procedures
such as the slope method, exponential curve fitting, and the backward inversion algorithm. Whereas
those procedures are inherently not adaptable because independent inversions are performed for each
return signal and neither the statistics of the signals nor a priori uncertainties ~e.g., boundary calibra-
tions! are taken into account, in the case of the Kalman filter the filter updates itself because it is
weighted by the imbalance between the a priori estimates of the optical parameters ~i.e., past inversions!

and the new estimates based on a minimum-variance criterion, as long as there are different lidar
returns. Calibration errors and initialization uncertainties can be assimilated also. The study begins
with the formulation of the inversion problem and an appropriate atmospheric stochastic model. Based
on extensive simulation and realistic conditions, it is shown that the EKF approach enables one to
retrieve the optical parameters as time-range-dependent functions and hence to track the atmospheric
evolution; the performance of this approach is limited only by the quality and availability of the a priori

information and the accuracy of the atmospheric model used. The study ends with an encouraging
practical inversion of a live scene measured at the Nd:YAG elastic-backscatter lidar station at our
premises at the Polytechnic University of Catalonia, Barcelona. © 1999 Optical Society of America

OCIS codes: 010.0010, 010.1290, 010.3640.

1. Introduction

In an atmospheric lidar, the emission of a short
laser pulse is followed by the reception of some
radiation scattered from atmospheric constituents
such as molecules, aerosols, and clouds. The inter-
action of the incident radiation with these constit-
uents changes the intensity, the wavelength, or
both, depending on the strength of this optical in-
teraction and on the concentration of the interact-
ing species. Consequently it is possible to retrieve
information about the physical state of the atmo-
sphere along the exploration beam path. In this

study we consider the particular case for which
there is no wavelength shift in reception, and we
focus on the inversion of elastic-backscatter lidar
returns under the simplifying assumptions that the
scattering processes are dominated by aerosols,
that the spectral shape and composition of the scat-
tering aerosols are spatially invariant, and that
there are no wind components along the line of sight
and under the approximation that there is no mul-
tiplicative noise ~transmitter intensity fluctuation,
speckle, or turbulence!.

The inversion of atmospheric optical parameters,1

namely, extinction and backscatter, based on pulsed
elastic-backscatter lidars ~i.e., with no wavelength
shift in reception! has usually been treated by classic
procedures such as the slope method,2 exponential
curve fitting,3 and Klett’s method.4 These proce-
dures all depart from the single-scattering elastic-
backscatter lidar equation5

P~R! 5
A

R2 b~R!expF22 *
0

R

a~r!drG , (1)
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where P~R! is the range-received power ~W!, b~R! is
the range-dependent volume backscatter coefficient
of the atmosphere ~m21 sr21!, a~R! is the range-
dependent extinction coefficient ~m21!, R is the range
~m!, and A is the system constant ~W m3!.

For the slope method and the least-squares and
exponential-curve fitting algorithms we use the as-
sumption of a homogeneous atmosphere to retrieve
constant values ~a, b! over the whole inversion range
as estimates of the sought-after functions a~R! and
b~R!. In a different category, the inversion of the
range-dependent function a~R! in a turbid or moder-
ately turbid inhomogeneous atmosphere is well
solved by Klett’s backward stable solution.4,6 This
algorithm needs a boundary calibration at the far end
of the inversion range interval in terms of Pm 5
P~Rmax! and am 5 a~Rmax!,7 and we choose g in the
backscatter-to-extinction relationship:

b~R! 5 B0a~R!g, (2)

where B0 is the backscatter-to-extinction ratio and g
is a fitting coefficient g ~0.67 , g , 1!.

The standard power law approach of Eq. ~2! with
B0 and k constants has been shown by experiment to
be reasonably good, so great precision in the func-
tional description of this relation is not required for
useful results to be obtained.4 Physically speaking,
however, the most accurate approach assumes k 5 1,
a variable backscatter-to-extinction ratio B~R!,6 and
even a distinction between aerosol and molecular ra-
tios, Ba~R! and Bm, respectively.6,8 In practice, it is
difficult to determine B~R! a priori as a function of the
range because this value depends on physical prop-
erties of the scatters. We assume the simplifying
hypotheses that B~R! is constant along the inversion
range of interest, that B~R! 5 B0 ~if necessary, we can
achieve this equality by partitioning the inversion
interval into appropriate subintervals with similar
optical characteristics!, that k 5 1 as mentioned, and
that gaseous absorption effects are negligible,9 as is
multiple scattering ~we note, however, that the last-
named assumption may well not be true in the IR,
where molecular absorption tends to dominate!. In
other words, these assumptions are equivalent to our
previous assumptions that fluctuations in the back-
scatter figures from aerosols are due only to changes
in the aerosols number density8 and that the spectral
shape and composition of the scattering aerosols are
spatially invariant. Here we also define the
extinction-to-backscatter ratio C 5 1yB0 for mathe-
matical convenience, notwithstanding the customary
notation introduced in Eq. ~2! by Klett.6

In spite of the fact that Klett’s algorithm is sig-
nificantly superior to the slope and that exponen-
tial-curve-fitting algorithms for the homogeneity
approximation are no longer assumed, the accuracy
of the inverted profile a~R! is limited by a set of user
calibrations. In particular, the inverted extinction
a~R! is nothing else but a representative of the family
a~R, g, am! linked to the calibration pair ~g, am!,
which is thought to be close to unknown atmospheric

values. In other words, the inversion of a range-
dependent extinction profile from the return power is
a many-to-one inversion problem ~see App. B of Ref.
10!, which can be solved only with the help of appro-
priate a priori information ~e.g., calibrations along
the observation path, physical constraints!.

Furthermore, a common denominator in all these
inversion methods is their lack of memory. Thus,
for each power return received, a new inversion,
which is completely independent of past ones, is per-
formed ~here we note that the meaning of “power
return” or “power observable to the filter” must be
understood as the result of averaging a number of
different pulse returns according to some estimation
of temporal correlation length of the atmosphere, i.e.,
the time interval for which one can talk of stationar-
ity given a degradation criterion in the expected pulse
integration gain!. Yet one of the things that distin-
guishes the Kalman filter11–13 from nonmemory esti-
mators is the convenient way by which it accounts for
any prior knowledge or inversions by means of a
recursive process. As long as there are different
incoming powers the filter updates itself weighted
by the imbalance between the a priori estimates
of the optical parameters ~i.e., past inversions!
and the new ones. As a result, the new estimation of
the optical parameters, or the project-ahead step ~a
posteriori estimate!, is improved based on a statisti-
cal minimum-variance criterion.

It is important to stress that the Kalman filter
offers key advantages, such as averaging ~so-called
pulse integration!, compared with classic approaches
and that these advantages refer not only to the way in
which observable data ~optical power returns! are
treated but also to the way in which the sought-after
optical parameters are dealt with. Thus, from the
point of view of the incoming data to the filter, the
filter is able to combine the observable power returns
in a better way than simple averaging, provided that
a priori information about the observable noise, such
as its covariance matrix Rk, is available to the filter.
Stationarity is no longer necessary either, because it
is perfectly possible to update the noise covariance
matrix at each succeeding step tk, for example by
cancellation of synchronized flash-lamp noise or
other sources of nonstationary noise, based on simul-
taneous noise characterizations at each shot. This
is not true for classic pulse averaging, for which sta-
tionarity is indeed a difficult requirement. There-
fore, one must adjust the integration time of the
system according to the temporal correlation length
of the scene or an estimate of it. Thus, for example,
a scene with moving storm clouds may well have a
correlation length of a few seconds, so longer integra-
tion intervals will probably lead to severe deteriora-
tion of the signal component itself.

From the point of view of estimating the optical
parameters or the state vector xk, one can tell the
filter to improve its estimation guided by a suitable
noise projection model and all the a priori informa-
tion available from the user, namely, the a priori
error covariance matrix for its initial guess x0 and the
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state-noise covariance matrix Qk ~discussed below!,
which refers to the driving noise or engine of the
projection model. ~In Appendix A the reader will
find a more detailed explanation of the vocabulary
just introduced.! It is this convenient way of assim-
ilating a priori information that distinguishes the
Kalman filter from any other classic technique such
as data averaging, data trimming, and data fitting.
Of course, if no a priori knowledge is available, the
advantage of the filter is lost and its estimates will
certainly coincide with those of the classic determin-
istic least-squares estimator.

Rye and Hardesty14 and Lainiotis et al.15 have
found applications of the Kalman filter for estimation
of the return power for incoherent backscatter lidar
with multiplicative noise.16 Here we introduce an
application of the filter to the solution of the inverse
problem of joint estimation of the backscatter profile
and the extinction-to-backscatter ratio from the re-
turn power in an elastic-backscatter lidar. Theoret-
ical development is described in Sections 2 and 3,
simulation results in Section 4, and first inversion of
a live scene in Section 5.

2. Formulation of the Problem

~At this point the reader is advised to refer to Appen-
dix A, which introduces both linear and nonlinear
filters and notation used. See also Brown and
Hwang13 for further insight.!

In Section 1 we outlined the key advantages of the
extended Kalman filter ~EKF! compared with non-
memory-inversion algorithms. However, we shall
see that its estimation trajectory depends on the ob-
servables or measurements at each sample run, so
there is not a precomputed trajectory but a linearized
one @see Eqs. ~A20! and ~A21! of Appendix A#. As a
result, the main disadvantage of the EKF is that it is
risky and stability becomes of concern, particularly
when there are large initial uncertainties. For this
reason, a design goal is to find a good choice of
system-state variables that permits both reasonable
modeling of the physical situation under consider-
ation and rough performance of the filter even with
poor initial guesses. Stability analysis of the filter is
quite involved, if not impossible, for most practical
situations; nearly always, one must resort to experi-
mentation with different designs.

In this section we describe a fairly stable filter that
permits simultaneous derivation of the backscatter
profile and of the extinction-to-backscatter ratio from
range-corrected power returns. As a priori informa-
tion it is assumed that this ratio is spatially and
temporally constant over the inversion range of in-
terest along the lines discussed in Section 1. This
ensures validity of the approximation g 5 1 in Eq. ~2!.
Thus we wish to find the functions b~R, tk! and C that,
under a minimum-mean-square-error criterion, best
fit the observable power P~R, tk! at every discrete
time tk. The term “mean” refers here to the ensem-
ble average over time tk.

A. State Vector

First let us define fs as the acquisition sampling rate
of the system. Considering the two-way path of the
lidar signal, the optical power time samples Pi @Eq.
~1!# correspond to the acquisition system’s spatial
sampling period

DR 5 cy2fs, (3)

and the spatial sampling points over the inversion
interval become

Ri 5 Rmin 1 ~i 2 1!DR, i 5 1 . . . N, (4)

where Rmin is some predetermined minimum range of
the system ~for example, the minimum range of full
overlap between the laser and the field of view of the
receiving optics or some other inversion starting
point!. Equation ~4! defines the observation cells of
the system.

The state vector xk to be estimated at discrete time
tk is a decimated discrete-time version of the back-
scatter function b~R! formed by NyM inversion cells
uniformly distributed along the whole lidar range
plus one component that models the extinction-to-
backscatter ratio C 5 1yB0 @after Eq. ~2!#. It turns
out that

xk ; ~b1 b2 . . . bNyM C!T, (5)

where the backscatter at the ith inversion cell can be
expressed as

bi 5 b~Ri!,

Ri 5 Rmin 1 ~i 2 1!MDR,

i 5 1 . . . ~NyM!, (6)

where M is the decimation ratio. This means that,
whereas the equivalent sampling period of the optical
parameters in the filter’s model is MDR, the sampling
period of the observable power returns is DR. As a
result, we have more observables ~N power samples
or observation cells! than variables ~NyM backscatter
variables or inversion cells plus constant C! to esti-
mate. This problem yields to an overdetermined
vector problem with enhanced observability.13,17

Note, however, that the true atmospheric spacing
DR9 is differential in nature and that discretization
involves the simplification DR9 5 DR in the optical
atmospheric profile, so such modeling errors are ne-
glected.

B. Measurement Equation

The measurement model equation relates the obser-
vation vector zk to the state vector xk introduced
above as @see also Eqs. ~A2! and ~A19! of Appendix A#

zk 5 hk~xk! 1 nk, (7)

where hk is a nonlinear function of the state xk and vk

is zero-mean white Gaussian measurement noise
with covariance matrix

Rk 5 E@nknk
T#. (8)
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In the lidar inversion problem the measurement
function hk~xk! is a vector function whose ith compo-
nent is defined as the R2-corrected power returns of
the ith cell:

Fi 5 R2P~Ri!, (9)

after the lidar equation @Eq. ~1!#. As a result, we can
identify hk~xk! in Eq. ~7! as Fk~xk!. Observation vec-
tor zk is formed by time samples of the measured
range-corrected power return, each of which corre-
sponds to an observation cell along the exploration
path, so at each time tk, zk represents a measurement
realization. Hence

zk ; @F1~xk! F2~xk!—· · ·—FN~xk!#
T

1 nk. (10)

By using F~R! instead of P~R! we reduce the dy-
namic margin of zk and, consequently, the numerical
errors as we cycle through the Kalman loop @see Eqs.
~A30!–~A34! in Appendix A#. At the far ranges, how-
ever, amplification of quantization noise generated
during the analog-to-digital conversion might become
significant and must be accounted for in a description
of the statistics of the observation noise.

If a rectangular approximation is used in comput-
ing the transmittance term in Eq. ~1!, one can write

F1 5 Ab1 exp~22Cb1 Rmin!, (11)

FM 5 Ab1 exp$22Cb1@Rmin

1 ~M 2 1!DR#%, (12)

FM11 5 Ab2 exp~22C$b1@Rmin

1 ~M 2 1!DR# 1 b2DR%!, (13)

FN 5 AbNyM exp(22CHb1@Rmin

1 ~M 2 1!DR# 1 (
i52

NyM

biMDRJ) . (14)

Equations ~11!–~14! relate measurement vector zk

presented to the filter to the a priori estimate of the
state vector x̂k

2, and hence we can linearize hk about
x̂k

2 to build the N-by-NyM 1 1 observation matrix Hk

@see Eq. ~A25! of Appendix A#. Its elements can be
split into

Hij
~1!

5
]Fi

]bj

U
x5x̂k

2

, Hi
~2!

5
]Fi

]C
U

x5x̂k
2

, (15)

where Hk 5 @Hk
~1!Hk

~2!# and Hk
~1! and Hk

~2! are N-by-
NyM and N-by-1 submatrices that represent the vec-
tor measurement equations for the backscatter and
the extinction-to-backscatter ratios, respectively. It
follows that

The subscript k is a reminder that, at each time tk,
these matrices must be recomputed at the a priori
estimate x̂k

2 such that the filter updates the trajec-
tory that is used for linearization at each recursive
step. At first sight, this would seem to make sense
because, after all, there is no need to use the old
trajectory when a better one is available. In the

H1 5 3
S22CRmin 1

1

x1
DF1 0 0—· · ·—0

F22C~Rmin 1 DR! 1
1

x1
GF2 0 0—· · ·—0

· · · · · · · · ·—· · ·—· · ·

H22C@Rmin 1 ~M 2 1!DR# 1
1

x1
JFM 0 0—· · ·—0

22C@Rmin 1 ~M 2 1!DR#FM11 S22CDR 1
1

x2
DFM11 0—· · ·—0

· · · · · · · · ·—· · ·—· · ·

22C@Rmin 1 ~M 2 1!DR#FN 22CMDRFN 22CMDRFN—· · ·—S22CMDR 1
1

xNyM
DFN

4
N3NyM

,

(16)

H2 5 3
22Rminx1 F1

22~Rmin 1 DR!x1 F2·
·
·

22@Rmin 1 ~M 2 1!DR#x1 FM

22$@Rmin 1 ~M 2 1!DR#x1 1 DRx2%FM11·
·
·

22$@Rmin 1 ~M 2 1!DR#x1 1 MDRx2 1 · · · 1 MDRxNyM21 1 MDRxNyM%FN

4 . (17)
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words of Brown and Hwang,13 the flaw in this argu-
ment is that the “better trajectory” is better only in a
statistical sense. There may be a chance that the
updated trajectory is poorer that the nominal trajec-
tory. In that event the estimates will poorer and in
turn will lead to further errors in the trajectory, lead-
ing to eventual divergence of the filter. As we had
advanced, it must be cautioned a divergence of the
filter is a potential risk that is common to all EKF’s,
especially in situations when the initial uncertainties
and measurement errors are large.

Inspection of Eqs. ~16! and ~17! ~see the first M rows
of each matrix! reveals some interesting points that
have an effect on the filter performance:

In Eq. ~16!, which relates the observables to the
filter and the backscatter component, the weight that
each backscatter component cell has in the measure-
ment equation increases linearly with DR along each
observation cell that belongs to the same block of M
cells ~we read observation cells by rows!. Eventually
that weight becomes basically proportional to
22C@Rmin 1 ~M 2 1!DR# for the first inversion cell
and to 22CMDR for the others ~we read inversion
cells by columns!. As a result, it follows that, if Rmin

is large compared with MDR, the weights will tend to
be unbalanced in favor of the first cell and the tra-
jectory of the filter will be dominated completely by
the estimation of this cell. Here a trade-off arises for
parameter M: If DR ,, Rmin, as is usually the case,
increasing M such that MDRyRmin ' 1 will cause all
inversion cells to have similar weights, and therefore
all those cells will contribute to the estimations of the
filter ~note that the contribution depends also on the
choice of the covariance matrices!. This situation
also conveys the extra advantage of reducing the com-
putational load because the number of inversion cells
available is lower. However, increasing M will al-
ways degrade the atmospheric model presented to
the filter because increasingly larger homogeneous
atmospheric intervals will be unrealistically as-
sumed. Likewise, if we compare the EKF formula-
tion with the classic homogeneous exponential curve
fitting, we see that the latter works with M equal to
the length of the inversion interval, which consists of
a single inversion cell. All things considered, this
trade-off is a particular choice for each inversion
scene at hand.

Equation ~17!, which relates the observables to the
filter and the extinction-to-backscatter ratio compo-
nent, reveals that state variable C will be sensitive to
power-return contributions from all the observable
cells along the exploration path, as evidenced by
weights of the form @Rmin 1 iDR# along all the matrix
rows. Qualitatively, this is a good point in favor of
the robustness or stability of the filter because the
trajectory of C is conditioned on the fluctuation of all
power observables Fi rather than on the fluctuation of
a few. The result is a smoothing effect on the tra-
jectory.

Observation noise nk is modeled as range-
dependent stationary electronic thermal noise ~i.e.,

Gaussian additive noise! whose variance can be writ-
ten as3

sr~R!2
5 a@P~R! 1 Pback# 1 b, (18)

where P~R! is the range-return power defined in Eq.
~1!, Pback is the background power from any other
interfering source ~for instance, the Sun!, and a and
b are noise constants that depend only on specific
parameters of the receiving system. The first term
accounts for the contributions of the signal-induced
shot noise to the total noise, and the second one
merges into variable b, which includes contributions
from both dark-current shot noise and thermal noise.

Therefore the observable-noise covariance matrix
Rk can be expressed as the diagonal matrix

Rk 5 E@nknk
T# 5 Fsr~R1!

2R1
4 . . . 0

·
·
·

· · ·
·
·
·

0 . . . sr~RN!2RN
4G . (19)

If other measurement noise sources ~e.g., R2-
amplified quantization noise! are present, one can
increase pertinent terms along the major diagonal of
Rk to accommodate such an extra variance. Off-
diagonal terms make room for nonwhite measure-
ment noise sources. We can address nonstationary
noise by recomputing Rk at each succeeding step of
the filter, and colored noise ~such as synchronized
flash-lamp interference! can be modeled by use also of
elements off the main diagonal of Rk ~see also Ref. 13
for further insight!.

3. Atmospheric Model for the Extended Kalman Filter

The dynamics of both the optical backscatter and the
extinction-to-backscatter ratio are difficult to define
in terms of Mie’s scattering theory18 and its underly-
ing physical variables. In addition, this is a many-
to-one problem because there is not a unique relation
between atmospheric backscatter and extinction.19,20

To overcome this difficulty a more convenient alter-
native is to try to model the macroscopic effects that
these variables have on the optical parameters of
interest. This is done in terms of the state-vector
recursive model @see also Eqs. ~A1! and ~A18! of Ap-
pendix A#:

xk11 5 Fkxk 1 wk, Fk 5 FFb
~NyM3NyM! 0

0 FC
~131!G , (20)

where Fk is the transition matrix from time tk to time
tk11, xk is the state vector introduced in Section 2, and
wk is the state-noise vector with covariance matrix

Qk 5 E@wk wk
T#. (21)

Equations ~20! and ~21! combine all the key infor-
mation that the filter has about the atmospheric
model, as sketched in Fig. 1. In the b model ~top! the
backscatter of each inversion cell is modeled as a
stochastic process that has both temporal and spatial
correlation. The state-vector noise process wk ~k 5
1 . . . NyM! is formed by spatially correlated compo-
nents at the output of linear system A, which is, in
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turn, driven by an array of white-noise uncorrelated
processes. In the scalar C model ~bottom!, C is mod-
eled as a random-walk model21,22 ~FC 5 1! but with a
low variance for the driving noise component WNyM11

~sC
2 ' 1026!. This random-walk model is preferable

to a random-constant model ~sC
2 5 0! because in the

real world few things remain absolutely constant
with time ~for example, instrument biases, even
though they are called biases, have a way of slowly
changing with time, and recalibrations are necessary
from time to time!. A remedy for this problem is
always to insert some driving noise into the state
variable, even though doing so may cause some de-
gree of suboptimality.

Finally, the atmospheric model assumes that there
are no wind components along the line of sight, so the
temporal and spatial correlation processes become
independent.

A. Temporal Correlation

Temporal correlation is one of the most attractive
advantages of the EKF formulation compared with
nonmemory inversion algorithms. Temporal corre-
lation comes from telling the filter that its projection
steps can be improved based on the fact that the
atmosphere usually has long correlation times and
that, therefore, swift changes in any optical parame-
ter are not possible. Temporal correlation is
achieved by modeling of each component of state vec-
tor xk ~with k the discrete time! as a Gauss–Markov
process.13 To simplify the notation, let us next re-
define the ith component of state vector xk @i.e., the
backscatter component bi~tk!# as the scalar process
yk, so yk 5 xi,k ~here recall that subscript k is a re-
minder of discrete time tk and that subscript i stands
for the ith component, i 5 1 . . . NyM!. For the time
being, let us concentrate our attention on the scalar
Gauss–Markov process yk.

The discrete-time equation of yk takes the form of

an autoregressive moving-average discrete-time
equation:

yk11 5 exp~21yLc!yk 1 wk, (22)

where yk and wk are Markovian and white sequences,
respectively, and Lc is the temporal correlation
length ~in sample units!. Spectrally, this is equiva-
lent to saying that a Gauss–Markov process consists
basically of low-pass-filtered white noise, so the 3-dB
cutoff frequency of the coloring infinite impulsion re-
sponse ~IIR! filter equals 1yLc ~see the IIR boxes in
the block diagram of Fig. 1!. In the limit when Lc3

`, a random-walk model13 is encountered. Based on
Eqs. ~19! and ~22!, the transition matrices for the
backscatter and C subvectors of xk become

Fb
~NyM3NyM!

5 exp~21yLc!I
~NyM3NyM!, FC

~131!
5 1. (23)

Note that Fk is constant over time tk and that Lc is
the same for all cells along the lidar exploration path.

In practice, Gauss–Markov processes are useful for
telling the filter how to model time drifts in the mag-
nitude of the atmospheric backscatter from driving
Gaussian noise. For this reason it would be advan-
tageous for us to link the Gaussian noise standard
deviation sw with that of the Markovian noise, sm.
After Eqs. ~23! the two quantities can be related by

sw 5 sm@1 2 exp~22yLc!#
1y2. (24)

Now we can return to the vector-state model of Eq.
~20! and include again the subscript i 5 1 . . . NyM to
refer to each component of the state vector. Figure 1
enables us to conclude that at the input of the IIR
time correlators we have a set of NyM white-noise
processes with standard deviation sw,i and at their
output a set of NyM Gauss–Markov processes ~rep-
resentative of the backscatter fluctuations! with stan-
dard deviation sm,i.

For the ith backscatter component it is assumed
that the amplitude of the fluctuation is some percent-
age p of the backscatter magnitude itself. In addi-
tion, it is well known that, given sm,i, more than 95%
of the Markovian amplitudes are distributed between
62.5sm,i. Thus

sm,i 5
p

2.5
bi, (25)

and the driving white-noise strength ~at the input of
the ith time correlator! sw,i needed to cause a p-per-1
change in the amplitude of bi over a correlation Lc

becomes @from Eq. ~24!#

swi
3 sbi

5
p

2.5
biF1 2 expS2

2

Lc
DG1y2

,

i 5 1 . . . ~NyM!. (26)

In what follows, p will be referred to as the strength
parameter and sw,i as sbi

, as indicated above.

Fig. 1. Time–space atmospheric correlation model for the EKF.
Both backscatter and extinction-to-backscatter ratio models, b

~xi,k, i 5 1 . . . NyM components! and C ~xNyM11,k!, are shown.
The former is a Gauss–Markov vector process; the latter, a scalar
random walk. For the backscatter components the spatial corre-
lator is implemented by linear system A; the time correlators, by
an array of digital filters ~IIR1–IIRNyM!. The system is driven by
an array of NyM 1 1 white-noise uncorrelated components. wi is
the same array but with NyM correlated components for the b

model plus another one uncorrelated for the C model ~nNyM11!.
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B. Spatial Correlation

Nonmemory algorithms, such as those introduced in
Section 1, assume tight analytical correlation rela-
tions such as homogeneity in the case of the slope and
exponential-curve-fitting algorithms or the power
law of Eq. ~2! in the case of Klett’s method. Here we
supersede these analytical constraints with loose sto-
chastic ones based on the spatial correlation graph of
Fig. 2 ~this assumes that the pulse duration of the
emitting laser source is so short that successive re-
turns are correlated only by the atmospheric model!.
The underlying philosophy is that from a macroscopic
point of view it seems sensible to guess that fluctua-
tions in the backscatter component of some cell will
certainly induce similar ones in its neighbor cells and
related extinctions but with decaying intensity. At
this stage it is assumed that instantaneous percent
variations in both extinction and backscatter fluctu-
ations, εa and εb, respectively, are quite similar ~εa '
εb!, so they cancel out when their ratio is computed.
If, as discussed in Section 1, the aerosol composition
is space invariant, one can assume that C is approx-
imately the same for all cells along the inversion
range ~if this is not so, the inversion interval must be
partitioned accordingly!. As a result, the extinction-
to-backscatter ratio C becomes uncorrelated with the
backscatter set, so the following state-vector covari-
ance matrix yields

Cw 5 FCb 0
0 CC

G , (27)

where CC 5 sc
2 and sc is a low value that models the

random constant C to ensure that Cw is a positive-
definite matrix. Cb is the backscatter covariance
matrix, constructed as depicted in Fig. 2 as

Cb 5 3
sb1

2 rsb1
sb2

—· · ·—rn21sb1
sbn

· · · sb2

2—· · ·—rn22sb2
sbn

· · · · · ·—
···—

·
·
·

· · · · · ·—· · ·—sbn

2
4 , (28)

where r is the correlation coefficient between one cell
and the next one along the beam path and si has
already been defined in relation ~26!. On the condi-
tion that uru , 1 and using standard algebraic tech-
niques, we can show that Eq. ~28! does represent a
covariance matrix.

Finally, with the simplification that there are no
wind components along the line of sight, temporal
and spatial correlation processes become indepen-
dent and the filter’s state-vector covariance matrix

for the atmospheric model can be computed from ex-
pressions ~26!–~28! as

Qk 5 FQb 0
0 QC

G , Qb 5
Cb

1 2 exp~22yLc!
. (29)

It emerges that Qk is the same as Cw except for a
scaling factor that we can skip by redefining an equiv-
alent intensity parameter p9.

The fact that the standard deviation of the driving
noise process for bi, sbi

in relation ~26!, is propor-
tional to bi suggests a recursive update for Qk. This
solution is, however, ill advised when we take into
account that the EKF is a linearized filter. Unless
the user’s initial guesses are quite close to the solu-
tion and the model parameters for Qk ~particularly r
and p! are well matched, which is not often the case,
experimental results have corroborated that a static
Qk approach ~i.e., no updating! yields the best results
for nonwindy atmospheres ~equivalently, scenes with
low backscatter drift!. Even though it is far beyond
the scope of this paper, for windy atmospheres recur-
sive updating offers a solution that has yet to be
investigated. Thus, in instances when radial wind
strongly correlates both space and time fluctuations
along the line of sight, one might consider a variant
Qk such that observation cells along the beam path
become progressively affected by different correlation
links as time goes on. In addition, boosting ele-
ments off the main diagonal would tell the filter that
there is a significant increase in the correlation
among neighbor cells.

Usually the state-noise covariance matrix of the
EKF Qk is the most difficult input to assess because
its atmospheric counterpart Qk,a ~the subscript a
stands for atmospheric! is unknown ~the problem of
finding good models for Qk has sometimes been ad-
dressed from a partitioned approach.15 These large
model uncertainties justify that the initial a priori
error covariance matrix be much larger than the
state-vector covariance, so

P0
2

5 mQ0, m $ 1. (30)

4. Simulation Results

Now we present two simulation sets to test EKF per-
formance with different modeling errors and visibil-
ities. Synthetic atmospheric scenes were generated
by means of the stochastic simulator of Fig. 1 and the
input of a set of atmospheric model parameters Ca

@1yB0 in Eq. ~2!#, Lc,a @Eq. ~22!#, pa @relation ~26!#, and
ra @Eq. ~28! and Fig. 2# that are different from those
given to the EKF ~C, Lc, p, and r!, so Qk,a Þ Qk. In
particular, we set Ca 5 25 sr, C 5 22.5 sr ~90% of Ca!,
Lc,a 5 10 samples, Lc 5 5 samples, pa 5 0.4, p 5 0.5,
ra 5 0.6, and r 5 0.3. This choice of values is based
on comparisons of time–space plots of synthesized
power-return signals with nonwindy time–space real
observations. Typically it has been found that ra

lies in the range 0.3–0.7 and that values close to
unity are ill advised because they yield stiff spatial
profiles that are too correlated, thus making it diffi-

Fig. 2. Spatial correlation.
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cult to accommodate heterogeneities along the explo-
ration path. At this simulation stage, p and Lc have
turned out to be the most critical parameters. Fi-
nally, we use eigenvalue decomposition23 to compute
the linear correlator ~A in Fig. 1!, which is driven by
white-noise uncorrelated sequences @n1 . . . nNyM, nNy
M11#.

Both simulation sets have worked with a lidar ob-
servation range from Rmin 5 200 m to Rmax 5 5 km
and a spatial resolution DR 5 123.1 m, which trans-
lates into N 5 40 observation cells. Return-power
and noise parameters have also been simulated ac-
cording to typical system parameters ~A 5 2.35 3
1023 W km23 in Eq. ~1!; a 5 1.8 3 10210 W, b 5 5 3
10218 W2 and Pback 5 2 nW in Eq. ~18!# of the elastic-
backscatter lidar of the Polytechnic University of
Catalonia. The atmospheric extinction-to-
backscatter ratio and the mean value of the synthe-
sized hump-shaped inhomogeneous backscatter
profile were computed from the pairs ~a 5 0.1 km21,
b 5 4 3 1023 km21 sr21! for the first set and ~a 5 1
km21, b 5 3 3 1022 km21 sr21! for the second one.
These pairs of optical parameters are representative
of “exceptionally clear” and “moderate” visibility, re-
spectively, according to the terminology of Ko-
shmieder24 and Kruse et al.25

Because the simulator generates inhomogeneous
backscatter profiles for each pair ~a, b! ~explained in
the examples below!, we find it convenient to describe
the atmospheric condition in terms of the optical
thickness or path-integrated extinction coefficient as

t~Rmin, Rmax! 5 *
Rmin

Rmax

a~r!dr 5 C *
Rmin

Rmax

b~r!dr, (31)

where a constant extinction-to-backscatter ratio
along all the inversion region has been assumed.
This hypothesis is assumed for the sake of simplicity
in the following inversion examples. In a practical
inversion, the inversion range should be partitioned
adequately to ensure the validity of this hypothesis
for each cooperative EKF and, in turn, the validity of
Eq. ~2!.

In all cases the filter has an estimated 20 inversion
cells ~M 5 2! during 150 iterations. To test EKF

performance we initiated filter action in the simplest
way by means of the homogeneous profile x̂0

2 5
0.9@b . . . b Ca#, which represents a 10% under-
estimation from the figures mentioned above, and m
5 103 in Eq. ~30!.

Figures 3–6 illustrate simulation results for the
nonturbid atmosphere of the first set ~a 5 0.1 km21,
b 5 4 3 1023 km21 sr21!, whose optical thickness is
0.25 @Eq. ~31!#. Figures 3~b! and 3~c! represent the
synthesized range-corrected return power and its as-
sociated signal-to-noise ratio ~SNR!, which is com-
puted as a ratio of voltages at the receiver output, in
response to the hump-shaped backscatter profile of
Fig. 3~a!. Note that the mean value of the backscat-
ter over the inversion range equals b 5 4 3 1023

km21 sr21.
Figures 4 and 5 compare the simulated atmo-

spheric scene with the EKF inversion estimates from
the power-return observable fed to the filter at each
iteration. For Figs. 4~a! and 4~c!, time-fluctuating
backscatter profiles and extinction-to-backscatter ra-
tio C were generated according to the simulator of
Fig. 1. In particular, Fig. 4~c! shows the random

Fig. 3. First simulation set: ~a! input backscatter profile, ~b! synthesized range-corrected return power, ~c! associated SNR.

Fig. 4. First simulation set. Comparison of atmospheric and
inverted optical parameters: ~a! time animation of the atmo-
spheric backscatter profile; ~c! time animation of the atmospheric
extinction-to-backscatter ratio; ~b!, ~d! EKF inversion results for ~a!

and ~c!, respectively.
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constant behavior of ratio C as described by Eqs. ~23!
and ~1!. Comparing Figs. 4~b! and 4~d! with Figs.
4~a! and 4~c! shows that, whereas the filter is able to
retrieve the shape of the backscatter profile virtually
from the first iteration, it takes some time ~75 itera-
tions! to estimate the profile for extinction-to-
backscatter ratio C. Misestimation of C causes, in
turn, misestimation of the magnitude of the backscat-
ter’s profile, even when its shape is fairly well recov-
ered. Iso-backscatter contour curves for both the
atmospheric backscatter and the inverted profiles are
shown in Fig. 5.

In this example fast retrieval of the backscatter
profile is achieved not only because the SNR is high
but also because the filter has both a reasonably good
estimation and a suitable model for extinction-to-
backscatter ratio C from the beginning. The key
here is that a priori information based on physical
knowledge that C must remain approximately con-
stant with time is fed into the C model to tell the filter
that fast fluctuations for the backscatter components
are possible, whereas they are not for C. At this
point one might well argue that, if the SNR were
high, one could perform appropriate least-squares in-
versions for the unknown state variables on reception
of each observable. Even though doing this seems
feasible in theory, in practice with such large fluctu-
ations in the estimate of C with time it may result
that the inversion of the backscatter components will
lack any physical meaning.

As a result of this first simulation we can conclude
that, in spite of the user-induced modeling errors and
the modest initialization, the filter manages to keep
excellent track of the atmospheric counterparts all
along the 5-km inversion range. Filter performance
is best seen from Fig. 6, where inversion errors in both
the backscatter and the extinction-to-backscatter ratio
are computed. We see that after a training stage con-
sisting of some 75 inversions, C error dwindles from an
initial 10% underestimation of x̂0

2 ~8% just in the 1st
iteration! to virtually nil ~21%! during the tracking
stage ~75th to 150th iterations!. The same thing hap-
pens with the backscatter estimates if one compares
Fig. 5~b! with Fig. 5~a! for the same time interval.
Even though the filter’s performance is fairly good all
along the exploration path, b errors in Fig. 6~a! tend to
increase for cells that are located far from the lidar,
suggesting a decreasing trend in the SNR of Fig. 3~c!.
All things considered, slightly poorer performance is
observed in the upper range ~see Fig. 5!. The effect of
larger optical depths on the SNR and on the subse-
quent range-limited filter performance is corroborated
in the next simulation.

The second simulation set ~a 5 1 km21, b 5 3 3
1022 km21 sr21! corresponds to a moderately turbid
atmosphere with an optical thickness of 2.62 @Eq.
~31!# and comprises Figs. 7–10. This deeper optical
thickness now translates into a steeply-decreasing
range-corrected return power in Fig. 7~c! and to a
SNR in Fig. 7~d! that ranges from 67.5 dB at Rmin to
234.3 dB at Rmax. Under these circumstances, the
filter inversion is acceptable only for the first 10 cells
of the inversion range, where the SNR is still above a
reasonable 15 dB, as illustrated in Fig. 8, where both
simulated and inverted scenes are presented as
three-dimensional plots. In the upper range, filter
performance becomes dramatically reduced, and
even some backscatter components incur negative
values, which lack any physical significance.

Likewise, Fig. 9 illustrates comparative time plots of
the atmospheric and the inverted backscatter magni-
tudes in four cells along the inversion path, which have
quite different SNR’s. For the first cell @Fig. 9~a!# the

Fig. 5. First simulation set: contour plots showing ~a! time–space evolution of the atmospheric backscatter and ~b! the filter’s back-
scatter estimates.

Fig. 6. First simulation set. Relative inversion errors after 150
iterations: ~a! atmospheric backscatter error indexed by number
of inversion cells, ~b! time evolution of the extinction-to-backscatter
inversion error.
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SNR is ;65 dB, and the filter’s estimates perfectly
follow the Markovian drift of the atmospheric back-
scatter. This excellent behavior degrades in the 6th
cell, whereas for the 13th cell, for which the SNR is less
than 0 dB, the filter is lost. Horizontal solid lines in
Fig. 9 recall the backscatter value of each cell at t 5 t0,
which is inherited from its location in the initial hump-
shaped backscatter profile of Fig. 7~a!. As time goes
on, the profile is distorted, and each cell follows a
Markovian walk, as illustrated in Fig. 9.

Inversion errors follow trends similar to those shown
in Fig. 6, but now the convergence time ~i.e., the time
to reach steady tracking! is much faster, as evidenced
by the fast-decreasing slope of the C error in Fig. 10~b!.
This enables us to reach a steady-state C error of 21%
~as in the first simulation! in fewer than ten iterations.
Note that, in spite of the extremely poor SNR at high
ranges, because the observable noise covariance ma-
trix Rk describes the quality of the observables to the
filter in an efficient way the EKF is able to adjust its
gain such that it can compute the extinction-to-

backscatter ratio from the first section of the observa-
tion range, where the SNR is much higher. In the
first simulation set, however, where the observables
were not much corrupted by measurement noise, we
considered the whole inversion range when we com-
puted C. In the estimation of the backscatter profile
there is no way to counteract noise, and, as a result,
only cells that belong to the lower range are estimated
reasonably well ~inversion errors are 0–30%!.

A comprehensive collection of extra simulations
has shown that filter performance improves as long
as Qk3 Qk,a and SNR3 `, as expected, and that for
reduced uncertainty spans in the model parameters
of Qk or in the filter’s initialization, steady conver-
gence is always achieved in more or less time. Yet,
if the user’s uncertainty span is too large so unstable
estimation errors occur, one can easily identify this
situation, chiefly by monitoring the trace of the b and
C block matrices of a posteriori error covariance ma-
trix Pk and the convergence behavior of extinction-
to-backscatter ratio C. For ill-advised input values,
the C trace increases without bound and, conse-
quently, the estimation of C tends to plus or minus
infinity. This result is further discussed in Section
5, where we treat the inversion of a real scene.

5. Live-Scene Inversion

Power returns measured with the vertical-
exploration elastic-backscatter lidar system of the
Polytechnic University of Catalunya at Barcelona

Fig. 7. Second simulation set: ~a! input backscatter profile; ~b!,
~c! synthesized return and range-corrected return powers, respec-
tively; ~d! associated SNR.

Fig. 8. Second simulation set. Time–space evolution of the
backscatter state vector: ~a! synthesized atmospheric backscat-
ter, ~b! EKF estimates.

Fig. 9. Second simulation set. Temporal evolution of the back-
scatter in observation cells 1, 6, 13, and 20. Solid curves, atmo-
spheric backscatter; circles, EKF estimates; solid horizontal lines,
backscatter values at the beginning of the simulation.

Fig. 10. Same as Fig. 6 but for the second simulation set.
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~Table 1! were inverted by use of the EKF formula-
tion presented above.

Figure 11~a! illustrates the measurement scene
from the campaign of 25 September 1996. The vis-
ibility could be described as very clear, and two cloud
layers were detected, at 6.4–7.7 and 8.6–9.4 km.
The scene corresponds to a stationary range interval
of 2.28–2.65 km cut from the original one, which
ranges from 0.5 to 15 km, to reduce the filter order
and therefore the computational load ~0.12- and 8.4-
syiteration for filter orders equal to 50 and 250, re-
spectively, with MATLAB running on a Pentium 166
MMX platform!. The inversion interval contains 50
observation cells ~DR 5 7.5 m! and 50 signal packets,
where a packet is defined as the averaging or inte-
gration of a certain number of return signals in re-
sponse to an emission pulse. In this example 15
return pulses were integrated. According to the
pulse-repetition frequency of the system, this inte-
gration time is virtually nil compared with the long
temporal coherence length of the atmosphere in this
case, which can be assumed to be approximately sta-
tionary. Because longer time records were not avail-
able, we performed the inversion by feeding the filter
with those 50 packets in a round-robin cycle of as
many as 500 iterations ~N 5 50, M 5 2! to ensure
steady-state tracking. In other words, each packet
constituted an observable vector zk to the filter, and
the feeding sequence could be written as ~z1, z2, . . . ,
z50!, ~z1, z2, . . . , z50!, . . . , ~z1, z2, . . . , z50!.

This procedure can be understood as a kind of
fixed-interval smoothing. In this case the time in-

terval of measurements ~i.e., a data span of 50 pack-
ets! is fixed, and we seek optimal estimates at some
or, perhaps, all interior points. The round-robin ap-
proach is poorer ~yields a higher smoothed error vari-
ance! than a two-way smoothing,13 but it is
conceptually simpler.

The lidar was operated at 390-mJ output energy,
532-nm wavelength, and 1.8 3 104 VyW net respon-
sivity, yielding A 5 1.81 3 1023 W km23 in Eq. ~1!
and observation noise parameters a 5 3.7 3 1029 W
and b 5 3.4 3 10216 W2 in Eq. ~18!, which we used to
compute the noise covariance matrix Rk.

Modeling the scene into the state-noise covariance
matrix Qk of the filter was the most difficult part of
the process and was done after completion of these
two experimental steps: First, the correlation
length Ic was estimated. As no significant slopes
were evident in the time series of the scene in Fig.
11~a!, which looks like a plateau, we conjectured that
the scene should be associated with a correlation
length greater than or equal to the time record
length; hence Lc was set to 50 samples. Second, the
strength parameter p was estimated. Because p is
directly linked to backscatter fluctuations, the fluc-
tuations were directly estimated from those in the
range-corrected power realizations because the opti-
cal depth along the field of sight was so low. Thus
the strength parameter was computed as the quo-
tient between the standard deviation of the range-
corrected return power in each observation cell and
the time-averaged value in each cell. Formally,

p̂i 5
@E~$Fi~tk! 2 E@Fi~tk!#%

2!#1y2

E@Fi~tk!#
, (32)

where p̂i represents the estimation of the strength
parameter of the ith cell and E~ ! is the expectancy
operator, which in practice is computed as a time
average over power realizations. This simulation
yielded an estimate of p of 6–12%, and 10% was input
to the filter. As for correlation coefficient r, we set r
5 0.3 as in the previous simulations, because it
turned out to be a noncritical parameter. The filter
was initialized again with a homogeneous profile of
the form x̂0

2 5 @b—. . .—b C#, now with b 5 4 3
1023 km21 and C 5 33.3 sr, which are typical values
for a clear atmosphere.24,25

Fig. 11. Actual application example. ~a! Range-corrected re-
ceived power as observables to the filter ~zk!. Fifty signal packets
are shown in the range 2.28–2.65 km. ~b! Comparison of the
range-corrected measured power and the filter’s estimated power,
showing good tracking.

Table 1. Elastic-Backscatter Lidar System Specifications

Laser Receiver System

Gain medium Nd:YAG Focal length 2 m Configuration Vertical biaxial
Energy 0.5 Jy532 nm Aperture B 20 cm System noise-equivalent power 70 fW Hz21y2

Divergence 0.1 mrad Detector Avalanche photodiode
~EG&G C30954!

Minimum detection ,5 nW

Pulse length ,10 ns Net 6 3 101–3 3 106 Power acquisition 20 Mspsy12
bits

Responsivity VyW
Pulse-repetition

frequency
10 Hz Bandwidth 10 MHz Spatial resolution 7.5 m

Msps, mega samples per second; 20 3 106 samplesys.
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Inversion results are shown in Figs. 11~b!–13.
Figure 11~b! shows good agreement between the live
atmospheric power returns and the estimated ones,
whereas Fig. 12 plots the sought-after inversion,
which is in accordance with values reported in the
literature.5

Key performance of the filter is well illustrated by
examination of Figs. 11~b! and 12~b!: As time goes
on, the filter reaches excellent balance between fit-
ting the power observables of Fig. 11~b! and ensuring

physically meaningful time–space correlation in Fig.
12~b!. Note that for each actual measurement da-
tum received on a particular run as in Fig. 11~b!,
power matching is good but not excellent. This re-
sult, however, gives continuity to the traces of the
isobackscatter lines of Fig. 12~b!. Recall that the
filter works not under an instantaneous minimum-
least-squares error philosophy but under a
minimum-mean least-squares one over time tk, which
is a statistical criterion.

Interpretation of Fig. 12~c! warrants some com-
ments: First, recall that the starting value for C is
C~tk 5 1! 5 33.3 sr. After some 450 iterations ~i.e.,
10 periods later!, C~tk 5 450! 5 34.9 in Fig. 12~c!,
which represents the final estimation for C. To in-
terpret this difference we must distinguish between
the training interval ~approximately 1–100 itera-
tions! and the tracking interval of the filter ~100 and
more iterations!. The filter is estimated to be a
quasi-periodic signal with a period of 50 iterations
because of the round-robin feeding sequence to the
filter @an example of such a signal is shown in Fig.
13~a!#. Thus, if we read the filter estimates at the
beginning of each period ~not shown! we would get
C~tk 5 1! 5 33.33, C~tk 5 50! 5 34.5, and C~tk 5 100,
150, . . . , 450, . . .! 5 34.9 and stable, the same values
as in Fig. 12~c!. Note also that the initial value C 5
33.33 sr is only an initial guess, not the correct value.
As a result, we can interpret any period that belongs
to the tracking interval of the filter ~in this example,
the tenth period, corresponding to iterations 450 to
499! as the final estimation of the EKF in response to
the set of 50 observables measured.

Estimations of the inversion errors in the EKF are
illustrated in Fig. 13: From the first iterations, a
posteriori and a priori estimation errors, which are
represented by b and C traces of Pk and Pk

2, respec-
tively, are progressively reduced to a residual that is
close to the trace of Qk. Qualitatively, this suggests
that the filter is wise enough to counteract measure-
ment noise in the inversion estimates through con-
venient averaging with past estimations until it
reaches some lower bound given by the state noise
owing to atmospheric mobility, represented by the
trace of Qk. Figure 13 is also useful for derivation of
an estimation of the inversion error in both b and C
estimates. For scalar C this derivation is easy be-
cause Fig. 13~b! yields the variance of the a posteriori

Fig. 12. Actual inversion. Inversion results in response to the
scene of Fig. 11: ~a! time–space inversion of the atmospheric
backscatter, ~b! contour plot of ~a!, ~c! inversion of the extinction-
to-backscatter ratio as a function of time ~solid curve! and 6 1s

confidence margins.

Fig. 13. Actual inversion. Convergence and tracking indicators:
~a! time evolution of Pk, Pk

2, and Qk b traces, ~b! C-trace time plot.
Steady convergence is indicated by a virtually constant figure from
the 200th iteration onward.
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inversion error ~sc
2 5 0.02!. If we interpret C as a

stochastic process such that for each point in time tk

we have a stochastic variable Ck with mean C# k and
standard deviation sk, then, assuming a Gaussian
error distribution for Ck, it is well known that the
probability will be

p@uC 2 C# u # ns# 5 erfS n

Î2
D . (33)

Because in Fig. 13~b! sk ' sC for all tk in the
steady-state time interval of the filter, the error mar-
gin for C in Fig. 12~c! becomes 60.14 ~1s! for a 68.3%
confidence level @as plotted in Fig. 12~c! by superim-
posed traces# or 60.42 ~3s! for 99.7%. This behavior
is in accordance with the physical model given for C
that assumes that it is approximately constant with
time. Yet the significance of Fig. 12~c! lies in the fact
that the filter is able to depart from the user’s initial
guess of C 5 33.3 sr and estimate C within the con-
fidence margin given. Similar computations can be
derived for the backscatter components, which turn
out to be some 62.5 3 1024 km21 for 99.7% confi-
dence. This is an extremely thin error margin com-
pared with the vertical scales of Figs. 12~a! and 12~b!.

Inversions with different model parameters were
also carried out for the same scene. For a reduced
span of input values, a few more convergent sets were
found. In these cases, slightly different inversion
results arose but always in the backscatter compo-
nent. Yet these uncertainties can be fitted inside
the error span of the estimation error inferred from b
and C traces. As a result, once can conclude that, for
a reasonable input set, the EKF yields coincidentally
good inversions.

6. Conclusions

Inversion of the atmospheric backscatter and the
extinction-to-backscatter ratio has been achieved with
an EKF ~Section 2! and an appropriate stochastic
model ~Section 3! that describes the macroscopic ef-
fects of the atmosphere over the backscatter compo-
nent in terms of spatial and temporal correlation. As
times goes on, the filter keeps track of the atmospheric
fluctuations by projection steps that conveniently av-
erage actual estimations with past ones under a sta-
tistical minimum-mean-square error criterion.

Through different simulations ~Section 4! and a
prototype inversion of a real scene ~Section 5!, the
filter has shown excellent inversion performance and
robustness to modeling errors; the a posteriori error
covariance matrix trace and the asymptotic trend of
the extinction-to-backscatter ratio are good conver-
gence indicators. The encouraging results achieved
by this adaptive technique promise that the EKF will
be a long-lasting alternative algorithm for lidar in-
version.

Appendix A

To present a self-contained paper and to clarify the
notation used in this paper, we present here a theo-
retical summary of information on the linear Kalman

filter ~Section A! and the extended Kalman filter ~Sec-
tion B! based on Refs. 11 and 13.

A. Linear Discrete Kalman Filter

Let us consider the stochastic discrete time vector
process xk to be estimated ~dimensions are indicated
in parentheses!, as modeled by

xk11 5 Fk xk 1 wk, (A1)

where xk is the system’s time-state vector at time tk

~n 3 1!, Fk is the transition-state matrix from time tk

to tk11 ~n 3 n!, and wk is the state-noise vector ~n 3 1!.
The measurement or observation of the process is

assumed to take place at discrete times tk, according
to the following linear relationship:

zk 5 Hk xk 1 nk, (A2)

where zk is the measurement vector at time tk ~n 3 1!,
Hk is the measurement matrix ~m 3 n!, and nk is the
measurement error vector ~m 3 1!.

Before proceeding further, let us illustrate the
meaning of these variables by considering the exam-
ple of xy-speed monitoring of uniform two-
dimensional motion. In this case, xk would be the
mobile’s xy-speed components ~nx, ny! and Fk a two-
dimensional matrix that describes the mobile’s speed
components from one sample time to the next ~as the
motion is expected to be uniform for all tk, Fk 5 I can
be assumed!. Finally, wk would be a driving noise
process that models velocity drift in the mobile’s mo-
tion. As for the observation system, Hk would be the
linear equations that relate the mobile’s xy coordi-
nates to its vector speed components. Were these
equations not linear, it would be necessary to resort
to the extended Kalman filter introduced in Section
B. Finally, nk would be the measurement noise.

Refer to Eqs. ~A1! and ~A2!; the noisy vectors wk and
nk must be white sequences with known covariance
matrices. In addition, wk and nk must be uncorre-
lated. In instances when these conditions are not ful-
filled, one can augment the state vector and estimate
the correlated noisy samples wk9 and nk9 from other
variables wk and nk that form an uncorrelated, orthog-
onal base. Doing so would enable the Kalman filter to
work with colored noise, even if it were nonstationary.
Noise covariance matrices are given by

E@nkni
T# 5 HRk i 5 k

0 i Þ k
, (A3)

E@wk wi
T# 5 HQk i 5 k

0 i Þ k
, (A4)

E@wkni
T# 5 0 @k, i. (A5)

At this point it is assumed that an initial estimate of
the process at the same point in time tk is known.
This estimation, called an a priori estimate, is denoted
x̂k

2, where the superscript minus is a reminder that it
is the best estimate before the measurement is assim-
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ilated at tk and the circumflex over the vector means
“estimate of.” The estimation error can be written as

ek
2

5 xk 2 x̂k
2, (A6)

and its associated error covariance matrix is

Pk
2

5 E@ek
2ek

2T# 5 E@~xk 2 x̂k
2!~xk 2 x̂k

2!T#. (A7)

Now a linear combination of the measurement zk is
sought to improve the prior estimate x̂k

2:

x̂k 5 x̂k
2

1 Kk~zk 2 Hkx̂k
2!, (A8)

where x̂k is the updated estimate and Kk is the Kal-
man gain ~yet to be determined!.

The problem now is to find the particular blending
factor Kk that yields an optimal updated estimate
under some reasonable criterion. Just as in the
Wiener solution, a minimum-mean-square error cri-
terion is used. Toward this end, let us write the
error covariance matrix associated with the a poste-
riori ~updated! estimate:

Pk 5 E@ek ek
T# 5 E@~xk 2 x̂k!~xk 2 x̂k!

T#. (A9)

If Eq. ~A2! is substituted into Eq. ~A8! and then into
Eq. ~A9!, the result is

Pk 5 ~I 2 Kk Hk!Pk
2~I 2 Kk Hk!

T
1 Kk Rk Kk

T. (A10)

The optimization problem is now equivalent to
finding the optimum gain at each time tk, Kk that
minimizes the error variances for the elements of the
state vector being estimated. As the individual
terms along the major diagonal of Pk do represent
these error variances, we can solve the optimization
problem by minimizing the trace of Pk. If we follow
straightforward matrix differentiation analysis and
the next two formulas are considered:

d@tr~AB!#

dA
5 BT ~AB must be square!, (A11)

d@Tr~ACAT!#

dA
5 2AC ~C must be symmetric!,

(A12)

we have that

d@Tr~Pk!#

dKk

5 22~Hk Pk
2!T

1 2Kk~Hk Pk
2Hk

T
1 Rk!,

(A13)

where Tr~ ! is the trace operator. Now the deriva-
tive can be set equal to zero and the optimal gain, the
Kalman gain, found. The result is

Kk 5 Pk
2Hk

T~Hk Pk
2Hk

T
1 Rk!

21. (A14)

Once the Kalman gain is known, if it is substituted
into Eq. ~A10! the a priori and a posteriori error co-
variance matrices can be related as

Pk 5 ~I 2 Kk Hk!Pk
2. (A15)

Now note that both Eq. ~A8! and the Kalman gain of
Eq. ~A14! provide a means to assimilate the measure-
ment at tk in a recursive relation that makes use of the
a priori variables x̂k

2 and Pk
2. For this reason a

similar need for x̂k11
2 can be anticipated at the next

step to assimilate the next measurement zk11. This
new a priori estimate can be computed if we project
ahead the old estimate x̂k through a transition matrix:

x̂k11
2

5 Fkx̂k. (A16)

Finally, the new a priori error covariance matrix
Pk11

2 is computed as

Pk11
2

5 E@ek11
2ek11

2T#

5 E@~Fk ek 1 wk!~Fk ek 1 wk!
T#

5 Fk PkFk
T

1 Qk. (A17)

Given the needed quantities at time tk, the mea-
surement zk11 can be assimilated just as in the pre-
vious step. Thus it is a routine matter to cycle
through the Kalman loop that comprises Eqs. ~A8!
and ~A14!–~A17!. The loop begins with the a priori
estimates of the state vector x̂0

2 and the error covari-
ance matrix P0

2.

B. Extended Discrete Kalman Filter

Some of the most successful applications of the Kal-
man filter arise in situations when nonlinear dynam-
ics and measurements have to be considered. This
is the actual case when we have a nonlinear mea-
surement model ~i.e., the lidar equation!. Yet the
expressions given next are generalized to potential
nonlinearities in both the system and the measure-
ment model. In these instances the stochastic pro-
cess to be estimated and the measurement relation
can be written in their most general forms as

xk11 5 fk~xk! 1 wk, (A18)

zk 5 hk~xk! 1 nk, (A19)

where fk and hk are nonlinear functions. The same
constraints as those given for wk and nk in Section A
also apply here. In the lidar inversion problem
treated here, the system model is linear, and fk is
equivalent to Fk @Eq. ~20!#.

To begin, let us approximate these functions by
their Taylor series expansions about the a posteriori
x̂k and a priori x̂k

2 estimates, respectively, and let us
retain first-order terms only. We find that

fk~xk! < fk~ x̂k! 1
]fk~x!

]x
U

x5x̂k

~xk 2 x̂k!, (A20)

hk~xk! < hk~ x̂k
2! 1

]hk~x!

]x
U

x5x̂k
2

~xk 2 x̂k
2 !. (A21)

Note that these developments assume the following
conditions:

uxk 2 x̂ku ,, 1, (A22)
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uxk 2 x̂k
2u ,, 1, (A23)

as it is expected that there will not be large differ-
ences among the three variables. Yet careful atten-
tion should be drawn to the fact that use of the EKF
is risky, as the linearization process takes places
about the filter’s estimated trajectory of the state
vector rather than about a precomputed nominal tra-
jectory ~see text!. Thus the gain sequence is not pre-
determined by the process model assumptions as in
the linear Kalman filter.

Following a mathematical analysis similar to that
in Section A, one can bridge gulfs with the classic
linear filter if the equivalent matrices Fk and Hk are
defined in the following way:

Fk 5
]fk~x!

]x
U

x5x̂k

, (A24)

Hk 5
]hk~x!

]x
U

x5x̂k
2.

(A25)

If Eqs. ~A24! and ~A25! are identified with the first-
order terms of Eqs. ~A20! and ~A21!, they yield

xk11 < fk~ x̂k! 1 Fk~xk 2 x̂k! 1 wk, (A26)

zk < hk~ x̂k
2! 1 Hk~xk 2 x̂k

2! 1 nk. (A27)

Relations ~A26! and ~A27! represent the linearized
version of the filter and look much like Eqs. ~A1! and
~A2!, except that rather that presenting total quan-
tities to the filter they present incremental quanti-
ties, which, correlated with Eqs. ~A26! and ~A27!, are

Dxk 5 xk11 2 fk~ x̂k!, (A28)

Dzk 5 zk 2 hk~ x̂k
2!. (A29)

In summary, the EKF’s recursive equation loop be-
comes

~1! Update the a priori estimate with measurement
zk:

x̂k 5 x̂k
2

1 Kk@zk 2 hk~ x̂k
2!#. (A30)

~2! Compute the error covariance for the updated
estimate:

Pk 5 ~I 2 Kk Hk!Pk
2. (A31)

~3! Project ahead:

x̂k11
2

5 fk~ x̂k!, (A32)

Pk11
2

5 Fk Pk Fk
T

1 Qk. (A33)

~4! Compute the filter gain:

Kk 5 Pk
2Hk

T~Hk Pk
2Hk

T
1 Rk!

21. (A34)
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