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Abstract

We tackle the problem of producing realistic simula-

tions of LiDAR point clouds, the sensor of preference for

most self-driving vehicles. We argue that, by leveraging

real data, we can simulate the complex world more real-

istically compared to employing virtual worlds built from

CAD/procedural models. Towards this goal, we first build

a large catalog of 3D static maps and 3D dynamic ob-

jects by driving around several cities with our self-driving

fleet. We can then generate scenarios by selecting a scene

from our catalog and ”virtually” placing the self-driving

vehicle (SDV) and a set of dynamic objects from the cat-

alog in plausible locations in the scene. To produce real-

istic simulations, we develop a novel simulator that cap-

tures both the power of physics-based and learning-based

simulation. We first utilize ray casting over the 3D scene

and then use a deep neural network to produce deviations

from the physics-based simulation, producing realistic Li-

DAR point clouds. We showcase LiDARsim’s usefulness for

perception algorithms-testing on long-tail events and end-

to-end closed-loop evaluation on safety-critical scenarios.

1. Introduction

On a cold winter night, you are hosting a holiday gath-

ering for friends and family. As the festivities come to a

close, you notice that your best friend does not have a ride,

so you request a self-driving car to take her home. You say

farewell and go back inside to sleep, resting well knowing

your friend is in good hands and will make it back safely.

Many open questions remain to be answered to make

self-driving vehicles (SDVs) a safe and trustworthy choice.

How can we verify that the SDV can detect and handle prop-

erly objects it has never seen before (Fig. 1, right)? How

do we guarantee that the SDV is robust and can maneu-

ver safely in dangerous and safety-critical scenarios (Fig. 1,

left)? More generally, what evidence would you need to be

confident about placing a loved one in a self-driving car?

Figure 1: Left: What if a car hidden by the bus turns into

our lane - can we avoid collision? Right: What if there is a

goose on the road - can we detect it? See Fig. 11 for results.

To make SDVs come closer to becoming a reality, we

need to improve the safety of the autonomous system,

demonstrate the safety case, and earn public trust. There

are three main approaches that the self-driving industry typ-

ically uses for improving and testing safety: (1) real-world

repeatable structured testing in a controlled environment,

(2) evaluating on pre-recorded real-world data, (3) running

experiments in simulation. Each of these approaches, while

useful and effective, have limitations.

Real-world testing in a structured environment, such as

a test track, allows for full end-to-end testing of the auton-

omy system, but it is constrained to a very limited num-

ber of test cases, as it is very expensive and time consum-

ing. Furthermore, safety-critical scenarios (i.e., mattress

falling off of a truck at high speed, animals crossing street)

are difficult to test safely and ethically. Evaluating on pre-

recorded real-world data can leverage the high-diversity of

real-world scenarios, but we can only collect data that we

observe. Thus, the number of miles necessary to collect

sufficient long-tail events is way too large. Additionally,

it is expensive to obtain labels. Like test-track evaluation,

we can never fully test how the system will behave for sce-

narios it has never encountered and what the safety limit

of the system is, which is crucial for demonstrating safety

and gaining confidence with the public. Furthermore, be-

cause the data is prerecorded, this approach prevents the

agent from interacting with the environment, as the sensor

data will look different if the executed plan differs to what

happened, and thus it cannot be used to fully test the sys-

tem performance. Simulation systems can in principle solve
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Figure 2: LiDARsim Overview Architecture

the limitations described above: closed-loop simulation can

test how a robot would react under challenging and safety-

critical situations, and we can use simulation to generate

additional data for the long-tail events. Unfortunately, most

existing simulation systems mainly focus on simulating be-

haviors and trajectories instead of simulating the sensory

input, bypassing the perception module. As a consequence,

the full autonomy system cannot be tested, limiting the use-

fulness of these tests.

However, if we could realistically simulate the sensory

data, we could test the full autonomy system end-to-end.

We are not the first ones to realize the importance of sen-

sor simulation; the history of simulating raw sensor data

dates back to NASA and JPL’s efforts supporting robot ex-

ploration of the surfaces of the moon and mars. Widely used

robotic simulators, such as Gazebo and OpenRave [22, 7],

also support sensory simulation through physics and graph-

ics engines. More recently, advanced real-time rendering

techniques have been exploited in autonomous driving sim-

ulators, such as CARLA and AirSim [8, 33]. However,

their virtual worlds use handcrafted 3D assets and simpli-

fied physics assumptions resulting in simulations that do not

represent well the statistics of real-world sensory data, re-

sulting in a large sim-to-real domain gap.

Closing the gap between simulation and the real-world

requires us to better model the real-world environment and

the physics of the sensing processes. In this paper we fo-

cus on LiDAR, as it is the sensor of preference for most

self-driving vehicles since it produces 3D point clouds from

which 3D estimation is simpler and more accurate com-

pared to using only cameras. Towards this goal, we propose

LiDARsim, a novel, efficient, and realistic LiDAR simula-

tion system. We argue that leveraging real data allows us

to simulate LiDAR in a more realistic manner. LiDARsim

has two stages: assets creation and sensor simulation (see

Fig. 2). At assets creation stage, we build a large cata-

log of 3D static maps and dynamic object meshes by driv-

ing around several cities with a vehicle fleet and accumulat-

ing information over time to get densified representations.

This helps us simulate the complex world more realistically

compared to employing virtual worlds designed by artists.

At the sensor simulation stage, our approach combines the

power of physics-based and learning-based simulation. We

first utilize raycasting over the 3D scene to acquire the ini-

tial physics rendering. Then, a deep neural network learns

to deviate from the physics-based simulation to produce re-

alistic LiDAR point clouds by learning to approximate more

complex physics and sensor noise.

The LiDARsim sensor simulator has a very small do-

main gap. This gives us the ability to test more confidently

the full autonomy stack. We show in experiments our per-

ception algorithms’ ability to detect unknown objects in the

scene with LiDARsim. We also use LiDARsim to better un-

derstand how the autonomy system performs under safety-

critical scenarios in a closed-loop setting that would be diffi-

cult to test without realistic sensor simulation. These exper-

iments show the value that realistic sensory simulation can

bring to self-driving. We believe this is just the beginning

towards hassle-free testing and annotation-free training of

self-driving autonomy systems.

2. Related Work

Virtual Environments: Virtual simulation environments

are commonly used in robotics and reinforcement learning.

The seminal work of [29] trained a neural network on both

real and simulation data to learn to drive. Another popular

direction is to exploit gaming environments, such as Atari

games [25], Minecraft [18] and Doom [20]. However, due

to unrealistic scenes and tasks that are evaluated in simple

settings with few variations or noise, these types of envi-

ronments do not generalize well to real-world. 3D virtual

scenes have been used extensively for robotics in the con-

text of navigation [50] and manipulation [38, 6]. It is im-

portant for the agent trained in the simulation to generalize

to the real world. Towards this goal, physics engines [36]

have been exploited to mimic the real-world’s physical in-

teraction with the robot, such as multi-joint dynamics [38]

and vehicle dynamics [41]. Another crucial component for

virtual environment simulation is the quality of sensor simu-

lation. The past decade has witnessed a significant improve-

ment of real-time graphics engines such as Unreal [12] and

Unity 3D [9]. Based on these graphics engines, simulators

have been developed to provide virtual sensor simulation

such as CARLA and Blensor [8, 14, 39, 16, 47]. However,
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there is still a large domain gap between the output of the

simulators and the real world. We believe one reason for

this domain gap is that the artist-generated environments are

not diverse enough and the simplified physics models used

do not account for important properties for sensor simula-

tion such as material reflectivity or incidence angle of the

sensor observation, which affect the output point cloud. For

example, at most incidence angles, LiDAR rays will pen-

etrate window glasses and not produce returns that can be

detected by the receiver.

Virtual Label Transfer: Simulated data has great poten-

tial as it is possible to generate labels at scale mostly for

free. This is appealing for tasks where labels are difficult

to acquire such as optical flow and semantic segmentation

[3, 24, 32, 30, 11]. Researchers have started to look into

how to transfer an agent trained over simulated data to per-

form real-world tasks [35, 30]. It has been shown that pre-

training over virtual labeled data can improve real-world

perception performance, particularly when few or even zero

real-world labels are available [24, 30, 34, 17].

Point Cloud Generation: Recent progress in generative

models has provided the community with powerful tools

for point cloud generation. [45] transforms Gaussian-3D

samples into a point cloud shape conditioned on class via

normalizing flows, and [4] uses VAEs and GANs to recon-

struct LiDAR from noisy samples. In this work, instead of

directly applying deep learning for point cloud generation

or using solely graphics-based simulation, we adopt deep

learning techniques to enhance graphics-generated LiDAR

data, making it more realistic.

Sensor Simulation in Real World: While promising,

past simulators have limited capability of mimicking the

real-world, limiting their success to improve robots’ real-

world perception. This is because the virtual scene, graph-

ics engine, and physics engine are a simplification of the

real-world. Motivated by this, recent work has started to

bring real-world data into the simulator. [1] adds graphics-

rendered dynamic objects to real camera images. Gib-

son Environment [43, 42] created an interactive simulator

with rendered images that come from a RGBD scan of the

real-world’s indoor environment. Deep learning has been

adopted to make the simulated images more realistic. Our

work is related to Gibson environments, but our focus is

on LiDAR sensor simulation over driving scenes. Very re-

cently, in concurrent work, [10] showcased LiDAR simu-

lation through raycasting over a 3D scene composed of 3D

survey mapping data and CAD models. Our approach dif-

fers in several components: 1) We use a single standard Li-

DAR to build the map, as opposed to comprehensive 3D

survey mapping, allowing us to map at scale in a cost effec-

tive manner (as our LiDAR is at least 10 times cheaper); 2)

we build 3D objects from real-data, inducing more diversity

and realism than CAD models (as shown in sec. 5); 3) we

utilize a learning system that models the residual physics

not captured by graphics rendering to further boost the real-

ism as opposed to standard rendering + random noise.

3. Reconstructing the World for Simulation

Our objective is to build a LiDAR simulator that simu-

lates complex scenes with many actors and produce point

clouds with realistic geometry. We argue that by lever-

aging real data, we can simulate the world more realisti-

cally than when employing virtual worlds built solely from

CAD/procedural models. To enable such a simulation, we

need to first generate a catalog of both static environments

as well as dynamic objects. Towards this goal, we generate

high definition 3D backgrounds and dynamic object meshes

by driving around several cities with our self-driving fleet.

We first describe how we generate 3D meshes of the static

environment. We then describe how to build a library of dy-

namic objects. In sec. 4 we will address how to realistically

simulate the LiDAR point cloud for the constructed scene.

3.1. 3D Mapping for Simulation

To simulate real-world scenes, we first utilize sensor data

scans to build our representation of the static 3D world. We

want our representation to provide us high realism about the

world and describe the physical properties about the mate-

rial and geometry of the scene. Towards this goal, we col-

lected data by driving over the same scene multiple times.

On average, a static scene is created from 3 passes. Multi-

ple LiDAR sweeps are then associated to a common coor-

dinate system (the map frame) using offline Graph-SLAM

[37] with multi-sensor fusion leveraging wheel-odometry,

IMU, LiDAR and GPS. This provides us centimeter accu-

rate dense alignments of the LiDAR sweeps. We automati-

cally remove moving objects (e.g., vehicles, cyclists, pedes-
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Figure 4: From left to right: Individual sweep, Accumulated cloud, Symmetry completion, outlier removal and surfel meshing

trians) with LiDAR segmentation [49].

We then convert the aggregated LiDAR point cloud from

multiple drives into a surfel-based 3D mesh of the scene

through voxel-downsampling and normal estimation. We

use surfels due to their simple construction, effective occlu-

sion reasoning, and efficient collision checking[28]. In par-

ticular, we first downsample the point cloud, ensuring that

over each 4×4×4 cm3 space only one point is sampled. For

each such point, normal estimation is conducted through

principal components analysis over neighboring points (20

cm radius and maximum of 200 neighbors). A disk surfel

is then generated with the disk centre to be the input point

and disk orientation to be its normal direction. In addition to

geometric information, we record additional metadata about

the surfel that we leverage later on for enhancing the real-

ism of the simulated LiDAR point cloud. We record each

surfel’s (1) intensity value, (2) distance to the sensor, (3)

and incidence angle (angle between the LiDAR sensor ray

and the disk’s surface normal). Fig. 3 depicts our map build-

ing process, where a reconstructed map colored by recorded

intensity is shown in the last panel. Note that this map-

generation process is cheaper than using 3D artists, where

the cost is thousands of dollars per city block.

3.2. 3D Reconstruction of Objects for Simulation

To create realistic scenes, we also need to simulate dy-

namic objects, such as vehicles, cyclists, and pedestrians.

Similar to our maps in Sec. 3.1, we leverage the real world

to construct dynamic objects, where we can encode compli-

cated physical phenomena not accounted for by raycasting

via the recorded geometry and intensity metadata. We build

a large-scale collection of dynamic objects using data col-

lected from our self-driving fleet. We focus here on generat-

ing rigid objects such as vehicles, and in the future we will

expand our method to deformable objects such as cyclists

and pedestrians. It is difficult to build full 3D mesh repre-

sentations from sparse LiDAR scans due to the motion of

objects and the partial observations captured by the LiDAR

due to occlusion. We therefore develop a dynamic object

generation process that leverages (1) inexpensive human-

annotated labels, and (2) the symmetry of vehicles.

We exploit 3D bounding box annotations of objects

over short 25 second snippets. Note that these annota-

tions are prevalent in existing benchmarks such as KITTI

or Nuscenes[13, 5]. We then accumulate the LiDAR points

inside the bounding box and determine the object relative

coordinates for the LiDAR points based on the bounding

box center (see Fig. 4, second frame). This is not suffi-

cient as this process often results in incomplete shapes due

to partial observations. Motivated by the symmetry of vehi-

cles, we mirror the point cloud along the vehicle’s heading

axis and concatenate with the raw point cloud. This gives

a more complete shape as shown in Fig. 4, third frame. To

further refine the shape and account for errors in point cloud

alignment for moving objects, we apply an iterative color-

ICP algorithm, where we use recorded intensity as the color

feature [27]. We then meshify the object through surfel-disk

reconstruction, producing Fig. 4, last frame. Similar to our

approach with static scenes, we record intensity value, orig-

inal range, and incidence angles of the surfels. Using this

process, we generated a collection of over 25,000 dynamic

objects. A few interesting objects are shown in Fig. 5. We

plan to release the generated assets to the community.

4. Realistic Simulation for Self-driving

Given a traffic scenario, we compose the virtual world

scene by placing the dynamic object meshes created in

Sec. 3.2 over the 3D static environment from Sec. 3.1. We

now explain the physics-based simulation used to simulate

both geometry and intensity of the LiDAR point cloud given

sensor location, 3D assets, and traffic scenario as input.

Then, we go over the features and data provided to a neural

network to enhance the realism of the physics-based LiDAR

point cloud by estimating which LiDAR rays do not return

back to the sensor, which we call ”raydrop”.

4.1. Physics based Simulation

Our approach exploits physics-based simulation to create

an estimation of the geometry of the generated point cloud.

We focus on simulating a scanning LiDAR, i.e., Velodyne

HDL-64E, which is commonly used in many autonomous

cars and benchmarks such as KITTI [13]. The system has

64 emitter-detector pairs, each of which uses light pulses

to measure distance. The basic concept is that each emitter

emits a light pulse which travels until it hits a target, and a

portion of the light energy is reflected back and received by

the detector. Distance is measured by calculating the time

of travel. The entire optical assembly rotates on a base to

provide a 360-degree azimuth field of view at around 10

Hz with each full ”sweep” providing approximately 110k

returns. Note that none of the techniques described in this

paper are restricted to this sensor type. We simulate our

LiDAR sensor with a graphics engine given a desired 6-
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Figure 5: Left: Scale of our vehicle bank (displaying several hundred vehicles out of 25000), Right: Diversity of our vehicle

bank colored by intensity, overlaid on vehicle dimension scatter plot; Examples (left to right): opened hood, bikes on top of

vehicle, opened trunk, pickup with bucket, intensity shows text, traffic cones on truck, van with trailer, tractor on truck

Figure 6: Left: Raydrop physics explained: Multiple real-world factors and sensor biases determine if the signal is detected

by LiDAR receiver. Right: Raydrop network: Using ML and real data to approximate the raydropping process.

DOF pose and velocity. Based on the LiDAR sensor’s in-

trinsics parameters (see [23] for sensor configuration), a set

of rays are raycasted from the virtual LiDAR center into the

scene. We simulate the rolling shutter effect by compen-

sating for the ego-car’s relative motion during the LiDAR

sweep. Thus, for each ray shot from the LiDAR sensor at a

vertical angle θ and horizontal angle φ we represent the ray

with the source location c and shooting direction n: c =
c0 + (t1 − t0)v0, n = R0[cos θ cosφ, cos θ sinφ, sin θ]

T

where c0 is the sensor-laser’s 3D location, R0 is the 3D

rotation at the beginning of the sweep w.r.t. the map coordi-

nates, v0 is the velocity and t1 − t0 is the change in time of

the simulated LiDAR rays. In addition to rolling-shutter ef-

fects from the ego-car, we simulate the motion-blur of other

vehicles moving in the scene during the LiDAR sweep. To

balance computational cost with realism, we update objects

poses within the LiDAR sweep at 360 equally spaced time

intervals. Using Intel Embree raycasting engine (which uses

the Moller-Trumbore intersection algorithm [26]), we com-

pute the ray-triangle collision against all surfels in the scene

and find the closest surfel to the sensor that is hit. Applying

this to all rays in the LiDAR sweep, we obtain a physics-

generated point cloud over the constructed scene. In addi-

tion, we apply a mask to remove rays that hit the SDV.

4.2. Learning to Simulate Raydrop

Motivation: The LiDAR simulation approach described

so far produces visually realistic geometry for LiDAR point

clouds at first glance. However, we observe that the real Li-

DAR usually has approximately 10% fewer LiDAR points

that the raycasted version generated, and some vehicles

have many more simulated LiDAR points than real. One

assumption of the above physics-based approach is that ev-

ery ray casted into the virtual world returns if it intersects

with a physical surface. However, a ray casted by a real Li-

DAR sensor may not return (raydrop) if the strength of the

return signal (the intensity value) is not strong enough to

be detected by the receiver (see Fig. 6, left)[19]. Modelling

raydrop is a binary version of intensity simulation - it is a so-

phisticated and stochastic phenomenon impacted by factors

such as material reflectance, incidence angle, range values,

beam bias and other environment factors. Many of these

factors are not available in artist-designed simulation envi-

ronments, but leveraging real world data allows us to cap-

ture information, albeit noisy, about these factors. We frame

LiDAR raydrop as a binary classification problem. We ap-

ply a neural network to learn the sensor’s raydrop charac-

teristics, utilizing machine learning to bridge the gap be-

tween simulated and real-world LiDAR data. Fig. 6, right,

summarizes the overall architecture. We next describe the

model design and learning process.

Model and Learning: To predict LiDAR raydrop, we

transform the 3D LiDAR point cloud into a 64 x 2048 2D

polar image grid, allowing us to encode which rays did not

return from the LiDAR sensor, while also providing a map-

ping between the real LiDAR sweep and the simulated one

(see Fig 6, right). We provide as input to the network a set

of channels1 representing observable factors potentially in-

fluencing each ray’s chance of not returning. Our network

architecture is a standard 8-layer U-Net [31]. The output of

our network is a probability for each element in the array if

it returns or not. To simulate LiDAR noise, we sample from

the probability mask to generate the output LiDAR point

1We use real-valued channels: range, original recorded intensity, inci-

dence angle, original range of surfel hit, and original incidence angle of

surfel hit. Note that we obtained the original values from the metadata

recorded in sec. 3.1, 3.2. Integer-valued channels: laser id, semantic class

(road, vehicle, background). Binary channels: Initial occupancy mask.
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Figure 7: Qualitative Examples of Raydrop

cloud. We sample the probability mask instead of doing

direct thresholding for two reasons: (1) We learn raydrop

with cross-entropy loss, meaning the estimated probabili-

ties may not be well calibrated [15] - sampling helps miti-

gate this issue compared to thresholding. (2) Real lidar data

is non-deterministic due to additional noises (atmospheric

transmittance, sensor bias) that our current approach may

not fully model. As shown in Fig. 7, learning raydrop cre-

ates point clouds that better match the real data.

5. Experimental Evaluation

In this section we first introduce the city driving datasets

that we apply our method on and cover LiDARsim im-

plementation details. We then evaluate LiDARsim in four

stages: (1) We demonstrate it is a high-fidelity simulator

by comparing against the popular LiDAR simulation sys-

tem CARLA via public evaluation on the KITTI dataset

for segmentation and detection. (2) We evaluate LiDARsim

against real LiDAR and simulation baselines on segmenta-

tion and vehicle detection. (3) We combine LiDARsim data

with real data to further boost performance on perception

tasks. (4) We showcase using LiDARsim to test instance

segmentation of unknown objects and end-to-end testing of

the autonomy system in safety critical scenarios.

5.1. Experimental Setting

We evaluated our LiDAR simulation pipeline on a novel

large-scale city dataset as well as KITTI [13, 2]. Our city

dataset consists of 5,500 snippets of 25 seconds and 1.4

million LiDAR sweeps captured at various seasons across

the year. They contain multiple metropolitan cities in North

America covering diverse scenes. Centimeter level localiza-

tion is conducted through an offline process. We split our

city dataset into 2 main sets: map-building (∼87%), and

downstream perception (training ∼7%, validation ∼1%,

and test ∼5%). To accurately compare LiDARsim against

real data, we simulate each real LiDAR sweep example us-

ing the SDV ground truth pose and the dynamic object poses

based on the groundtruth scene layout for that sweep. Then

for each dynamic object we simulate, we compute a fitness

score for each object in our library based on bounding box

label dimensions and initial relative orientation to the SDV,

and select a random object from the top scoring objects to

simulate. We then use the raycasted LiDAR sweep as input

to train our raydrop network, and the respective real LiDAR

sweep counterpart is used as labels. To train the raydrop

network, we use 6 % of snippets from map-building and

Train Set Overall Vehicle Background

CARLA[46] (Baseline) 0.65 0.36 0.94

LiDARsim (Ours) 0.89 0.79 0.98

SemanticKITTI (Oracle) 0.90 0.81 0.99

Table 1: LiDAR Vehicle Seg. (mIOU); SemanticKITTI val.

Train Set IoU 0.5 IoU 0.7

CARLA-Default (Baseline) 20.0 11.5

CARLA-Modified (Baseline) 57.4 42.2

LiDARsim (Ours) 84.6 73.7

KITTI (Oracle) 88.1 80.0

Table 2: LiDAR Vehicle Det (mAP); KITTI hard val.

IoU 0.7

Train Set (100k) ≥ 1 pt ≥ 10 pt

Real 75.2 80.2

GT raydrop 72.3 78.5

ML raydrop 71.6 78.6

Random raydrop 69.4 77.5

No raydrop 69.2 77.4

Table 3: Raydrop Analysis; Vehicle Det (mAP); Real Eval.

IoU 0.7

Train Set (100k) ≥ 1 pt ≥ 10 pt

Real 75.2 80.2

Real-Data Objects (Ours) 71.6 78.6

CAD Objects 65.9 74.3

Table 4: CAD vs. Ours; Vehicle Det (mAP); Real Eval.

Segmentation (mIOU)

Train Set Overall Vehicle Background Road

Real10k 90.2 87.0 92.8 90.8

Real100k 96.1 95.7 97.0 95.7

Sim100k 91.9 91.3 93.5 90.9

Sim100k Real10k 94.6 93.9 95.8 94.0

Sim100k Real100k 96.3 95.9 97.1 95.8

Table 5: Data Augmentation; Segmentation; Real Eval.

IoU 0.7

Train Set ≥ 1 pt ≥ 10 pt

Real 10k 60.0 65.9

Real 100k 75.2 80.2

Sim 100k 71.1 78.1

Real 10k + Sim100k 73.5 79.8

Real 100k + Sim 100k 77.6 82.2

Table 6: Data Augmentation; Vehicle Detection; Real Eval.

use back-propagation with Adam [21] with a learning rate

of 1e−4. The view region for perception downstream tasks

is -80 m. to 80m. along the vehicle heading direction and

-40 m. to 40 m. orthogonal to heading direction.

5.2. Comparison against Existing Simulation

To demonstrate the realism of LiDARsim, we apply Li-

DARsim to the public KITTI benchmark for vehicle seg-

mentation and detection and compare against the existing
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Figure 8: Real LiDAR Segmentation. Left: LiDARsim

trained; Right: real trained. Road, Car, Background

simulation system CARLA. We train perception models

with simulation data and evaluate on KITTI. To compensate

for the domain gap due to labeling policy and sensor config-

urations between KITTI and our dataset, we make the fol-

lowing modifications to LiDARsim: (1) adjust sensor height

to be at KITTI vehicle height, (2) adjust azimuth resolution

to match KITTI data, and (3) utilize KITTI labeled data to

generate a KITTI dynamic object bank. Adjustments (1)

and (2) are also applied to adapt CARLA under the KITTI

setting (CARLA-Default). The original CARLA LiDAR

simulation uses the collision hull to render dynamic objects,

resulting in simplistic and unrealistic LiDAR. To improve

CARLA’s realism, we generate LiDAR data by sampling

from the depth-image according to the Velodyne HDL-64E

setting (CARLA-Modified). The depth-image uses the 3D

CAD model geometry, generating more realistic LiDAR.

Table 1 shows vehicle and background segmentation

evaluation on the SemanticKITTI dataset [2] using the Li-

DAR segmentation network from [49]. We train on 5k ex-

amples using either CARLA motion-distorted LiDAR [46],

LiDARsim using scene layouts from our dataset, or Se-

manticKITTI LiDAR, the oracle for our task. LiDARsim is

very close to SemanticKITTI performance and significantly

outperforms CARLA 5k. We also evaluate the performance

on the birds-eye-view (BEV) vehicle detection task. Specif-

ically, we simulate 100k frames of LiDAR training data

using either LiDARsim or CARLA, train a BEV detector

[44], and evaluate over KITTI validation set. For KITTI

Real data, we use standard train/val splits and data augmen-

tation techniques [44]. As shown in Table 2 (evaluated at

”hard” setting), LiDARsim outperforms CARLA and has

close performance with the real KITTI data, despite being

from different geographic domains.

5.3. Ablation Studies

We conduct two ablation studies to evaluate the use of

real-world assets and the raydrop network. We train on ei-

ther simulated or real data and then evaluate mean average

precision (mAP) at IoU 0.7 at different LiDAR points-on-

vehicle thresholds (fewer points is harder).

Raydrop: We compare the use of our proposed raydrop

network against three baselines: ”No raydrop,” is raycast-

ing with no raydrop; all rays casted to the scene that return

are included in the point cloud. ”GT raydrop,” raycasts

Figure 9: Real LiDAR Detection. Left: LiDARsim trained;

Right: real trained. Predictions, Groundtruth

only the rays returned from the real LiDAR sweep. This

serves as an oracle performance of our ray drop method.

”Random raydrop,” randomly drops 10% of the raycasted

LiDAR points, as this is the average difference in returned

points between real LiDAR and No raydrop LiDAR. As

shown in Tab. 3 using ”ML Raydrop” boosts detection by

2% AP compared to raycasting or random raydrop, and is

close to oracle ”GT Raydrop” performance.

Real Assets vs CAD models: Along with evaluating dif-

ferent data generation baselines, we also evaluate the use

of real data to generate dynamic objects. Using the same

LiDARsim pipeline, we replace our dynamic object bank

with a bank of 140 vehicle CAD models. Bounding box la-

bels for the CAD models are generated by using the same

bounding box as the closest object in our bank based on

point cloud dimensions. As shown in Tab. 4, LiDARsim

with CAD models has a larger gap (9% mAP gap) with real

data vs. LiDARsim with real-data based objects (3.6% gap).

5.4. Combining Real and LiDARsim Data

We now combine real data with LiDARsim data gen-

erated from groundtruth scenes to see if simulated data

can further boost performance when used for training. As

shown in Tab. 5, with a small number of real training exam-

ples, the network’s performance degrades. However, with

the help of simulated data, even with around 10% real data,

we are able to achieve similar performance as 100% real

data, with less than 1% mIOU difference, highlighting Li-

DARsim’s potential to reduce the cost of annotation. When

we have large-scale training data, simulation data offers

marginal performance gain for vehicle segmentation. Tab. 6

shows the mAP of object detection using simulated training

data. Compared against using 100k training data, augment-

ing with simulated data helps further boost the performance.

5.5. LiDARsim for Safety and Edge-Case Testing

We conduct three experiments to demonstrate LiDAR-

sim for edge-case testing and safety evaluation. We first

evaluate LiDARsim’s coherency against real data when it is

used as testing protocol for models trained only with real

data. We then test perception algorithms on LiDARsim for

identifying unseen rare objects. Finally, we demonstrate
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Metric IoU 0.5 IoU 0.7

Eval on Real (AP) 91.5 75.2

Eval on LiDARsim (AP) 90.2 77.9

Detection Agreement 94.7 86.5

Table 7: Sim vs. Real Eval. performance gap for model

trained only on real data (≥ 1 pt)

how LiDARsim allows us to evaluate how a motion planner

maneuvers safety-critical scenarios in a closed-loop setting.

Real2Sim Evaluation: To demonstrate that LiDARsim

could be used to directly evaluate a model trained solely

on real data, we report in Tab. 7 results for a detection

model trained on 100k real data and evaluated on either

the Real or LiDARsim test set. We also report a new

metric called ground-truth detection agreement: κdet =
|R+∩S+|+|R

−
∩S

−
|

|R+∪R
−
| , where R+ and R− are the sets of

ground-truth labels that are detected and missed, respec-

tively, when the model is evaluated on real data, and S+ and

S−, when the model is evaluated on simulated data. With a

paired set of ground-truth labels and detections, we ideally

want κdet = 1, where a model evaluated on either simulated

or real data produces the same set of detections and missed

detections. At IoU=0.5, almost 95% of true detections and

missed detections match in real and LiDARsim data.

Rare Object Testing: We now use LiDARsim to analyze

a perception algorithm for the task of open-set panoptic seg-

mentation: identifying known and unknown instances in

the scene, along with semantic classes that do not have in-

stances, such as background or road. We evaluate OSIS [40]

to detect unknown objects. We utilize CAD models of an-

imals and construction elements that we place in the scene

to generate 20k unknown-object evaluation LiDAR sweeps.

We note that we use CAD models here since we would like

to evaluate OSIS’s ability to detect unknown objects that the

vehicle has never observed. We leverage the lane graph of

our scenes to create different types of scenarios: animals

crossing a road, construction blocking a lane, and random

objects scattered on the street. Table 8 shows reported un-

known and panoptic quality (UQ/PQ) for an OSIS model

trained only on real data. Our qualitative example in Fig. 11

shows OSIS’s performance on real and LiDARsim closely

match: OSIS detects the goose. We are also able to identify

situations where OSIS can improve, such as in Fig. 10: a

crossing rhino is incorrectly segmented as a vehicle.

Safety-critical Testing: We now evaluate perception on

the end-metric performance of the autonomy system: safety.

We evaluate an enhanced neural motion planner’s (NMP)

[48] ability to maneuver safety-critical scenarios. We take

the safety-critical test case described in Fig. 11 and gen-

erate 110 scenarios of the test case in geographic areas in

different cities and traffic configurations. To understand the

safety buffers of NMP, we vary the initial velocity and trig-

Figure 10: Evaluating perception for unknown objects.

Trained on real, evaluated with LiDARsim. Left: Simu-

lated scene. Right: OSIS Segmentation Predictions. Un-

kown instances are in shades of green. A rhino is incorrectly

detected as car (red). Construction correctly detected.

Figure 11: Results for cases in Figure 1. Models trained

on real, evaluated on LiDARsim. Top-left: OSIS on Real

Top-right: OSIS on LiDARsim Bot-left: Safety Case in

LiDARsim Bot-right: NMP Planned path to avoid collision

Unknown (UQ) Vehicle (PQ) Road (PQ)

LiDARsim 54.9 87.7 93.4

Real[40] 66.0 93.5 97.7

Table 8: Open-set Seg. results, trained on real LiDAR

ger time of the occluded vehicle entering the SDV lane. Fig.

11 shows qualitative results. On average, the NMP avoids

colliding with the other vehicle 90% of the time.

6. Conclusion

LiDARsim leverages real-world data, physics, and ma-

chine learning to simulate realistic LiDAR sensor data.

With no additional training or domain adaptation, we can di-

rectly apply perception algorithms trained on real data and

evaluate them with LiDARsim in novel and safety-critical

scenarios, achieving results that match closely with the real

world and gaining new insights into the autonomy system.

Along with enhancing LiDARsim with intensity simula-

tion and conditional generative modeling for weather condi-

tions, we envision using LiDARsim for end-to-end training

and testing in simulation, opening the door to reinforcement

learning and imitation learning for self-driving. We plan to

share LiDARsim with the community to help develop more

robust and safer solutions to self-driving.
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