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ABSTRACT

In this paper, a one-to-one correspondence between the set of unit split semi-quaternions and
unit tangent bundle of semi-Euclidean plane is given. It is shown that the set of unit split semi-
quaternions based on the group operation of multiplication is a Lie group. The Lie algebra of
this group, consisting of the vector space matrix of the angular velocity vectors, is also considered.
Planar rotations in Euclidean plane are expressed using split semi-quaternions. Some examples are
given to illustrate the findings.
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1. Introduction

Real-quaternions were first described by Irish mathematician Sir William Rowan Hamilton in 1843. The
space of real-quaternions coincides with the 4-dimensional vector space over the real-numbers. Quaternions
provide a simple and elegant way especially for describing rotations and reflections in space, and therefore
have wide applications in Engineering. Moreover, they can be used alongside other methods, such as Euler
angles, matrices and mechanics.

There is a one-to-one correspondence between the set of unit semi-quaternions and the unit tangent bundle
of Euclidean plane R

2, see [8]. The aim of this paper is to generalize the idea of the paper [8] to Minkowski
3-space R

3
1 by constructing an isomorphism between the unit tangent bundle of semi-Euclidean plane R

2
1 and

the unit split semi 3-sphere TR2
1. It is shown that TR2

1 is a Lie group and its Lie algebra is non-compact. As a
geometric comment, planar rotations in Euclidean plane R

2 are expressed in terms of split semi-quaternions
and some examples are given to illustrate the main results.

2. Preliminaries

In this section, definitions of the algebras real-quaternions and split semi-quaternions are given. Then,
some basic properties of these algebras are briefly introduced. To distinguish real-quaternions from split
semi-quaternions, a real-quaternion is expressed by q = q0 + q1i+ q2j + q3k and a split semi-quaternion by
q = q0 + q1i+ q2j+ q3k.

2.1. Real-Quaternions

The real algebra of real-quaternions, denoted by H, is in one-to-one correspondence with the linear Euclidean
space R

4 having a standard basis {1, i, j,k}. So, a real-quaternion q exists from a scalar part and three imaginary
parts:

q = q0 + q1i+ q2j + q3k,
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where qi ∈ R (i = 0, ..., 3) and i, j,k are the imaginary units. Sq = q0 ∈ R is called the scalar part and Vq =
q1i+ q2j + q3k the vector part. The multiplication rules between the imaginary units i, j,k are:

i2 = j2 = k2 = ijk = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.

Thus, the multiplication of real-quaternions is not commutative. If Sq = 0, then q is said to be a pure and is
denoted by q.

The conjugate of a real-quaternion q = q0 + q1i+ q2j + q3k = Sq +Vq is

q̄ = q0 − q1i− q2j − q3k = Sq −Vq,

see [3, 4, 5, 2].
In the scalar-vector representation, multiplication of the real-quaternions q = Sq +Vq and p = Sp +Vp is

qp = SqSp − 〈Vq,Vp〉+ SqVp + SpVq +Vq ×Vp,

where 〈Vq,Vp〉 and Vq ×Vp are, respectively, the usual inner and vector products of Vq and Vp in R
3. In the

real quantities qi ∈ R and pi ∈ R (i = 0, ..., 3) representation, the multiplication of q = q0 + q1i+ q2j + q3k and
p = p0 + p1i+ p2j + p3k can be given also by the matrix product

qp :=




q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0







p0
p1
p2
p3


 . (2.1)

The norm of q = q0 + q1i+ q2j + q3k is

Nq = qq̄ = q̄q = q0
2 + q1

2 + q2
2 + q3

2

and its modulus is
‖q‖ =

√
Nq =

√
q02 + q12 + q22 + q32.

Real-quaternions with Nq = 1 are called unit.
The multiplicative-inverse of a non-zero real-quaternion q = q0 + q1i+ q2j + q3k is

q−1 =
q̄

Nq

.

Hence the real-quaternion algebra H forms a division algebra. For a unit real-quaternion q, we have q−1 = q̄. For
more information about real-quaternions see [11, 12, 14, 17, 15, 6].

The division algebra of real-quaternions H is isomorphic to the Clifford algebra Cℓ0,2 spanned by the
basis {1, e1, e2, e1e2} in 2-dimension by identifying the quaternionic units i, j, k with e1, e2, e1e2 = e3 in Cℓ0,2,
respectively. The standard anti-commuting orthonormal basis elements e1, e2 satisfy

(e1)
2 = (e2)

2 = (e3)
2 = −1 and e1e2 = −e2e1,

see [1].

2.2. Split Semi-Quaternions and Unit Tangent Bundle of R2
1

Like real-quaternions a split semi-quaternion q exists from a scalar part and three imaginary parts:

q = q0 + q1i+ q2j+ q3k,

where qi ∈ R (i = 0, ..., 3) and i, j,k are the imaginary units. Sq = q0 ∈ R is called the scalar part and Vq =
q1i+ q2j+ q3k the vector part. The multiplication rules between the imaginary units i, j,k are:

i2 = +1, j2 = k2 = 0,

ij = −ji = k, jk = −kj = 0, ki = −ik = −j.
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Like real-quaternions, the multiplication of split semi-quaternions is not commutative. We denote the algebra
of split semi-quaternions by HS. If Sq = 0, then q is said to be a pure and is denoted by q.

The conjugate of a split semi-quaternion q = q0 + q1i+ q2j+ q3k = Sq +Vq is

q̄ = Sq −Vq.

In the scalar-vector representation, multiplication of the split semi-quaternions q = Sq +Vq and p = Sp +Vp

is
qp = SqSp − 〈Vq,Vp〉

∗ + SqVp + SpVq +Vq ×
∗ Vp,

where 〈Vq,Vp〉
∗ = −q1p1 is the inner product and Vq ×

∗ Vp = 0i− (q3p1 − q1p3)j+ (q1p2 − q2p1)k the vector
product.

In the real quantities qi ∈ R and pi ∈ R (i = 0, ..., 3) representation, the multiplication of the split semi-
quaternions q = q0 + q1i+ q2j+ q3k and p = p0 + p1i+ p2j+ p3k can be given also by the matrix product

qp :=




q0 q1 0 0
q1 q0 0 0
q2 −q3 q0 q1
q3 −q2 q1 q0







p0
p1
p2
p3


 . (2.2)

And thus, the matrix representation of a split semi-quaternion r = r0 + r1i+ r2j+ r3k can be given as

R :=




r0 r1 0 0
r1 r0 0 0
r2 −r3 r0 r1
r3 −r2 r1 r0


 . (2.3)

The norm of q = q0 + q1i+ q2j+ q3k is

Nq = qq̄ = q̄q = q20 − q21

and its modulus is

‖q‖ =
√

|Nq| =
√

|q20 − q21|.

Split semi-quaternions with Nq = ±1 are called unit.
The multiplicative-inverse of a split semi-quaternion q = q0 + q1i+ q2j+ q3k is defined to be

q−1 =
q̄

Nq

provided Nq 6= 0, i.e. q0 6= ±q1. Thus, a non-zero split semi-quaternion p = p0 + p1i+ p2j+ p3k provided
p0 = ±p1 does not have an inverse. If q has an inverse, then qq−1 = q−1q = 1. Unlike real-quaternion algebra,
algebra of split semi-quaternions does not forms a division algebra. For more information about split semi-
quaternions see [13].

A unit split semi-quaternion q = q0 + q1i+ q2j+ q3k can also be expressed by one of the following two
matrices:

1. If q20 − q21 = 1, then

Q1 :=




coshα sinhα 0 0
sinhα coshα 0 0
q2 −q3 coshα sinhα
q3 −q2 sinhα coshα


 (2.4)

2. If q20 − q21 = −1, then

Q2 :=




sinhα coshα 0 0
coshα sinhα 0 0
q2 −q3 sinhα coshα
q3 −q2 coshα sinhα


 (2.5)
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where α ∈ R. Since ε = Qt
1 εQ1 (resp. ε = Qt

2 εQ2) and detQ1 = cosh2 α− sinh2 α = 1 (resp. detQ2 = sinh2 α−
cosh2 α = −1), the matrix Q1 (resp. Q2) is semi-orthogonal for the metric tensor

ε :=




1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0


 .

Here Qt
1 (resp. Qt

2) is the transpose of Q1 (resp. Q2). Therefore, unit split semi-quaternions can be used to
represent rotations or reflections, see [7].

Let us denote the set of all unit split semi-quaternions (i.e., unit split semi 3-sphere) by TR2
1. A unit split

semi-quaternion q = q0 + q1i+ q2j+ q3k can be written in two parts q• = (q0, q1) ∈ S1
1 and q⋆ = (q2, q3) ∈ R

2
1

as q = (q•, q⋆) ∈ S1
1 ×R

2
1
∼= TR2

1, where S1
1 denotes the Lorentzian unit circle in semi-Euclidean plane R

2
1 (that is,

q20 − q21 = ±1) and S1
1 ×R

2
1 a unit tangent bundle of R2

1, see Fig. 1 for the case q20 − q21 = 1.
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Figure 1. Unit split semi 3-sphere TR
2

1
(∼= S1

1
× R

2

1
).

Multiplication on HS is a binary operation on TR2
1 and is associative, has the identity element e = 1 + 0i+

0j+ 0k, and has the multiplicative-inverse q−1 = ±q̄ for each unit split semi-quaternion q. So, TR2
1 is a group

with the multiplication operation on HS.
The algebra of split semi-quaternions HS is isomorphic to the Clifford algebra Cℓ1,0,1 spanned by the

basis {1, e1, e2, e1e2 = e3} of a degenerate quadratic form with degeneracy in 1-dimension by identifying the
quaternionic units i, j,k with e1, e2, e3 in Cℓ1,0,1, respectively. The standard anti-commuting generators e1, e2
satisfy

(e1)
2 = +1, (e2)

2 = (e3)
2 = 0 and e1e2 = −e2e1.

3. Lie Algebra of Unit Split Semi 3-Sphere TR
2
1

In this section, the Lie algebra of unit semi 3-sphere TR2
1 is considered. Initially, let us define the differentiable

mapping

ψ : HS → R ; ψ(q) = q20 − q21
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for q = q0 + q1i+ q2j+ q3k ∈ HS. By restricting the domain set to TR2
1, we get the regular value of ψ as 1. The

Jacobian matrix of ψ is
Jq(ψ) =

(
2q0 −2q1 0 0

)
,

and thus rank(ψ) = 1 (i.e., ψ is surjective) for all q ∈ ψ−1(1) = TR2
1. So, TR2

1 is a submanifold of HS. Moreover,
since the mappings

α : TR2
1 × TR2

1 → TR2
1 ; α(q, p) = qp

and
β : TR2

1 → TR2
1 ; β(q) = q−1 = ±q̄

are differentiable, TR2
1 is a Lie group of dimension three.

The angular velocity matrix of a unit split semi-quaternion q = q0 + q1i+ q2j+ q3k can be given by one of the
following two matrices:

1. If q20 − q21 = 1, using Eq.(2.4), we get

W1 = Q̇1Q1
−1 :=




0 1 0 0
1 0 0 0
k l 0 1

−l −k 1 0


 (3.1)

2. If q20 − q21 = −1, using Eq.(2.5), we get

W2 = Q̇2Q2
−1 :=




0 1 0 0
1 0 0 0
l k 0 1

−k −l 1 0


 (3.2)

where in both
k = (q̇2 − q3) coshα+ (q̇3 − q2) sinhα,

l = (q2 − q̇3) coshα+ (q3 − q̇2) sinhα.

Here, Q−1
1 and Q−1

2 are, respectively, the inverse matrices of Q1 and Q2, and Q̇1, Q̇2, q̇2, q̇3 are, respectively, the
derivatives of Q1, Q2, q2, q3.

The Lie algebra of the group TR2
1 can also be given by one of the following two vector spaces:

1. Using Eq.(3.1), we have
T1R

2
1 = span{λW1 : λ ∈ R} (3.3)

2. Using Eq.(3.2), we haven
T2R

2
1 = span{λW2 : λ ∈ R} (3.4)

both equipped with the Lie product operation

[Q,P] = QP− PQ

where Q and P denotes, respectively, the matrix representations of any two unit split semi-quaternions q and
p with Nq = Np = ±1, and QP denotes the usual matrix product of Q and P.

We can write

λW1 := λ




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


+ λl




0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0


+ λk




0 0 0 0
0 0 0 0
0 1 0 0

−1 0 0 0
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and

λW2 := λ




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


+ λk




0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0


+ λl




0 0 0 0
0 0 0 0
0 1 0 0

−1 0 0 0


 .

This means that the basis elements both of the vector spaces T1R2
1 and T2R

2
1 are

i :=




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , j :=




0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0


 , k :=




0 0 0 0
0 0 0 0
0 1 0 0

−1 0 0 0




satisfying
[i, j] = −2k, [j,k] = 0, [k, i] = 2j.

Left invariant vector fields on TR2
1 at the point

q = q0 + q1i+ q2j+ q3k

are X = qi, Y = qj and Z = qk. These vector fields can be expressed as

X = q1 + q0i− q3j− q2k,

Y = q0j+ q1k,

Z = q1j+ q0k

when we restrict ourselves to the unit element e = 1 + 0i+ 0j+ 0k of the Lie group TR2
1.

Let us denote the Lie algebra of the group TR2
1 by T∗R

2
1, which is given by T1R

2
1 for the case q20 − q21 = 1,

see Eq.(3.3), and by T2R2
1 for the case q20 − q21 = −1, see Eq.(3.4). We denote the matrix representation of the Lie

algebra T∗R2
1 by

AdX : T∗R
2
1 → T∗R

2
1 ; AdX(Y ) = [Y,X]

where X, Y ∈ T∗R
2
1. The form K(X,Y ) = Tr(AdX ◦AdY ) for all Y, Y ∈ T∗R

2
1 is the Killing bilinear form on

X ∈ T∗R
2
1. Here, Tr(AdX ◦AdY ) stands for the trace of the mapping

AdX ◦AdY : T∗R
2
1 → T∗R

2
1 ; AdX ◦AdY (Z) = [X, [Y, Z]]

where "◦" deontes the usual matrix product.
Let X := x = x1i+ x2j+ x3k and Y := y = y1i+ y2j+ y3k be two vectors from T∗R

2
1. The corresponding

matrices of the mappings AdX , AdY and AdX ◦AdY are

AdX :=




0 0 0
2x3 0 −2x1
2x2 −2x1 0


 ; AdY :=




0 0 0
2y3 0 −2y1
2y2 −2y1 0




and

AdX ◦AdY :=




0 0 0
−4x1y2 4x1y1 0
−4x1y3 0 4x1y1




We get
K(X,Y ) = Tr(AdX ◦AdY ) = −8〈X,Y 〉∗ = 8x1y1.

If the first component x1 ∈ R of X is non-zero, then

K(X,X) = −8〈X,X〉∗ = 8x1
2 > 0

and this means that the set

T̃R2
1 = {X = x1i+ x2j+ x3k : x1, x2, x2 ∈ R and x1 6= 0}

is a non-compact Lie group.
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4. Planar Rotation and Split Semi-Quaternions

A motion fα of the semi-Euclidean plane R
2
1 can be given with respect to an orthonormal coordinate system

as
fα : R2

1 → R
2
1 ; x 7→ Aα · x + c

where

Aα =

(
cosh α sinh α
sinh α cosh α

)
.

Here, Aα is a semi-orthogonal matrix and represents a pseudo-rotation (also known as boost) of R2
1 through a

positive oriented hyperbolic angle α ∈ R, and the vector c = (c1, c2) ∈ R
2
1 is a 2× 1 column matrix representing

the translation part of the motion, see [16, 10].

Lemma 4.1 ([7], Proposition 3.1). The non-pure unit split semi-quaternion

q = −cosh
α

2
+ sinh

α

2
i+ q2j+ q3k ; sinh

α

2
6= 0

represents a negative oriented pseudo-rotation in R
2
1 with an hyperbolic angle α ∈ R and center

m = (
q2

sinhα
2

,
q3

sinhα
2

).

Example 4.1. Let q = q0 + q1i+ q2j+ q3k be a non-pure unit split semi-quaternion defined by

q0 = −cosh
π

8
; q1 = sinh

π

8
; q2 = 1 ; q3 = −

3

5
.

Then, the map

fq :

(
x
y

)
7→

(
q20 + q21 2q0q1
2q0q1 q20 + q21

)(
x
y

)
+

(
−2(q1q2 + q0q3)
−2(q1q3 + q0q2)

)

represents a semi-Euclidean planar motion because

det

(
q20 + q21 2q0q1
2q0q1 q20 + q21

)
= 1.

Moreover, we obtain

fq(
1

sinhπ
8

,
−3

5sinhπ
8

) = (
1

sinhπ
8

,
−3

5sinhπ
8

).

Thus, the map fq represents a negative oriented pseudo-rotation in R
2
1 with an hyperbolic angle π/4 ∈ R and

center

m = (
1

sinhπ
8

,
−3

5sinhπ
8

).

The pseudo-rotation in semi-Euclidean plane R
2
1, which is given by Lem. 4. 1., is obtained using non-pure

unit split semi-quaternions. However, by the following Prop. 4. 2, we show that if we use pure unit split
semi-quaternions, we obtain the rotations in Euclidean plane R

2.

Proposition 4.1. Let p = ε1i+ p2j+ p3k and q = ε2i+ q2j+ q3k be unit pure split semi-quaternions for ε1 = ±1 and
ε2 = ±1. Then,

pqp−1 = pqp = q
′

= ε2i+ q
′

2j+ q
′

3k := (q
′

2, q
′

3) ∈ R
2

corresponds to the reflection of the point q = (q2, q3) ∈ R
2 in the point m = (ε1ε2p2, ε1ε2p3) ∈ R

2 in Euclidean plane
R

2.

Proof. Let p = ε1i+ p2j+ p3k and q = ε2i+ q2j+ q3k be unit pure split semi-quaternions for ε1 = ±1 and
ε2 = ±1. Then,

q
′

= pqp−1 = pqp = ε2i+ q
′

2j+ q
′

3k.

We can define a linear map
ϕp : R2 → R

2
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as (
q2
q3

)
7→

(
−1 0
0 −1

)(
q2
q3

)
+

(
2ε1ε2p2
2ε1ε2p3

)
=

(
q

′

2

q
′

3

)
.

It is straightforward that
ϕp(ε1ε2p2, ε1ε2p3) = (ε1ε2p2, ε1ε2p3)

and this means that the linear map ϕp can be used to represent a rotation with an angle 180◦ and center
m = (ε1ε2p2, ε1ε2p3) (i.e., equivalent to a reflection in the point m) in Euclidean plane R

2.

Example 4.2. Let us consider the unit pure split semi-quaternions p = −i+ j− k and q = i− 2j+ 3k. Then, it
can be easily observed that the product

pqp−1 = pqp = i+ 0j− k := (0,−1) ∈ R
2

represents a reflection of the point q = (q2, q3) = (−2, 3) ∈ R
2 in the point m = (ε1ε2p2, ε1ε2p3) = (−1, 1) ∈ R

2

in Euclidean plane R
2.

5. Conclusions

The algebra of real-quaternions can be considered by representing rotations and reflections in Euclidean
plane R

2, see [9]. The algebra of split semi-quaternions can be considered by representing pseudo-rotations in
R

2
1 and planar rotations in R

2. Moreover, we can consider the set of all unit split semi-quaternions (i.e., unit
split semi 3-sphere) as a unit tangent bundle of R2

1.
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