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LIE ALGEBRA MODULES WITH FINITE
DIMENSIONAL WEIGHT SPACES, I

S. L. FERNANDO

ABSTRACT. Let g denote a reductive Lie algebra over an algebraically closed
field of characteristic zero, and let § denote a Cartan subalgebra of g. In
this paper we study finitely generated g-modules that decompose into direct
sums of finite dimensional §-weight spaces. We show that the classification
of irreducible modules in this category can be reduced to the classification of
a certain class of irreducible modules, those we call torsion free modules. We
also show that if @ is a simple Lie algebra that admits a torsion free module,
then g isof type 4 or C.

1. INTRODUCTION

Let g be a finite-dimensional, reductive Lie algebra over an algebraically
closed field, k, of characteristic zero, and let % (g) be its enveloping algebra.
If h is a Cartan subalgebra of g, then let .#(g, ) denote the category of
all finitely generated 7 (g)-modules that decompose into direct sums of finite
dimensional h-weight spaces. This paper, and a sequel [Fe] in preparation, are
devoted to the study of the category .# (g, h). A primary focus of the current
paper is the problem of classifying all irreducible modules in .# (g, ).

Our approach to classifying modules in .# (g, h) that are irreducible involves
the study of a rather select class of modules in .# (g, b), those we call torsion
free modules. A module M € .#(g, b) is said to be a torsion free module if
dimk[x]-m = oo, for every x € g\b and m € M\(0). In this work, tor-
sion free modules play a role similar to the role of highest weight spaces in the
classification of irreducible highcst weight modules. Let p g.s be a parabolic
subalgebra of g that contains §, let u be the nilradical of p B.s>andlet [ be
the reductive complement to u in p B.S (sometimes called a Levi complement
to u in py ) that is ad(h)-stable. Suppose M is a module in .#(g, ), and

suppose X denotes theset M*={meM:u-m=0 } of u-invariants in M .

Then X has a natural structure of a Z(p, ¢)-module. Now assume that M

is irreducible, and that X is nontrivial. Then X is irreducible as a Z (p, )-

module, and also as a #Z(I)-module. Furthermore, in this situation, M can be

recovered as the unique simple quotient, My ((X), of the “generalized Verma
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758 S. L. FERNANDO

module”, M, (X), induced from the #(p; ()-module X (see Propositions
3.3 and 3.8). It turns out that every irreducible module M € .#(g, ) deter-
mines a certain canonical choice of a parabolic subalgebra pB‘S(D h) of g (see
Proposition 4.17 for the choice of Ps s ) that can be used to reduce the classi-
fication problem to the special case of describing torsion free modules that are
irreducible. In brief, this reduction comes about as follows. In Theorem 4.18
we show that, with the appropriate choice of p s the Levi complement I has
a decomposition, | = t@® t, where r is an ad(h)-stable reductive ideal of [ that
is locally finite on X, and t is an ad(h)-stable semisimple ideal of | such that
X is a torsion free Z(t)-module. This decomposition of | yields a correspond-
ing decomposition of the Z/(I)-module X into a tensor product X, ® X,
where X;  is an irreducible, finite-dimensional #(r)-module, and X is an
irreducible, torsion free module in .Z(t, tNh). The irreducible module M is
completely determined by the parabolic subalgebra p B.S of g, the decomposi-
tion I=t®t of I, and the modules X, and X, . In light of classical results
of Cartan and Weyl, this reduces the classiﬁcation of irreducibles in .Z (g, b)
to the question of classifying irreducible, torsion free modules in .Z(t, tN}h),
where ¢ C g is a simple Lie algebra. In this connection, we show in Theorem
5.2 that if g is a simple Lie algebra that admits a torsion free module, then g
is either of type A, or of type C . The point of view adopted in this paper was
influenced by the main result in [BL1]. In [BL2], using results proved in the
present paper, Britten and Lemire classified all irreducible modules in .Z (g, b)
that have a one-dimensional weight space. The author has recently completed
a classification of irreducible modules in .#Z (g, h). This work will appear in
[Fel.

We close this introduction by briefly describing the contents of this paper,
section by section. §2 is devoted to some generalities on Lie algebra representa-
tions. §3 is devoted to a collection of results that relate the representation theory
of g to the representation theory of Levi factors of certain parabolic subalge-
bras of g. In §4, the problem of classifying irreducible modules in .Z (g, b)
is reduced to the question of classifying irreducible torsion free modules in an
appropriate category .Z (t, tNh), where t is a simple Lie subalgebra of g. It
is also shown that every module in .# (g, h) has finite length (Theorem 4.21).
The main result of §5 is Theorem 5.2, which was described in the preceding
paragraph. This paper is partly based on the author’s Ph. D. dissertation. Ad-
vice and encouragement from Professors G. Benkart, R. Block and A. Joseph
are gratefully acknowledged.

We fix the following notation for the rest of this paper. We use N* (resp.
N, resp. Z) to denote the set of positive integers (resp. the set of nonnegative
integers, resp. the set of all integers). We use k to denote a fixed algebraically
closed field of characteristic zero, g denotes a finite-dimensional reductive Lie
algebra over k, s denotes a finite-dimensional semisimple Lie algebra over k ,
h denotes a Cartan subalgebra of g (or s), p denotes a parabolic subalge-
bra of g (or s) such that § € p, u denotes the nilpotent radical of p, and
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LIE ALGEBRA MODULES WITH FINITE DIMENSIONAL WEIGHT SPACES, I 759

I denotes an ad(h)-stable reductive complement to w in p. .#(a) denotes
the category of all (left) % (a)-modules, where a is a k-Lie algebra. .Z (g, b)
denotes the category of all #Z(g)-modules that decompose into direct sums of
h-weight spaces, when restricted to Z(h). .# (g, ) denotes the category of all
finitely generated modules in .#(g, ) that decompose into direct sums of fi-

LI

nite dimensional h-weight spaces. Throughout, the terms “ring”, “algebra”, and

“module” will mean “ring with identity”, “algebra with identity”, and “unital
module”, respectively.

2. GENERALITIES

Several results on Lie algebra modules that are valid in a setting broader than
the category .# (g, b), described above, will be recalled in this section.

Suppose a is a finite-dimensional Lie algebra over k. Let Z(a) denote the
universal enveloping algebra of a, and let {#”(a) }j o~ e the standard filtration
on #(a). Recall that one version of the Poincaré-Birkhoff-Witt Theorem states
that the corresponding graded algebra is isomorphic to the symmetric algebra
S(a). We shall view S(a) as the coordinate ring of the affine space a* . If E is
a subset of a”, then let ¥ (E) denote the vanishing idealof E: F(E)={p¢€
S(a): p(x) =0, forevery x € E }. Let I denote the set of all ideals in S(a) of
the form 7 (E), forsome E C a*. If J €1, thenlet 7 (J) C a" denote the set
of zerosof J: Z'(J)={x¢€a" :p(x)=0, foreverype J}.If J isanideal
of S(a), then let /J denote the radical { p € S(a): p" € J. for some n € N}
of J. J issaid to be a radical ideal if v/J = J . Recall that, by Hilbert’s zeros
theorem [ZS, Chapter VII, §3], (a) I is equal to the set of radical ideals in S(a),
and (b) the map 77 — #(77) sets up a bijective map between the set of all
subvarieties of a” and the set I. The inverse map is J — 27(J). Under this
correspondence, irreducible subvarieties of a* are associated with prime ideals
in S{a).

Now suppose u € Z J (a\%’ _l(a) . Then the associated homogeneous poly-
nomial gr(u) € S.(a) will be called the symbol of . When u € a, we shall
often identify u with its symbol, by using the canonical embedding a —
S(a). Next suppose M is a finitely generated #(a)-module, and suppose
F = {M’}jEZ is a filtration on M . Then say that &% is a good filtration,
if the associated graded gr#-module gr M is finitely generated. If M s
a finite-dimensional generating subspace of M, M = (0), for i < 0, and
M’ =%’ (a)- M°, for each j € N*, then F = {M’} .y is a good filtration
on M [KL, Lemma 6.7]. This filtration is called the standard filtration on M
determined by MY If M isa finitely generated % (a)-module, then let J(M)
denote the ideal \/Ann gr M , where .7 is any good filtration on M . The no-
tation introduced makes no mention of the filtration & because /Ann gr M
is independent of the choice of the good filtration .% [Ga, p. 448]. We shall
simplify notation by writing 77 (M) for Z°(J(M)). 7" (M) is called the asso-
ciated variety of M .
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760 S. L. FERNANDO

If s € Z(a), thenlet (s) denote the associative subalgebra of 7/(a) generated
by s. If a isa k-Lie algebra, S is a subset of #(a), and M isa 7/ (a)-module,
then define subsets M1 and M of M by

MY ={me M: (s)- mis finite dimensional, for every s € S }

and
S)={meM: if seS, thens -m =0, forsomer=r(s, m)eN}.

If M® = M| then we say S is locally finite on M . If the center, Z(a), of
% (a) 1is locally finite on M , then following accepted terminology we shall say
that M is Z (a)-finite. If M® = M, then we say S is locally nilpotent on M .
Observe that if § C #(a) is locally finite on M, then gr(S) c J(M). Note
also that {0} C Z"(M), because J(M) is a graded ideal. The following lemma
describes the case where 27 (M) = {0} . Although the result is well known, we
include a proof, for lack of a suitable reference.

Lemma 2.1, Let a be a finite-dimensional Lie algebra over k, and let M be a
finitely generated % (a)-module. Then the following statements are equivalent.

(a) M is finite dimensional.
(b) J(M) is equal to the augmentation ideal of S(a).
(¢) The associated variety 7" (M) = {0} .

Proof. We begin by noting that M is finite dimensional if and only if gr M

is finite dimensional. Let S,, denote the graded algebra S(a)/Ann gr M .

Then grM is finite dlmen51onal if and only if S, is finite dimensional,
since gryM is a finitely generated, faithful S, ,-module. On the other hand,
Sy 1s ﬁmte dimensional if and only if the graded ideal Ann grM has finite
codimension in S(a). But, Ann grM has finite codimension if and only if
J(M) = /Ann grM is the augmentation ideal of S(a). Finally observe that
the augmentation ideal corresponds to 77 (M) = {0}, under the correspondence
between radical ideals and subvarieties of a” described by Hilbert’s zeros the-
orem. Therefore J(M) is equal to the augmentation ideal of S(a) if and only
if Z7(M)={0}. O

If 4 is an associative algebra, then the Lie algebra with underlying vector
space A and bracket operation [a, b] = ab — ba will be denoted by LA. Let
a be a k-Lie algebra, and let M be a #(a)-module. Then let U,, denote the
quotient algebra % (a)/Ann M , and let u — & be the natural projection from
#Z(a) to U, .

Lemma 2.2. Let a be a k-Lie algebra, let S be a subset of % (a), and let M
be a finitely generated 7/ (a)-module. Then,

(a) Theset M® = {m e M : (s)- m is finite dimensional, for every s€ S}
is a #(a)-submodule of M , if the adjoint action of the image, S, of S
in LU,, is locally finite on LU, .
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(b) The set M® = {m e M: ifs € S, then s'-m =0, forsomer =
r(s, m) € N} is a % (a)-submodule of M, if S is locally nilpotent on
LU,.

Proof. Since
M[S] - n M[S] ,
SES

clearly it is adequate to prove the lemma in the case where S = {s}, for some
s € #(a). Therefore, assume S = {s}, for some s € S, and let m be an
element of M™. Then, for every a € a and every positive integer i, there is
a finite-dimensional subspace F of M and a finite-dimensional subspace U,
of U,, such that 5'-m € F and ad(5)'(a) C U,. Now recall the identity [Ja, p.
38]

n

(2.3) sa=Y (’Z)(ads)”"'(a)s", where a € a,
i=0

which holds in U,, . It follows from 2.3 that s"a-meU,-F.But Uy-F is

finite dimensional, and so a-m € M¥!, whenever m € M), thus proving (a).
The proof of (b) is similar. We leave it to the reader to fill in the details. O

Next, we state a theorem proved by Gabber [Ga]. To do so, we must introduce
a Poisson bracket structure on S(a). Suppose p € gr;#(a) and g € grj% (a)

are homogeneous elements in gr#Z/(a) . Choose x € i(a) and y € o’ (a) such
that p = gr;(x) and ¢ = gr;(y). Observing that xy — yx € %"~ (a), since
gr#/(a) is commutative, we define the Poisson bracket {p, g} of p and g by

{p,a}=er,,;,_,(xy —yx).

The definition of {p, g} is independent of the choices of x and y. Now extend
the definition to nonhomogeneous elements of S(a), by using bilinearity. The
Poisson bracket is a Lie algebra structure on S(a) that is an extension of the
bracket operation on a. Observe that

(2.4) {pg,r}=plg.r}+{p,r}q, forallp,q,recS(a).

Theorem 2.5 (Gabber [Ga]). Let a be a finite-dimensional k-Lie algebra, let
M be a finitely generated 7/ (a) module, and let F be a good filtration on M .
Then the graded ideal J(M) = \/Ann gro M of S(a) is closed under the Poisson
bracket operation defined above.

Remark 2.6. It follows easily from the commutativity of S(a) that J(M) isa
linear subspace of S(a). Therefore, J(M) is a Lie subalgebra of S(a).

A subvariety 77 of a” is said to be involutive if the ideal ¥ (7") is closed
under the Poisson bracket. Theorem 2.5 asserts that the associated variety of a
finitely generated 7/(a)-module is involutive.
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Corollary 2.7. The set
aMl={xeca: M =M}

of all elements in a that are locally finite on M is a Lie subalgebra of a. It is
in fact the largest subalgebra of a that is locally finite on M .

Proof. We shall view the Lie algebra a as a subspace of S(a), by using the
canonical embedding a — S(a) that maps elements of a onto their symbols.
Let F be a finite-dimensional generating subspace of M . Then, using 2.6,
define a decreasing sequence {a;},.y of subalgebras of a, by setting

ay=a, M =%#(a)F, and a, ,=J(M)Na, foreachieN.

i+1
Clearly a[M] C a,, for every i € N. Since a is finite dimensional, and the
sequence {a,}, .y 1s decreasing, there is a positive integer r such that a, , =a .
But, if a,, = a,, then J(M,) is the augmentation ideal of S(a,). By 2.1,
it follows therefore that M = #/(a,)-F is finite dimensional. Consequently,
Fc M® andso 2.2(a) implies M) = M . This means that a[M] is equal
to the subalgebra a_, thus proving the first assertion of the corollary.

It is clear from the definition of a[M] that every Lie subalgebra of a that
1s locally finite on M is contained in a[M]. In other words, a[M] is maximal
among all Lie subalgebras of a that are locally finite on A . This completes
the proof of the corollary. O

Remark 2.9. By 2.1, M is finite dimensional if and only if a[M]=a.

Suppose M is a 7Z(a) module. Then say that M is a pure module if, for
every x € a, MY s equal to either (0) or M . Irreducible modules clearly
are pure modules. If s is a Lie subalgebra of a and N is a pure Z(s)-module,
then the induced 7/ (a)-module ind:(N) = ’//(a)®7/(5) N is a pure module. The
following result will be used in the proof of 4.21.

Corollary 2.10. Suppose M is a finitely generated 7 (a)-module. Then there is
a finite chain
O=McMc . .cM ' cM=M

of % (a)-submodules of M such that M"/M"_l is a pure module, for | =
l,...,r.

Proof. Since M is Noetherian, and the zero module satisfies the proposition,
there is a maximal submodule A, of M that also satisfies the proposition.
If N = M/M,, then, by 2.7, a[N] is a linear subspace of a. Let r denote
the codimension of a[N] in a. The proof uses induction on r. If r = 0,
then a is locally finite on N, and so by the maximality of M, , it follows
that M, = M. This takes care of the case r = 0. Next, assuming that the
proposition holds whenever the codimension of a[N] in a is less than some
positive integer r, consider the case where the codimension is equal to r.
Since N is not pure, there is a nonzero x € a such that N, = NP Ties strictly
between (0) and N . Observe that the codimension of a[N,] in a is less than
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LIE ALGEBRA MODULES WITH FINITE DIMENSIONAL WEIGHT SPACES, I 763

r, because kx + a[N] C a[N,]. Therefore, by the induction hypothesis, the
proposition holds for the inverse image, M, ,of N, in M . But this contradicts
the maximality of M, , and hence the proof of the corollary is complete. O

Recall that a subvariety 7° of a is said to be involutive if the vanishing
ideal .7 (Z") is closed under the Poisson bracket. Joseph [Jol, p. 62] notes the
following consequence of 2.5.

Corollary 2.11. The irreducible components of 7" (M) are involutive.

This result follows from 2.4 and the fact that the vanishing ideal of an irre-
ducible subvariety of a* is a prime ideal in S(a). Leaving the details of the
proof to the reader, we recall the definition of the Gelfand-Kirillov dimension
of a finitely generated %(a)-module, where a is a finite-dimensional k-Lie al-
gebra. Let {*?/’(a)}jeN be the standard filtration on #(a), and let M be a
finitely generated % (a)-module. Then it turns out that the limit

ml_lgg() log,, dim, #"(a)-F

is a nonnegative integer independent of the choice of F [KL, pp. 90-91]. This
invariant of M is called the Gelfand-Kirillov dimension of M and is denoted
by GKdim(M). If & is the standard filtration on A associated with the
generating set F, then GKdim(AM) is equal to the degree of the Hilbert-Samuel
polynomial of gr M [KL, p. 91], and so, GKdim(M) can be identified with
the dimension of the associated variety 77 (M) [Ha, Chapter I, 7.5]. We now
record a result of Gabber and Joseph.

Theorem 2.12. Let a be a finite-dimensional algebraic Lie algebra over k. If
M is a finitely generated 7% (a)-module and U,, denotes the quotient algebra
% (a)/Ann (M), viewed as a left 7% (a)-module, then

GKdim(U,,) £ 2- GKdim(M).
See [KL, p. 135] for a proof of 2.12.

3. REDUCTIVE LIE ALGEBRAS AND PARABOLIC INDUCTION

In this section we present the necessary background on representations of
reductive Lie algebras. Most of the results we state here are natural extensions
of well-known properties of highest weight modules. Our primary tools are
two functors, N — My (N) and M MY2s | that are frequently used in
the theory of highest weight modules. These functors relate the representation
theory of g and the representation theory of certain reductive subalgebras of
g.

Let g be a reductive Lie algebra and let h be a Cartan subalgebra of g.
We introduce notation to describe parabolic subalgebras of g that contain 4.
Denote the set of nonzero roots of the pair (g, ) by R, and denote the root
lattice of R by ZR. If g =h D P, 9, is the root space decomposition of
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764 S. L. FERNANDO

(g, h), then choose a Chevalley basis
{E_ :a€eR}U{Heh:1<i<n}

for g such that £ € g , for every « € R. Suppose B is a base of R,
and suppose S is a subset of B. Let R; (respectively Ry ) denote the set of
roots in R that are positive (respectively negative) with respect to the ordering
on h* determined by B, and let R denote the subsystem RN _<Za of
R . Then every parabolic subalgebra p of g that contains b is of the form
Pp s =8p0h, where P = R;URS, for some base B of R, and some subset .S
of B. If |B\S| =1, then say that p, . is a maximal parabolic subalgebra of
g. If P is asubset of R, then let P’ denote the “symmetric part” P N (—P)
of P, and let P* denote the “antisymmetric part” P\ (—P) of P. Let ¢ be
the Lie algebra automorphism of g defined by ¢(E ) =—-E__, forall a € R,
and o(h) = —h, forall h € h. We now fix the following notation for the rest
of this section. Let p, p~ be a pair of opposite parabolic subalgebras of ¢
(this means o(p) = p ) that contain h. Choose a subset S € B of R such
that (p,p ) =(pg 5. P_p _g). Let u=uy ¢ (respectively u =u, ) be the
nilradical of p (respectively p~ ), and let | denote the reductive Lie algebra
pnp . Let P:R;URS, sothat u=gp.,and [=hDgp .

If N isa Z(1)-module, then define a p-module structure on N by letting u
act trivially on it. Now define a % (g)-module My (N} by setting

My §(N)=ind§(N) =% (g) ®,p N

On the other hand, if M is a % (g)-module, then let M"#s denote the set
of uy ¢-invariants of M;ie., let

Mu‘”:{meM:uB_S-m:O}.
Since u 1is invariant under the adjoint action of I, it follows that MY is an
l-invariant subspace of M ; thus M" has the structure of an % (I)-module. The
functors introduced above are adjoints of one another:

Proposition 3.1. If N € . #(1) and M € .#(g), then there are natural vector
space isomorphisms

=0 M

5.s(N), M)=Hom , (N, MYs sy,

: Hom #(m(

Remark 3.2. If f: My (N)— M isa g-module map, then O(f): N — Mm*
is defined by ®(f) = Mo (1 ®id,), where 1 ®id, : N — (MB.S(N))u is
the canonical [-invariant inclusion map, and fu is the restriction of f to

(Mg (N)*.
The proof of the proposition will be left to the reader.

Proposition 3.3. I X is an irreducible % (1)-module, then My ((X) has a
unique maximal proper submodule and a unique simple quotient Ly ((X).

M,N
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Proof. Suppose M is a proper submodule of My ((X). Since %(g) v =
#(g)- (Z()-v) =%(g)-(1®, X) = My ((X), if v is a nonzero element
of Mn(l®, X), it follows that M N (1 ®, X) = (0). Let M (X) denote
the union of all proper submodules of M, (X). Then, clearly M (X)n
(1®, X) =(0). But 1® X # (0), and so M (X) is itself a proper sub-
module of My (X). Therefore, M~ (X) is the desired maximal submodule
of M, (X),and My (X)/M (X) is the unique simple quotient, L, ¢(X),
of My ((X). DO

We now recall certain well-known facts about central characters of #Z(g) and
(generalized) central characters of % (g)-modules. Let g be a finite-dimensional
reductive Lie algebra over k. Let Z(g) denote the center of the enveloping
algebra % (g), and let Z(g)" denote the set of all central characters of % (g);
ie. let Z(g)" denote the set of all k-algebra homomorphisms from Z(g) to
k.If 6 € Z(g)", then the §-primary component

Mez{ meM:(z—0(z2)"-m=0, forsomeneN,
and for every z € Z'(g)}

of M isa Z(g)-submodule of M . We shall denote the set {0 € Zg): M° #
(0)} of all generalized central characters of a module M by ch M. If M isa
% (g)-module of finite length, then, by Quillen’s Lemma [Qu], M is Z'(g)-finite
(recall that this means Z'(g) is locally-finite on M ), and ch M is a finite set.
If M isa Z(g)-finite Z(g)-module, then we have a direct sum decomposition
M= P M
fech M

of M in .#(g). If M is also assumed to be finitely generated, then the sum
above is finite.

Next, we sketch Harish-Chandra’s description of the central characters of
%(g). We begin by introducing the necessary notation. Let p, ¢ denote
the sum %Zﬂe pa, and let 4, ¢ denote the algebra automorphism of Z'(h)
(= S(h) = Z(h)) that restricts to h— h — py o(h) on bh. Let n: Z(g) — Z(1)
and n': #(g) — u %(g)+ % (g)u be the projections associated with the decom-
position

@) =%1)® (v %(g)+ % (g)w)
of #Z(g). The map = restricts to a map 75 ¢: .Z(g) — Z(I), while the map
7' restricts to a map ”;9,53 Z(g) — Z(g)u [Vo, p. 118]. If § = J, then
denote p; ¢ by pg, denote A, ¢ by A,, and denote ny; ¢ by m,. Finally,
let rg.b denote the Harish-Chandra isomorphism Agon,: Z'(g) — Z(h), and
let Xg.h: ZFm)" — Z(g)" denote the map )(g,b(i) = iol"g‘b .

Observe that the Harish-Chandra isomorphisms of the pairs (g, §) and (I, b)
satisfy the relation A;‘ls o Fg‘h = I"(‘h °onp g- Passing to characters, we obtain
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766 S. L. FERNANDO
a commutative diagram:

A Ts A
Z ()" ——— Z(b)

Xl.hl lg.hj

A
n

:Z—([)/\ B.S z(g)/\
Here T, ¢ denotes the translation map (4 — 4+ p, ), and ”g,s = (0 —
Oomg ).

Theorem 3.4 (Harish-Chandra [H-C]). The map x4 p: Fm - Fg)" is
surjective and the fibers of Xg.y are finite and invariant under the action of
7 (g, h).

Theorem 3.4 and the commutativity of the diagram above imply that the
fibers of ”g,s are finite.

Proposition 3.5. (a) If N € #(1) is Z(\)-finite, then My ((N) € #(g) is

Z (g)-finite, and ch My (N) = ngvs(ch N). In particular, if ch N is a finite
set, then ch My (N) is a finite set.

(b) If M is Z(g)-finite, then M"*:s € # (1) is Z ()-finite, and
7, s(ch M":5) C ch M.
In particular, if ch M is a finite set, then ch M"5-s is a finite set.

Part (a) follows from 2.2 and the fact that the range of ”:e.s 1s contained
in Z(g)u. We leave the details to the reader. The first two assertions of part
(b) are a special case (corresponding to i/ = 0) of Corollary 3.1.6 in [Vo]. We
direct the reader to this reference for a proof. The final assertion of (b) follows
now from the observation that the fibers of ng' s are finite.

Before stating the next result, we need to introduce a partial order on .Z (1)"
that is determined by B and S. Let c(I) denote the center of [, and let
A ZM" — ()" be the restriction map: 6 — 61, induced by the inclusion
() — Z(1). Define a partial order < on Z'(I)" by setting 6, < 6, , whenever
A(6,) = A(8,) is a sum of roots (or, more accurately, the restriction to c(l) of
a sum of roots) in the set P ={ «€ R:g Cu}. Weshall use 6, <6, to
signify that 6, # 6, and 6, < 6,. If EC Z ()", then let max = denote the
set of elements @ € Z(1)" that are maximal with respect to <. The following
result is a version of Proposition 7.1.8 of [Di], tailored to the present context.

Proposition 3.6. Suppose M € .#(g) is generated by a 7% (1)-submodule, N, of
M"Y5.5 . Then,
(a) There is a unique % (g)-module homomorphism ¢: My ((N)— M such
that, for every n € N, ¢(1 @ n) = n. This map is a surjection.
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by M=% )-N.
(¢) If N is O-primary, for some 68 € Z(1)", and M, is a %(1)-submodule
of res[gM , then we have a direct sum decomposition

0/
M, = @ M,
¢ ez
of M, in #(1). Moreover, §' < 6, whenever 8' € ch M, and Mf) =
NN M, in particular, (Mu)0 =N.

Proof. The first assertion of (a) essentially amounts to a special case of 3.1.
On the other hand, ¢ is surjective because ¢(My ((N)) = (% (g)-(1®N)) =
#(g)- N = M . Part (b) follows from the Poincaré-Birkhoff-Witt Theorem:

M=%@) - N=%uw )@ Z(1)® (#(wWu+k-1)-N
=% ) (ZW)-N),

and so,
(3.7) M=%u )-N.

Since N is Z (I)-finite, and the adjoint action of Z'(I) on % (u ) is locally
finite, 3.7 implies that .Z'(1) is locally finite on M . This yields the first assertion
of part (c). Finally, we note that M = Z(u )u -N+N, by 3.7 and the Poincaré-
Birkhoff-Witt Theorem. But observe that %/ (u” )u™ - N is #/(l)-invariant, and
that 8’ < 6, for every 6’ € ch(% (u” )u™ - N). Therefore, we have a direct sum
decomposition

res M =Z(u ) -NoN

in Z(1), where Z(u )Ju N = EBg,d,(res[gM)ol, and N = (res,gM)G. The
remaining assertions of (¢) follow from these observations. 0O

Recall that if X is an irreducible Z(l)-module, then, by 3.3, M, (X) has
a unique irreducible quotient L, o(X).

Proposition 3.8. The maps Ly ¢ X v Ly (X) and Fy o1V — vis.s de-
termine a bijective correspondence between the set of irreducible modules in
M (1) and the set of irreducible modules, V € .# (g), that have nontrivial uy ¢-
invariants.

Proof. We show

(i) that VY is an irreducible % (1)-module, whenever V € .#(g) is irre-
ducible and V" is nonzero,
(1) that X = LB’S(X)u, for every irreducible Z(I)-module X , and

(1i1) that LB,S(Vu) = V', for every irreducible V' in .#(g) such that 12
is nonzero.
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Suppose V € .#(g) is irreducible, suppose s nonzero, and suppose V|
is a nonzero submodule of V*. We wish to show that V= 148 Now, 2
Z (I)-finite, by 3.5(b). Let 8 € ch Y, and let V|, be a @-primary submodule
of V. Then, since V is an irreducible % (g)-module, and V| C Y, we see
that V' = #(g)-V,. Thus, it follows from 3.6(c) that maxch Y = {6} . But
this holds for any 6 € ch Y. Therefore, ch V¥ has exactly one element 6,
and so, by 3.6(c), we have Y = (Vu)e =V, . Hence, V" is irreducible, thus
proving (1).

Next, suppose X is an irreducible module in .#(I). Then observe that the
map, ®(p): X — LB,S(X)u , determined by the isomorphism, @, of 3.1 and
the canonical projection, p : My (X) — Ly ((X), is nonzero. Since X is
irreducible by hypothesis and L, (X) 1s irreducible by (i), it follows that
®(p) is an isomorphism, thus proving (ii). To prove (iii), suppose V is an
irreducible module in .#(g) such that V" is nonzero. In the notation of 3.1,
let f be the map (D_l(id) from MB‘S(V") to V that corresponds to the
identity map from V¥ to V™. Then f is nonzero, and hence surjective, by
the irreducibility of V' . Since LB,S(Vu) 1s the unique irreducible quotient of

My (V") it follows that L, (V)= V. O

Proposition 3.9. If M € .#(g) has finite length, then so does M Yewn (0.
Proof. Suppose M € .#(g) has finite length. Then M is .Z'(g)-finite, and
ch M is a finite set. Therefore 3.5(b) implies that MY is Z(1)-finite and that
ch M" is a finite set. Clearly it is adequate to show that (Mu)g has finite
length, for every 6 € ch MY, Suppose 6 € ch M"Y . Then let Y denote
the Z(1)-module (M™)?, and let X = Z(g)- Y. We need to show that Y is
Noetherian and Artinian. If

...C]\fi_1

. »
CcNCcN -

is a chain of #/(1)-modules contained in Y , then
. c#H(g)-N"c#@g) Nc#g -N"c. .

is a chain of %/ (g)-submodules of M . Since M has finite length, the number of
distinct modules in the chain {Z(g)- N'}IEN is finite. Now suppose % (g)-N' =
%(g)- N'*', for some i € Z. Then 3.6(c) implies that N' = N'*' . This means
{N"},.eN has a finite, maximal refinement, thus proving that Y is Noetherian
and Artinian. O

4. MODULES WITH WEIGHT SPACE DECOMPOSITIONS

Retain the notation introduced in the second paragraph of the preceding
section. In particular, let g be a finite-dimensional reductive Lie algebra over
k ,and let i be a Cartan subalgebraof g. If M isa #Z(h)-module,and A €p”,
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then set
M, ={meM:h-m=Ah)m, forallheh}.

More generally, if A C ", then let M, denote 2aea M, It M, # (0), then
M, is said to be a weight space of M. The elements of any such M, are
called weight vectors, and A is called the weight of M, . Let A (g,b) be the
category of %/ (g)-modules that decompose into direct sums of weight spaces,
when restricted to . If M is a module in .Z(g, b), then let wt M denote
the set of weights of M :

wtM={ieh : M, #(0)}.

Let .#(g, ) be the full subcategory of .Z (g, ) determined by the conditions
that M € .#(g,b) if and only if M is finitely generated and M, is finite
dimensional, for every Ae wt M. If M € #(g,h), then M is said to be a
(g, h)-weight module. The category .#(g, h) is the main focus of this paper.
Suppose B is a base of the root system R and let < be the partial order on

B* determined by B. Then say that a module M in .#Z(g, ) is a B-highest
weight module, if there isa A € wt M such that u < A, forevery uewt M.

Lemma 4.1. The categories # (g,Y) and #(g,h) are closed under the oper-
ations of taking submodules, taking quotients, and tensoring with finite dimen-
sional % (g)-modules; in particular, if M € #(g, V), M' is a submodule of
M, and m € M' decomposes, in M, into a sum 3, , m, of weight vectors
m,, then m, € M, for every A€ A. If M € #(g,b) and A € y"/ZR, then
M, € A (g, b), and we have a direct sum decomposition

M= @ M,,

A€’ /ZR

of M, in #(g,8). If M is finitely generated, then the number of nonzero
components in the decomposition above is finite.

We leave it to the reader to verify that the proofs of the corresponding asser-
tions for highest weight modules go through with obvious modifications.

Lemma 4.2. If M € .# (g, Y) and the weight spaces of M are all finite dimen-
sional, then M is Z(g)-finite. If M € # (g, V), then ch M is a finite set.

Proof. If #(h) denotes the commutant of § in #(g), then M is &(h)-finite,
because every nonzero element in M belongs to the direct sum of a finite
collection of weight spaces, and the weight spaces of M are preserved under
the action of £ (h). But Z(g) is a subalgebra of € (h), and so, M is Z(g)-
finite. The second assertion of the lemma follows immediately from the fact
that all modules in .#Z(g, ) are finitely generated. 0O

Combining 4.1 and 4.2 we get the following result.
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Lemma 4.3. If M € .# (g, 4) and the weight spaces of M are all finite dimen-
sional, then we have a direct sum decomposition,

M =Pmy,
ALY
of M, in #(g,Y), where the pairs (A.8) run over a subset of (h"/ZR) x
Z(g)", and for each pair (A, 6), Mﬁ isa 6-primary module such that wt M,(i C
A If M e #(g,Y), then the direct sum above is a sum in #(g,h), and the
number of nonzero components in the sum is finite.

We state one more result, 4.5, on decompositions of modules in .Z (g, b).
The proof of 4.5 will be based on the following lemma.

Lemma 4.4. Let R be a k-algebra, and let R, and R, be a pair of commuting
subalgebras of R, with the same identity element. If R, is simple and its center
is contained in the center of R,, then R\R, =R ®, R,.

This lemma is a special case of Theorem 7.1D in [ANT]. We direct the reader
to this reference for a proof.

Lemma 4.5. Suppose M € #(g,b) is irreducible, and suppose g = g, ® g, is
a decomposition of g into a sum of ideals. Set h, =gnh, for i =1,2. Then
there are irreducible modules M, € #(g,.b,), such that M = M, @ _M,, as
% (g)-modules.

Proof. The proof will be based on the following correspondence of Lemire [Lel,
Theorem 1], between irreducible modules in .# (g, §) and irreducible modules
of the commutant, Z(h), of h in #(g). Let V be a module in .Z(g, b)
generated by a weight space V. Then V, is a #(h)-module, and V' is irre-
ducible as a Z(g)-module if and only if V, is irreducible as a % (h)-module.
The map V — V, sets up a bijective correspondence between irreducible mod-
ules V € .# (g, h) with weight 1, and irreducible modules of Z(}) with the
same weight 4. This correspondence has been central to Lemire’s approach to
the study of irreducible modules in .# (g, h). It is assumed in his result cited
above that g is a simple, but the proof extends trivially to the reductive case.
Set £ = M,, and let R (respectively R,, for i = 1, 2) denote the image
of Z(h) (respectively #(h,)) under the representation o : #(h) — End, (E)
determined by the action of #(h) on E. Then, since M is irreducible, the
correspondence described above implies that R = End, (E). Furthermore, R,
and R, are commuting associative subalgebras of R such that R = R| R, . Now
observe that the restriction, resﬁ E,of E to R, has a nontrivial submodule,
because R and R, have the same identity element and E i1s unital. This
fact, and the finite dimensionality of E imply that resﬁ FE has an irreducible
submodule E| . The irreducibility of E, implies that thé representation R —
End, (E,) is surjective. On the other hand, since R, and R, are commuting
subalgebras such that R = R R,, and E = R-E| is a faithful R-module, we
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see that the map R, — End, (E,) is injective. Hence R, = End, (E,) is simple.
Likewise R, is simple. It follows that the centers of R, and R, are the one-
dimensional images of k-1 C #(;) in R. This means that R, and R, satisfy
the hypotheses of 4.4. Therefore R = R,®, R, . But, up to isomorphism, R has
a unique irreducible module, and so the R-module E isisomorphicto E,® E, .
Now set M, = #Z(g;) - E;, for i = 1, 2. Then, by Lemire’s correspondence,
M, is an irreducible ?/(g,.)-module, for i = 1,2, and hence M, ® M, is
an irreducible #(g)-module. Since M, = E = E, ®, E, = (M, ® M,),, as
% (h)-modules, we see that M = M | ®, M, by appealing to Lemire’s result once
more. O

We need to introduce some notation before stating the next lemma. Suppose
M isamodulein #(g, ), o € R,and s = E_ . Then denote the % (g)-module
M by M 1f M = M| then say M is a-finite, and if M = (0), then
say M is a-free. If P isasubsetof R, then denote the subspaces @ ., g, and
Youcpl8,>8_,] of g,by g, and b, respectively. Now assume M €.Z(g, h)
is finitely generated. Then, by virtue of 2.7, the set

F(M)={ae€R: M is a-finite}

is a closed subset of R; thatis, a+ f € F(M), whenever a, B € F(M) and
a+f € R. Clearly, h®gy 4y 18 contained in the set, g[M], of all elements in g
that are locally finite on A . In fact, equality holds in the preceding statement.
To see this, observe that g[M] = h @ g, for some subset S of R, since g[M]
is a subalgebra of g containing h. But o« € F(M) if and only if g, C g[M].
This implies S = F(M), and hence g[M] =h @ 8r () - Combining this fact
with Remark 2.9, we have the following lemma.

Lemma 4.6. Let M be a finitely generated module in 4 (g, Y). Then g[M] =
LECY: PR where F(M) is the closed subset {a € R: M is a-finite } of R. M
is finite dimensional if and only if F(M) = R.

Remark 4.7. If M is a module in Z (g, h), then M = ME) | for every
@ € R; in particular, E_ is locally finite on M if and only if E_ is locally
nilpotent on M . To see this, observe that if m M, is a weight vector in
M, then E -m € M, . It follows therefore that zero is the only possible
eigenvalue of E_, in its action on M .

Lemma 4.8. Let M be a module in #(g,Y), and let « € R. Then,
(a) (wt M)+ NaCcwt M, if M is a-free.
(b) If (A + Na)Nnwt M is a finite set, for every A € wt M, then M is
a-finite.

We leave the proof of the lemma to the reader.

We now state an application of Corollary 2.11 to modules in .# (g, b). This
result was used in our original proof of Proposition 5.1. Although the proof
of 5.1 given below does not rely on Lemma 4.9, we have retained the lemma
because we believe that it is of independent interest.
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Lemmad9. Let M € # (g, h), andlet I be the vanishing ideal of an irreducible
component of 7' (M). Then INg is a parabolic subalgebra of g that contains
h.

Proof. By 2.11 Ing is a Lie subalgebra of g. Since b is locally finite on M,
it follows that h is contained in the Lie algebra I ng. Therefore, I ng takes
the form hog, for some closed subset P of R. Notice E E_ -M, C M, , for
every a in R and every A € wt M . Since the weight spaces of M are finite
dimensional, this implies that £ E_ is locally finite on A/, for every a in
R. Thus, the symbol of E E_ belongsto J(M)C 1. But [ isa prime ideal,
and so, either E_€ Ing,or E_ € InNg, whenever a« € R. Consequently,
INng is of the form h g, , where P is a closed subset of R with the property
that either « € R, or —a € R. Therefore, I N g is a parabolic subalgebra of g
that contains . O

For each « € R, denote the dual root 2a/(«, a) by &. Suppose B is a base
of R, and suppose u € §* is such that u+ Py &5 (u+pg), forevery a€B.
Then we shall say u is B-dominant. Equivalently, x4 € " is B-dominant
whenever —(u, &) ¢ N7, for all « € B. We now state an elementary property
of highest weight modules over simple Lie algebras of rank one.

Lemma 4.10. Suppose s, is a simple k-Lie algebra of type A,, and suppose
b, is a Cartan subalgebra of s,. Let {xa} C h; be the set of nonzero roots
of the pair (s, b, ). Let B be the base {a} of R, let s : 4" — b" denote
the simple reflection corresponding to «, and let < denote the partial order on
h, determined by B. If N is a cyclic B-highest weight % (s,)-module that
is generated by a vector in the highest weight space N,. where u € b| is B-
dominant, then

{Aeb]: A<uandi+py, £s (u+pg)t C WLN.
In particular, if 4 € l); is B-dominant and 7. < u, then A€ wt N .

As mentioned above, this 1s an elementary property of highest weight mod-
ules. The first assertion of the lemma also follows easily from 3.6, and the
second assertion follows from the fact that A+ pgy £ s, (4 + pp), if 4, u € b}
are B-dominant and A < u. Leaving the details of the proof to the reader, we
state a partial converse of 4.8(b). The essential content of the following lemma
is the fact that if g is of type 4,, M € .#{g, b) is o-finite, and all the weight
spaces of M are finite dimensional, then M is Noetherian. Indeed, 4.11 will
be used (via 4.12) in the proof of Theorem 4.21, which asserts that all modules
in .# (g, b) are Noetherian and Artinian. With this application in mind, in the
proof below, we have not assumed finiteness of length, even for modules with
a highest weight.

Lemma 4.11. Suppose the weight spaces of a module M € # (g.Y) are all finite
dimensional, and suppose M is an «-finite module, for some « € R. Then
(A + Na)nNwt M is a finite set, for every . € wt M .
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Proof. Let s, be a three-dimensional subalgebra g ®g__ ®[g,,8_,] of g, let
b, =1[s,,9_,1,and set B = {a}. Suppose M is o-finite, and (A1+Na)Nnwt M
is not a finite set. Then we may assume, without loss of generality, that A is
B-dominant. Moreover, there is an increasing sequence { ji}ieN of positive
integers, and a sequence {m,} . of nonzero vectors in M, such that for each
iy p; =24+ ja is the weight of m,,and E_-m;, =0. Set M(i)=%(s,) - m,.
Then, for each i € N, the #(s,)-module N = M(i) satisfies the hypotheses of
Lemma 4.10, and so M (i), # (0). Observe that the modules A (i) have distinct
central characters, because the set { u; : i € N } is collection of distinct, B-
dominant weights. It follows that % (s,)- M, contains the direct sum @, M (i),
and hence, M, contains the direct sum €, M(i),. But this means that M, is
infinite dimensional, because M (i), # (0), for every i € N. This contradicts
the assumption that M € .# (g, ), thus completing the proof of the lemma. 0O

The following lemma serves as a complement to the assertion made in 4.6 that
if M €.#(g, ) is finitely generated, then the subset { a € R: M is a-finite }
is a closed subset of R. However, note that in 4.12, M is assumed to belong
to . #(g,h).

Lemma 4.12. Suppose {«, B, a+ B} C R, and suppose M € # (g, Y) is a-free
and B-free. Then M is (a + B)-free.

Proof. Suppose M isnot (a+ f)-free. Then, by 2.2, there is no loss of general-
ity in assuming that M is (a+ f)-finite. Since M is a-free and f-free, 4.8(a)
implies that if A € wt M, then 1+ N(a + 8) € wt M. But this contradicts
4.11, because we have assumed M is (o + B)-finite. O

Definition 4.13. Suppose M € .# (g, h), and suppose s is a subalgebra of g.
Then say that s is torsion free on M, if M™! = (0), for every x € s\h. If
M = (0), for every x € g\p, then say that M is a torsion free module.

The following example illustrates the definition above.
Example 4.14. Let g be the three-dimensional simple k-Lie algebra with basis
vectors £ , E_ ,and H_ that satisfy the commutation relations

—{x

[H,,E)=2E, [H,.E ]=-2E_,, and [E,E ]=H

and let h be the Cartan subalgebra kH_ of g. Let V' be an infinite-dimensional
k-vector space with basis {v,},.,,and let 1 € k. Define a % (g)-module struc-
ture on V' by setting

E -v,=0U+iv E_-v,=—(+i)v

-1 —a

iv1» and  H v, =-2(t+1i)v,.
The resulting module is in .# (g, h); it is irreducible and torsion free, provided
t ¢ Z. Notice also that if N € .#(1, b) is torsion free, then p~ is torsion free
on My (N) (here, I, p, B,and S are as described in the second paragraph
of §3).

Remark 4.15. Let p g, s be a parabolic subalgebra of g, let [ = D.c R, 8a be

the Levi complement of u in Pp g, andlet M € A (g,Y). Suppose all the
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weight spaces of M are finite dimensional, suppose [ is torsion free on M,
and suppose AgNwt M is nonempty, for some Ag € ZRS/I)* . Then, by 4.8(a),

A Cwt M, and there is a positive integer c):l such that
RY
. M
dlmkMﬂ =Cp, s forall u € As.

Consequently, if M' is a subquotient of M and g, C 1, where a € R, then
every element of g \(0) acts bijectively on M': in particular, | is torsion free
on M.

Recall that if P is a subset of R, then P’ denotes the set PN (—P), and
P denotes the set P\(—P). P is the disjoint union of its antisymmetric
and symmetric parts: P = P°UP’. P is said to be a parabolic subset if
PU(-P) =R, and P is a closed subset of R. A pair (P, P,) of parabolic
subsets of R is said to be a pair of opposite parabolic subsets if Pf = st , and
P; = —P/. A subalgebra p of g that contains b is a parabolic subalgebra if
and only if p 1s of the form g, ® b, for some parabolic subset P of R. On
the other hand, (g, ©h, g,» ©h) is a pair of opposite parabolic subalgebras of
g if and only if P', P" are opposite parabolic subsets of R.

Lemma 4.16. Suppose R is the disjoint union of subsets F and T . Then the
Jfollowing statements are equivalent.
(a) F and T are closed subsets of R.
(b) (FUT’, TUF?®) is a pair of opposite parabolic subsets of R.
(c) There is a base B of R, a subset S of B, and a decomposition of S
into mutually orthogonal subsets S’ and S", such that

F=(R,\R)URy and T =(R,\R)UR

are the decompositions of F and T into their antisymmetric and sym-
metric parts.

The proof of 4.16 is routine, and will be left to the reader.

Recall from §2 that a %Z/(g)-module M is said to be a pure module if M
is equal to (0) or M, for every x € g. In the next result, we show that the
action of g on a pure weight module, M , determines a decomposition of g
into a sum of subalgebras that are either locally finite or torsion free on M .
We make use of this result in our approach to the classification of irreducible
modules in .# (g, §) and in our proof of the fact that every module in .# (g, h)
has finite length.

Proposition 4.17. Suppose M is a pure module in #(g,hy). Then g has a
unique pair, (p,,, p,,), of opposite parabolic subalgebras such that
(a) the nilradical, w,, . of v,, is locally nilpotent on M,
(b) the nilradical, w,,, of p,, is torsion free on M, and
(c) the common Levi factor | =p, Np,, of p,, and p,, decomposes into
a direct sum 1,, = c(l,,)®s,, ®t,, of ideals, where c(1,,) is the center
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of \,,., s,, is the largest ad(h)-stable semisimple subalgebra of g that
is locally finite on M, and t,, is the largest ad(h)-stable semisimple
subalgebra of g that is torsion free on M .

In addition, there is a parabolic subalgebra, q,,, of g such that q,, contains 4,
the nilradical, v,,, of q,, is locally nilpotent on M, and the ad(h)-stable Levi
complement, t,,, of v, in q,, is torsion free on M .

Proof. Let
F={a€R:Mis a-finite }, T={a€eR:Misa-free },
P=FUT', and P  =TUF".

Then R is a disjoint union of F and T, since M is pure. Furthermore, F
and T are closed subsets of F',by4.6 and 4.12. Thus, by 4.16, p,, = g,®h and
Py = 8p- ©h constitute a pair of opposite parabolic subalgebras of g. Since
u,, =gpa and u,, = g, (b) is a consequence of the definition of T, while (a)
follows from 4.7 and the definition of F . To prove (c), define subalgebras s,,
and t,, of g by setting

GM:gl_\r@bF: and tM:gTs®st,

respectively. If I, =s, +t, +b, then clearly [, is an ad(h)-stable reductive
subalgebra of g. Moreover, if ¢(l,,) denotes the center of I, , then c(l,,)
is the centralizer of s, +t, in I, , the sum s, +t, is direct, and s, @
t,, 1s the commutator of I, . Furthermore, 5, ®t, ® c(l,,) is an ad(h)-
stable decomposition of [, . Observe that, if m is an ad(h)-stable semisimple
subalgebra of g, then there is a subset 4 of R such that 4 = 4°, and m =
h,®g,. Suppose s =h 4+ ® g, 1is an ad(h)-stable semisimple subalgebra
of g that is locally finite on M. Then, A" ¢ F’, and therefore, s C Sy -
In other words, s,, is the largest ad(h)-stable semisimple subalgebra that is
locally finite on M . Similarly, one can show that t,, is the largest ad(h)-
stable semisimple subalgebra of g that is torsion free on M . Next, suppose
(p,, P, ), is another pair of parabolic subalgebras of g that satisfy (a), (b),
and (c). Then, the characterizations of s,,, t,,, and c(l,,) in (c) imply that
p,Np, =1,,. Let u and u; be the nilradicals of p, and p, , respectively.
Then (a), (b), and (c) imply that u, C g;. = u,, and u; C g;. = u,, . But,
g=u,0l0u, =u ®©idu, , and so, comparing dimensions, we see that
u=u, and u =u, .

We use 4.16 to prove the last assertion of the proposition too. Let P =
R; U Ry, in the notation of 4.16(c), and let q,, be the parabolic subalgebra
h®gp(=pp gv). If v, denotes the nilradical of q,,, then v, C gp C gf.
Therefore, v,, is locally finite on M, and so, by 4.7, v,, is locally nilpotent
on M. On the other hand, if r, denotes the ad(h)-stable Levi factor of q,,,
then t,, = h ® g,s. Therefore, t,, is torsion free on A . This completes the
proof of the proposition. 0O
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We now apply Proposition 4.17 to the problem of classifying irreducible mod-
ules in .# (g, h). Let M denote an irreducible module in .#Z (g, §). Then,
clearly, M is a pure module. Therefore, there is a unique pair, (p,p ), of
opposite parabolic subalgebras of g such that (p, p~ ) and M together satisfy
conditions (a), (b), and (c) of 4.17. Since M is irreducible, by 3.8, MY isanir-
reducible module in .Z (1, ). (We note that if M is torsion free, then u = (0),
and so in this case, | = g and MY =M .) Furthermore, M can be recovered
from M", since M = LB‘S(Mu). Therefore, an irreducible module M in

A (g, h) 1s completely determined by the module MY in #(1,1). In other
words, the classification of irreducible modules in .# (g, §) can be reduced to
the problem of classifying irreducible modules in .Z (I, h). Now choose a base
B of R and a subset .S of B such that

(pB.S’ p—B.—S) =(p, P_),

where (p, p ) is the pair of opposite parabolic subalgebras described in 4.17;
this choice imposes strong constraints on the isomorphism class of MY Let s ,
t,and c(l) beasin4.17(c), and let t = s®c(l). Then, by 4.5, the decomposition
I =&t gives rise to a decomposition of M" into a tensor product X| ®
X, , where X, is an irreducible Z(r)-module, and X, is an irreducible Z/(t)-
module. If M isin .# (g, h),and F(M) isthe set { a € R: M is a- finite },
then by 4.6, M is finite dimensional if and only if F(M) = R. Consequently,
X, is finite dimensional. On the other hand, t is torsion free on M, and so,
in particular, t is torsion free on X,. We summarize this discussion in the
following theorem.

Theorem 4.18. Suppose M is an irreducible module in #(g,Y). Let p, p ,
u, I, s, t, and c(l) be as in 4.17, and let v be the ad(h)-stable reductive
subalgebra s@c(l) of g. Let B be a base of R, and let S be a subset of B such
that (pg g.P_p5 _g) =9 ). Then M" is an irreducible % (1)-module that
decomposes into a tensor product X, ® Xy of an irreducible, finite-dimensional
% (v)-module, X ., and an irreducible, torsion free module X; in #(t,tNY).
Furthermore, given the pair (X;,, X;). the module M can be recovered as
LB,S(Xﬁn ® Xfr) :

Since the irreducible, finite-dimensional modules of a reductive Lie algebra
can be described using well-known results of Cartan and Weyl, it follows from
4.18 that the classification of irreducible modules in .# (g, §) can be reduced to
the classification of irreduciblé torsion free modules M in .Z(t, tNh), where
t is a uniquely determined ad(h)-stable semisimple subalgebra of g. Further-
more, if the subalgebra t decomposes into a sum @;:0 t. of ideals, then, by 4.5,
there is a corresponding decomposition of X, into a tensor product &’_, X, ,
of irreducible, torsion free #(t;)-modules. Consequently, the problem can be
further reduced to the classification of irreducible modules M € .Z(t, tNh),
where t is simple, and M is torsion free.
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We devote the rest of this section to showing that every module M in
(g, b) has finite length. Recall that .Z(g, ) denotes the category of (not
necessarily finitely generated) 7/(g)-modules that decompose into direct sums
of h-weight spaces, when restricted to §.

Lemma 4.19. Suppose M € .# (g, Y) is torsion free, suppose all the weight spaces
of M are finite dimensional, and suppose

is the decomposition of M specified by 4.1. Then, the following assertions are
equivalent.

(a) M has finite length.

(b) M s finitely generated.

(¢) The number of nonzero components in the decomposition above is finite.

Proof. Assertion (b) is a trivial consequence of (a). That (c) is a consequence
of (b) is a special case of 4.1. Finally, suppose (c) holds. Then assume, without
loss of generality, that wt M = A, for some A € §"/ZR. Notice, if M isa
submodule of M , then by 4.15, wt M’ = A, and 9, \(0) maps Mlll bijectively
onto M, ,forevery a € R andevery s € A. But this means M' = %(g)-M,
for any A € A. Therefore, if

eMTeM Mt o
is chain of submodules of M , then

oM eM M c
is an order-isomorphic chain of k-subspaces of M, . Since the dimension of
M, is finite, the second chain has finite length and hence, so does the first. This
completes the proof. 0O

In 4.21, we prove that every module in .#(g, h) has finite length. As an
immediate consequence of this, we show in 4.22 that if M € .# (g, §), then
Mte (I, h), a fact we have not established thus far. As preparation for 4.21,
we consider a special case of 4.22:

Lemma 4.20. Suppose M € .# (g, h), and suppose q is a parabolic subalgebra
of g such that the nilradical, v, of q is locally nilpotent on M and the ad(h)-
stable Levi factor, t, of q is torsion free on M . Then, for every subquotient M,
of M, M{ € #(x, ) is a torsion free module of finite length; in particular M
belongs to M (x, h).

Proof. Since M, € .#(g, ), there is no loss of generality in assuming that
wt M, C A,, for some A, € h"/ZR. Let S C B be subsets of R such that
g =Py 5, and let N denote Ml“. Observe that M, is .Z'(g)-finite, and that
ch M, is a finite set, because M, belongs to .#(g, h). Therefore, by 3.5(b),
N is a Z(x)-finite module in .#(x, §), and ch N is a finite set. This means
the decomposition N = Py, » N? is a finite direct sum in A (x,b). Hence
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it is adequate to show that N’ € A (v, ) has finite length, for each 6 e ch N.
Let & € ch N. Suppose A belongs to wt N”, and suppose z belongs to
the center, c(r), of v. Then, since Z(r)Nh = c(r), one checks easily that
B(z)n=z-n=Az)n, for every n € N;). Therefore, if v, € wt N’ then
ylm) = 0|C(r) = - It follows that (1) — u) L c(xr). On the other hand, v
and u belongto wt M, = A,, and so v — u € ZR. Hence, v — u belongs to
ZR = C(t)_L NZR. In other words, for a given 6 € ch N, there is a unique
A €b7/ZR such that Nz # (0). Now, by 4.15, ¢ is torsion free on M|, and

hence N° ¢ A (v, h) is torsion free. In light of 4.19, we see therefore that N’
has finite length, thus completing the proof of the lemma. 0O

Theorem 4.21. Every module M in .# (g, Y) has finite length.

Proof. In view of 4.3 and 2.10, we assume, without loss of generality, that M
is a #-primary pure module such that wt M C A, for some A € §”/ZR . Then,
by the last assertion of 4.17, there is a parabolic subalgebra, q (O §), of g such
that the nilradical, v, of q is locally nilpotent on M, and the ad(h)-stable
Levi factor, t, of q is torsion free on A . Since #(g) is Noetherian and M
is finitely generated, it is adequate to show that M is an Artinian 7/ (g)-module.
Suppose

M=M,>M DO>M,>.
is a descending chain of %/(g)-submodules of M . Now recall that, by 4.15, if ¢
is torsion free on a certain module, then it is also torsion free on all subquotients
of the module. Therefore, replacing M, by M,/ ﬂj M, if necessary, we assume
without loss of generality that the condition (), M, = (0) is satisfied, in addition
to the other conditions on A , described above. But 4.20 implies that the
descending chain

M OM DM >

in .#(xr, h) has finite length. Therefore, there is an r € N such that M:’H =
M:’ ,forall j € N. This means M:’ C; M, =(0). Since v is locally nilpotent
on M_, it follows from Engel’s Theorem that M, = (0). Consequently M 1s
an Artinian 7Z/(g)-module. O

Corollary 4.22. If M € .#(g. ). then M e . #(1,¥).

Proof. By 4.21, M has finite length, and so, 3.9 implies that MY e A (1) has
finite length. This means MY s finitely generated. Since the weight spaces of
M"Y are finite dimensional, it follows that M" e .Z(1,5). O

5. TORSION FREE MODULES

In this section we prove that if s is a simple Lie algebra that admits a torsion
free module, then s is either of type A, or of type C. We begin with a
computation of Gelfand-Kirillov dimensions.

Proposition 5.1. Suppose M € .#(g. b) is torsion free. Then the Gelfand-Kirillov
dimension of M is equal to the rank of the derived Lie algebra [g, g].
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We thank Professor A. Joseph for suggesting the proof given below. Our
original proof was much longer and obscured the elementary nature of the result.

Proof. 1If
O0—-M - M, - M, -0
is an exact sequence of finitely generated % (s)-modules, then it follows that

GKdim M, = max { GKdim M|, GKdim M, }

[KL, Proposition 5.1(b)]. In light of this fact and 4.3, we assume that M is
generated by a weight space M, . By 4.15 it follows that wt M € b*/ZR, and
that there is a positive integer, ¢, such that dim, M W =C forall uewt M.
Let R be the root system of the pair ([g, g], [8, g]Nh), and let #» be the rank
of [g, g]. Now choose a base B of R, and set r =max _p(py, &). Then,

Y. %), M cZ"g)-Mc Y %), M,
[(,pg)I<m (. pg)|<mr
HELR HEZR

for all m € N. Hence,
c-(2m+ 1) <dim, " (g)- M, <c-(2mr+1)".

But this implies lim
GKdim(M)=n. 0O

log, dim, " (g) - M, = n, thus proving that

m—+00

Theorem 5.2. Suppose s is a simple Lie algebra, Y is a Cartan subalgebra of s,
and M € # (s, h) is torsion free. Then the algebra s is either of type A or of
type C.

Proof. If s admits a torsion free module, then by 4.15 and 4.21, s admits an
irreducible torsion free module. Let A be one such module, let n be the rank
of s, and let U,, denote the algebra % (s)/Ann(M). Now observe that s is
algebraic, since it is simple. Therefore, 2.12 and 5.1 imply that GKdim (U),,) <
2n . On the other hand, it is easy to see that GKdim (U,,) > 0, because M isan
infinite-dimensional, finitely generated, faithful U,,-module. Since Ann M isa
primitive ideal, GKdim(U,,) 1s equal to the dimension of a nilpotent coadjoint
orbit, by 7.1 of [BK]. Thus, s* has a nilpotent orbit, ¢ , such that

(5.3) 0 <dim&@ < 2n,

where n denotes the rank of s. But, by Table 1 of [Jo2]} and Lemma 3.3 of
[Jo3], Lie algebras of type 4 and C are the only simple Lie algebras with
nilpotent orbits that satisfy 5.3. This completes the proof of the theorem. O

Remark 5.4. Tt follows from Table 1 of [Jo2] and Lemma 3.3 of [Jo3], that the
nilpotent orbit of 5.3 is in fact the minimal nonzero nilpotent orbit, &, , in
s* . Moreover, by [BK, 7.1], the associated variety of the left % (s)-module U,,
is a union of nilpotent coadjoint orbits. Hence, by the minimality of &, it
follows that the associated variety of U, is the closure, &, U {0}, of & .
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(the associated variety of any primitive quotient of Z/(s) is the closure of a
nilpotent orbit, but we do not have to appeal to that deep result, in the simple
situation under consideration).

In his 1975 paper, [Le2], Lemire gave a construction of a class of irreducible
torsion free % (g)-modules with one-dimensional weight spaces, in the case
where g is a simple Lie algebra of type 4. On the other hand, in the author’s
Ph. D. thesis, a class of irreducible torsion free modules with one-dimensional
weight spaces was constructed for Lie algebras of type C (these modules are
also described in [Fe]), and Lemire’s construction in [Le2] was recovered by
restricting to an appropriate subalgebra of type A. Hence, as noted in the
author’s thesis, 5.2 can be strengthened to the assertion that a simple Lie al-
gebra admits a torsion free module if and only if the algebra is of type A4 or
C. In [BL2], Lemire and Britten prove that the two classes of modules just
described are the only irreducible torsion free modules with one-dimensional
weight spaces, thereby completing the classification of irreducible modules in
A (g, h) that have a one-dimensional weight space.

The work begun here is continued in a second paper, [Fe]. There we com-
plete the classification of irreducible modules in .# (g, §), and give geometric
constructions of all irreducible torsion free modules.
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