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Lie Algebraic Unscented Kalman Filter for

Pose Estimation

Alexander M. Sjøberg, Olav Egeland

Abstract

An unscented Kalman filter for matrix Lie groups is proposed where the time propagation of the state is formulated

on the Lie algebra. This is done with the kinematic differential equation of the logarithm, where the inverse of the

right Jacobian is used. The sigma points can then be expressed as logarithms in vector form, and time propagation of

the sigma points and the computation of the mean and the covariance can be done on the Lie algebra. The resulting

formulation is to a large extent based on logarithms in vector form, and is therefore closer to the UKF for systems

in R
n. This gives an elegant and well-structured formulation which provides additional insight into the problem, and

which is computationally efficient. The proposed method is in particular formulated and investigated on the matrix Lie

group SE(3). A discussion on right and left Jacobians is included, and a novel closed form solution for the inverse

of the right Jacobian on SE(3) is derived, which gives a compact representation involving fewer matrix operations.

The proposed method is validated in simulations.

Index Terms

Matrix Lie Group, Unscented Kalman Filter

I. INTRODUCTION

The use of Lie group theory for attitude and pose estimation has received considerable attention in the research

literature. The reason for this is that the set of rotation matrices SO(3) and the set of homogeneous transformation

matrices SE(3) are both matrix Lie groups. Matrix Lie groups have a number of properties that are useful in

the design of estimators and observers. In addition, unit quaternions form a Lie group, and some of the design

techniques for quaternion estimators and observers can be related to their Lie group properties. The main branches

of methods for Lie group estimators are based on Kalman filtering and nonlinear observer design.

Early work on nonlinear attitude estimation and control with quaternions is found in [40], [47] and [18], where

the structural properties of the unit quaternions were used in the design. This was used in navigation for pose

estimation in [45] and for attitude estimation in [44], where bias estimation was included. An important development

in Kalman filtering based on quaternions was the multiplicative extended Kalman filter [29] where the global attitude

was represented by the 4-dimensional unit quaternion, while the 3-dimensional quaternion vector was estimated at

each time step. This was later generalized to alternative 3-dimensional vector representations of attitude, including
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the modified Rodrigues parameters [16] and the rotation vector [38], which is the vector form of the logarithm

in SO(3) [37]. An unscented Kalman filter (UKF) [26] was developed for attitude estimation in [15], where the

kinematic differential equation for the quaternions was used for the time propagation of the sigma points. Another

example of attitude estimation on quaternions using the UKF is found in [41]. The multiplicative extended Kalman

filter for quaternions have been extended to pose estimation by introducing dual quaternions [20], while in [17] a

UKF was developed for pose estimation using dual modified Rodrigues parameters.

An important development was the nonlinear complementary filter [33], which was an attitude observer where the

global attitude was represented by a rotation matrix, and the observation error was represented by the 3-dimensional

vector form of the anti-symmetric part of the rotation matrix. The resulting filter is robust and well suited for low-cost

sensors, and for a number of different sensor configurations. The nonlinear complementary filter was generalized

to the special linear group in [32], and to SE(3) in [1]. A related work on pose estimation is found in [39],

where vision and inertial sensors are used. A nonlinear observer for Lie groups based on Riemannian gradient

descent was presented in [28], [24]. This work also addressed the invariance properties that were addressed in the

symmetry-preserving observer of [5], [6], which was further developed to an invariant extended Kalman filter that

was used as a stable observer on Lie groups [4], and for consistency in extended Kalman filtering for SLAM [9].

The concept of a concentrated Gaussian distribution on Lie groups was introduced in [46], [14], where a normal

distribution on a Lie group was defined in terms of a normal distribution of the logarithm in vector form. This

was further developed in [3], where this formulation was used for fusion of multiple measurements of pose. The

formulation of [3] was used in [7] to formulate an extended Kalman filter (EKF) for matrix Lie groups where the

covariance was calculated for the concentrated Gaussian distribution, and the time propagation of the state and the

covariance was derived from the first order approximation of the Baker-Campbell-Hausdorff (BCH) formula. A

similar approach was used in [12] for an extended information filter on matrix Lie groups. The method of [7], [8]

was further developed in [42] where the time propagation of the state and the covariance of an EKF was computed

on the Lie algebra using the kinematic differential equations of the logarithm.

In [22] a UKF was formulated for Riemannian manifolds. This was done by generating sigma points as elements

of the manifold, and then calculating the mean by minimization on the manifold, while the covariance was calculated

in the tangent plane of the mean. It was remarked that the sigma points and the mean can alternatively be calculated

in the tangent plane. In [23] a UKF framework for sensor fusion on manifolds was presented where the sigma points

were given on the manifold. A UKF for quadrotors on SE(3) was presented in [30], where the sigma points were

computed on the manifold. In [10] the concept of concentrated Gaussian distributions was used to formulate a UKF

for Lie groups where the sigma points are in the Lie algebra, while the time propagation is formulated on the Lie

group. In [36] a systematic overview of Riemannian extensions of UKFs was presented based on the formalism in

[35]. A simulation study was included where a UKF was implemented for unit quaternions, where the sigma points

were computed on the manifold, and the mean was found as an optimization problem on the manifold. The paper

stated that future work should focus on computationally efficient UKFs for Riemannian manifolds for real-time

applications. In [31] a UKF is formulated where the sigma points are calculated in the Lie algebra, while the time

propagation was in the manifold.
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The main contribution of the present paper is that the time propagation is formulated in terms of the kinematic

differential equation of the logarithm, using the inverse of the right Jacobian. Then time propagation of the sigma

points can be formulated on the Lie algebra, and moreover, the mean and the covariance can be computed on the

Lie algebra. The covariance matrix is transformed between different tangent planes based on the BCH formula using

the right Jacobian. The measurement update is based on [10]. The resulting formulation is to a large extent given

in terms of logarithms in vector form, which makes the proposed UKF more similar to the original formulation for

R
n. This may lead to added insight and ease of implementation. Moreover, some of the steps of the method will be

computationally efficient. In particular, time propagation of the group element and optimization on the manifold is

avoided, and the method involves few calculations of exponentials and logarithms. The right Jacobian is important

in our method as it appears in the kinematic differential equation of the logarithm. A new closed form solution for

the inverse right and left Jacobian in SE(3) is derived in the paper based on [11], [3].

The paper is organized as follows. Section 2 presents basic theory on Lie groups and Lie algebras including

probability distributions and the left and right Jacobians. In Section 3 a new closed form solution for the right and

left Jacobian in SE(3) is derived. Then in Section 4 a Lie Algebraic UKF on SE(3) is presented. Finally, the

performance of the proposed UKF is demonstrated in simulations.

II. PRELIMINARIES

A. Matrix Lie groups

Let G be a matrix Lie group, and let g be the associated Lie algebra [21], [14]. Consider the exponential of

u ∈ g, which is

X = exp u =

∞
∑

k=0

uk

k!
∈ G (1)

It follows that u is the logarithm of X , which is written

u = logX (2)

An element u ∈ g of the Lie algebra can be can be represented by the vector u = [u1, . . . , un]
T ∈ R

n. The notation

[u]∨G = u ∈ R
n and [u]∧G = u ∈ g is used in agreement with [7].

Let a, b ∈ g be elements of the Lie algebra with vector representations a = [a]∨G and b = [b]∨G. Then the adjoint

map adG(a) and its matrix form adG(a) ∈ R
n×n are given by

[adG(a)b]
∧
G = adG(a)b = [a, b] (3)

where [a, b] = ab− ba is the Lie bracket.

The kinematic differential equation for X ∈ G is given by

Ẋ = [vl]
∧
GX = X[vr]

∧
G (4)

where vl ∈ R
n is the vector form of the left velocity and vr ∈ R

n is the vector form of the right velocity.
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There is an alternative form of the kinematic differential equation which is formulated in terms of the logarithm.

This is found from the time derivative of the exponential function X(t) = exp([u(t)]∧G), which is [19]

Ẋ = [Jl(ad(u))u̇]∧GX = X[Jr(ad(u))u̇]∧G (5)

Here Jl is the left Jacobian and Jr is the right Jacobian, which are given by

Jl(ad(u)) = Jr(−ad(u)) =
∞
∑

i=0

(ad(u))i

(i+ 1)!
(6)

From (4) and (5) is it seen that the kinematic differential equation for the logarithm can be written in vector form

as [11]

u̇ = J−1
l (ad(u))vl = J−1

r (ad(u))vr (7)

The inverse of the left and right Jacobian is

J−1
l (ad(u)) = J−1

r (−ad(u)) =

∞
∑

i=0

Bi(ad(u))i

i!
(8)

where Bn are the Bernoulli numbers B0 = 1, B1 = − 1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 , B5 = 0,. . . .

B. The Baker-Campbell-Hausdorff formula

Consider the elements a = [a]∧G, b = [b]∧G, c = [c]∧G of the Lie algebra g, and suppose that

exp(c) = exp(a) exp(b). (9)

Then, according to the Baker-Campbell Hausdorff (BCH) formula [21],

c = a+ b+
1

2
[a, b] +

1

12
[a, [a, b]] +

1

12
[b, [b, a]] + . . . (10)

If only first order terms of b are included, then the vector representation c can be approximated as [27]

c = a+ J−1
r (ad(a))b (11)

It is noted that if c = a + d, then it follows from (11) that d = J−1
r (ad(a))b. This leads to the two first order

approximations

exp([a]∧G) exp([b]
∧
G) = exp([a + J−1

r (ad(a))b]∧G) (12)

exp([a+ d]∧G) = exp([a]∧G) exp([Jr(ad(a))d]∧G) (13)

which were used in [3], [8] and [12].

C. Random Variables and Concentrated Gaussian Distributions on Matrix Lie Groups

A random variable X ∈ G is said to have the normal distribution NG(X̄,P ) on G if [2]

X = X̄ exp([u]∧G) (14)

where the vector form of the logarithm

u ∼ NRn(0,P ) (15)
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is normally distributed with zero mean. It is required that the distribution is tightly focused around X̄ .

Next, consider a random variable Y = exp([ξ]∧G) ∈ G, where ξ ∼ NRn(ξ̄,Q) is normally distributed with

nonzero mean. The zero-mean vector δξ = ξ− ξ̄ ∼ NRn(0,Q) is introduced. Then from (13) it is seen that a first

order approximation in δξ is given by

Y = exp([ξ̄ + δξ]∧G) = exp([ξ̄]∧G) exp([e]
∧
G) (16)

where

e = Jr(ad(ξ̄))δξ ∼ NRn(0,R) (17)

is normally distributed with zero mean and covariance

R = Jr(ad(ξ̄))QJT
r (ad(ξ̄)) (18)

It follows that

Y = Ȳ exp([e]∧G) ∼ NG(Ȳ ,R) (19)

where Ȳ = exp([ξ̄]∧G). This result was derived in [7] for use in the update of an extended Kalman filter on a matrix

Lie group. A related problem was treated in [13] where a merging algorithm for Gaussian components on G was

developed.

D. Calculation of mean and covariance

Consider a set

Yi = exp([ξi]
∧
G) ∈ G (20)

of N Lie group elements with corresponding logarithms given in vector form by ξi. In [22] the elements were

expressed in terms of the mean µ ∈ G as

Yi = µ exp([ǫi]
∧
G) (21)

where the mean was found from the minimization problem

µ = argmin
µ∈G

d(Yi,µ)
2 (22)

for some distance function d. The empirical covariance was calculated from

PG =
1

N

N
∑

i=1

ǫiǫ
T
i (23)

where [ǫi]
∧
G = log(µ−1Yi).

The calculation of the mean as the minimization problem (22) on G may be time consuming in real time

applications. Therefore, we suggest that the mean is calculated on the tangent space as

Ȳ = exp([ξ̄]∧G) (24)

where

ξ̄ =
1

N

N
∑

i=1

ξi (25)
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It is seen from (16) that this leads to the first order approximation

Yi = Ȳ exp(ei) (26)

where ei = Jr(ad(ξ̄))δξi where δξi = (ξi − ξ̄). The empirical covariance can then be calculated as

P =
1

N

N
∑

i=1

eie
T
i = J

(

1

N

N
∑

i=1

δξiδξ
T
i

)

JT (27)

where J = Jr(ad(ξ̄)).

E. Calculation of mean by optimization

Consider the case where the distance function (22) is

d(Yi,µ)
2 = ǫT

i ǫi (28)

which is the usual angular distance in SO(3) and a left-invariant metric in SE(3). Then the mean calculated by

minimization on the group will be

µ = argmin
µ∈G

[log(µ−1Yi)]
∨
G)

T[log(µ−1Yi)]
∨
G (29)

In comparison to this, the calculation of the mean Ȳ by calculating the average logarithm [ξ̄]∧G in (25) corresponds

to the minimization problem

Ȳ = arg min
Ȳ ∈G

([log(Ȳ −1Yi)]
∨
G)

TJTJ [log(Ȳ −1Yi)]]
∨
G (30)

on G where J = Jr(ad(ξ̄)). It is seen that the only difference between the two optimization problems (29) and

(30) is the weighting matrix JTJ in (30). For small ξ̄ it is seen from (6) that this weighting matrix will be close

to the identity matrix, and it is reasonable to expect that Ȳ will be close to µ for this distance function.

It is interesting to note that the calculation of the mean according to (24) and (25) is related to the optimization

algorithm of Manton [34], who presented a globally convergent numerical algorithm for computing the center of

mass on compact Lie groups. This method minimizes the function f(X) = 1
2N

∑N
i=1 d(Yi,X)2 for X ∈ G where

Y1, . . . ,YN ∈ G and d(·, ·) is the Riemannian distance function on G. The result of the minimization is the Karcher

mean. The optimization was shown to be globally convergent for compact Lie groups, and was done with a gradient

descent method given by

X := X exp(a) (31)

where

a =
1

N

N
∑

i=1

log(X−1Yi) ∈ g (32)

It was commented in [34] that the Lie algebra serves as a first order approximation of the Lie group about the

identity, and that the mean on the Lie algebra will approximate the mean on the Lie group with distance function

(28). Moreover, it is seen that the calculation of the mean on the Lie algebra with (24) and (25) corresponds to the

first step of Manton’s method with initial value X = I. In the following we will propose a UKF on G where we

use (24) and (25) to calculate the mean and the associated covariance of the sigma points on the Lie algebra.
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F. Time integration and discrete-time model

The two alternative formulations (4) and (7) of the kinematic differential equations can be discretized with Euler’s

method from time instant tk to tk+1 = tk + h where h is the time step, and vr is assumed to be constant over the

time step. Then the differential equation (4) for the group element X gives

X(tk+1) = X(tk) exp(hvr(tk)) (33)

while the differential equation (7) for the logarithm u gives

u(tk+1) = u(tk) + hJ−1
r (ad(u(tk)))vr(tk) (34)

Suppose that X(tk) = exp([u(tk)]
∧
G). Then it follows from (12) that

X(tk+1) = exp([u(tk) + hJ−1
r (ad(u(tk)))vr(tk)]

∧
G) (35)

is a first order approximation of (33). This means that the discretization (33) and the discretization (34) give the

same result to the first order. We will use the discretization (34) in the following to formulate the update equations

in the unscented Kalman filter on the matrix Lie group G.

Additional results on integration schemes based on (7) are found in [25] and [43].

III. CALCULATION OF INVERSE JACOBIAN

In our proposed UKF for matrix Lie groups the inverse of the right Jacobian plays an important role. We will

therefore take a closer look at expressions for the inverse of the right Jacobian, and a novel closed form solution

for SE(3) will be developed.

A. Jacobians in SO(3)

The logarithm in SO(3) is given by θ̂ ∈ so(3), where â denotes the skew symmetric form of a vector a ∈ R
3.

The matrix form of the adjoint map in SO(3) is ad(θ) = θ̂. The rotation matrix is given by the exponential as

[37]

R = exp θ̂ = I +
sin θ

θ
θ̂ +

(1− cos θ)

θ2
θ̂2 (36)

where θ = ‖θ‖. The right Jacobian in SO(3) and its inverse are given in closed form as [11]

Ψr(θ̂) = I − 1− cos θ

θ2
θ̂ +

θ − sin θ

θ3
θ̂2 (37)

Ψ
−1
r (θ̂) = I +

1

2
θ̂ +

1− θ
2 cot

θ
2

θ2
θ̂2 (38)

The coefficients of the exponential, the Jacobian and the inverse Jacobian are well defined for all θ, which is verified

by Taylor series expansion of the coefficients.
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B. Jacobians in SE(3)

The logarithm of

T =





R r

0
T 1



 ∈ SE(3) (39)

is given by

[ξ]∧SE(3) =





θ̂ ρ

0
T 0



 ∈ se(3) (40)

where θ̂ ∈ so(3), ρ ∈ R
3 and ξ = [θT,ρT]T is the vector form of the logarithm. The exponential map is given in

closed form and can be computed from [11], [37]

T = exp([ξ]∧SE(3)) =





exp θ̂ Ψl(θ̂)ρ

0
T 1



 (41)

where exp θ̂ is the exponential function in SO(3), and Ψl(θ̂) is the left Jacobian in SO(3). The logarithm can be

computed from [25]

θ̂ =
sin−1 ‖y‖

‖y‖ ŷ, ŷ =
1

2
(R −RT) (42)

ρ = Ψ
−1
l (θ̂)r

The matrix form of the adjoint map in SE(3) is given by

ad(ξ) =





θ̂ 0

ρ̂ θ̂



 (43)

The kinematic differential equation in terms of T is given by

Ṫ = [Vl]
∧
SE(3)T = T [Vr]

∧
SE(3) (44)

where [Vl]
∧
SE(3) ∈ so(3) is the left velocity, and [Vr]

∧
SE(3) ∈ so(3) is the right velocity, which have vector forms

Vl =





ωl

vl



 , Vr =





ωr

vr



 (45)

where ωl = Rωr and vl = Rvr + r̂Rω. It follows from (7) that the kinematic differential equation in terms of

the logarithm is

ξ̇ = Φ
−1
l (ad(ξ))Vl = Φ

−1
r (ad(ξ))Vr (46)

where Φl is the left Jacobian and Φr is the right Jacobian in SE(3).

The right Jacobian is given in closed form as [11]

Φr(ad(ξ)) =





Ψr(θ̂) 0

QT
r Ψr(θ̂)



 (47)
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where a closed form solution for the submatrix Qr was found in [3] to be

Qr =
∞
∑

k=1

(−1)k

(k + 1)!

k−1
∑

i=0

θ̂k−i−1ρ̂θ̂i

=
1

2
ρ̂+

θ − sin θ

θ3

(

θ̂ρ̂+ ρ̂θ̂ + θ̂ρ̂θ̂
)

− 1− θ2

2 − cos θ

θ4

(

θ̂θ̂ρ̂+ ρ̂θ̂θ̂ − 3θ̂ρ̂θ̂
)

−
(

1− θ2

2 − cos θ

θ4
− 3

θ − sin θ − θ3

6

θ5

)

θ̂ρ̂θ̂θ̂

Inversion of the matrix in (47) gives the expression

Φ
−1
r (ad(ξ)) =





Ψ
−1
r (θ̂) 0

Cr Ψ
−1
r (θ̂)



 (48)

for the inverse of the right Jacobian, as presented in [11], where the submatrix Cr was unspecified. The expression

Cr = −Ψ
−1
r (θ̂)QT

rΨ
−1
r (θ̂) (49)

for this submatrix was obtained in [3]. It is noted that a closed form solution for Cr was not found, which means

that a closed form solution for the inverse of the right Jacobian in SE(3) has not been reported so far.

C. Closed form for inverse Jacobians in SE(3)

In this section we will derive a simple closed form solution for the inverse of the right and left Jacobians in

SE(3). In [11] it was shown that the inverse right Jacobian on SE(3) can be computed as

Φ
−1
r = I +

1

2
ad(ξ) + γ1(θ)ad(ξ)2 + γ2(θ)ad(ξ)4 (50)

where

γ1(y) = (4 − 3α(y)− β(y))/(2y2) (51)

γ2(y) = (2 − α(y)− β(y))/(2y4) (52)

α(y) = (y/2) cot(y/2) (53)

β(y) = (y/2)2/ sin2(y/2) (54)

This was used in [11] to derive (48).

We will now derive a closed form solution for Cr, which is a novel contribution. First it is observed that it

follows from (43) that

ad(ξ)k =





θ̂k
0

sk θ̂k



 (55)

where

sk =
k−1
∑

i=0

θ̂k−i−1ρ̂θ̂i (56)
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Next, it is seen from (48) and (50) in combination with (55) and (56), that the matrix Cr must be of the form

Cr =
1

2
s1 + γ1(θ)s2 + γ2(θ)s4 (57)

where s1 = ρ̂, s2 = θ̂ρ̂+ ρ̂θ̂ and s4 = θ̂3ρ̂+ θ̂2ρ̂θ̂+ θ̂ρ̂θ̂2+ ρ̂θ̂3. The expression for s4 is simplified by observing

that θ̂2ρ̂θ̂ + θ̂ρ̂θ̂2 = θ̂(ρ̂θ̂ + θ̂ρ̂)θ̂ = −2(θTρ)θ̂2. This in combination with θ̂3 = −θ2θ̂ gives

s4 = −θ2s2 − 2(θTρ)θ̂2 (58)

Insertion of this expression for s4 in (57) along with the expressions for γ1(θ) and γ2(θ) from (51) and (52) gives

the closed form solution

Cr =
1

2
ρ̂+

1− α(θ)

θ2
(θ̂ρ̂+ ρ̂θ̂) +

α(θ) + β(θ) − 2

θ4
(θTρ)θ̂2 (59)

This gives the desired closed form solution for the inverse of the right Jacobian by inserting (38) and (59) into

(48). The closed form solution for the inverse of the left Jacobian is then

Φ
−1
l (ad(ξ)) = Φ

−1
r (−ad(ξ)) =





Ψ
−1
l (θ̂) 0

Cl Ψ
−1
l (θ̂)



 (60)

where Cl is equal to Cr except for a change of sign for the 1
2 ρ̂ term.

It is seen from the Taylor series expansions

1− α(y)

y2
=

1

12
+

y2

720
+

y4

30 240
+ . . . (61)

α(θ) + β(θ)− 2

θ4
= − 1

720
− y2

15 120
− y4

403 200
+ . . . (62)

that the coefficients in (59) are well-behaved for all θ.

IV. THE LIE ALGEBRAIC UKF ON SE(3)

A. System Dynamics

The state is given by T ∈ SE(3), and the system dynamics is the kinematic differential equation

Ṫ = T [V +w]∧SE(3) (63)

where V is the vector form of the right velocity, and w ∼ N (0,Q) is a noise vector.

A discrete-time model is formulated, and the time propagation from time tk to tk+1 is described by

Tk+1 = Tk exp([ξk+1]
∧
SE(3)) (64)

This means that the global state is given by the homogeneous transformation matrix T , while the increment from

one time instant to the next is described by the logarithm of the increment. This technique is similar to the usual

formulation for multiplicative Kalman filters on the quaternions where the quaternion gives the global state, and a

3-dimensional vector is used in the update [15]. The system dynamics of the logarithm, which is equivalent to the

system dynamics (63), is given by

ξ̇ = Φ
−1
r (ad(ξ)) (V +w) (65)
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This is discretized with the first order Euler method, which gives

ξk+1 = ξk + hΦ−1
r (ad(ξk)) (Vk +wk) (66)

where wk ∼ N (0,Qk).

The main difference to previous work is that the kinematic differential equation (65) for the logarithm is used

to describe the system dynamics, whereas previous work has used the kinematic differential equation (63) on G.

B. System Measurements

It is assumed that we can measure the full pose, and that the measurements are given by

Z = T exp
(

[ν]∧SE(3)

)

∈ SE(3) (67)

where νk ∼ N (0,Nk) is the measurement noise vector.

C. Filter Dynamics

The sigma points of the time update are given by

ξak|k(i) =





ξx
k|k(i)

ξw
k|k(i)



 ∈ R
12, i = 0, . . . , 2m (68)

which are computed according to step 4 and 5 in Algorithm 1. The vector ξx(i) ∈ R
6 is related to the state

variables, and ξw(i) ∈ R
6 correspond to the process noise. The sigma points are propagated by using to the

discretized dynamics in (66), which gives

ξxk+1|k(i) =ξxk|k(i) + hΦ−1
r

(

ad(ξxk|k(i))
)(

Vm,k + ξwk|k(i)
)

(69)

where Vm,k is the measured velocities. The predicted mean of the logarithm is computed as the weighted sum

ξ̄k+1|k =

2q
∑

i=0

wµ
i ξ

x
k+1|k(i) ∈ R

6 (70)

where the weighting factor wµ
i is computed according to step 2 in Algorithm 1. This is used to calculate the

predicted mean of the global state as

Tk+1|k = Tk|k exp
(

[ξ̄k+1|k]
∧
SE(3)

)

(71)

The propagated sigma points are written

ξxk+1|k(i) = ξ̄k+1|k + ek+1|k(i) (72)

Then, as in (16), a first order approximation

exp
(

ξ̄k+1|k + ek+1|k(i)
)

= exp
(

ξ̄k+1|k

)

exp
(

ǫk+1|k(i)
)

is then used where

ǫk+1|k(i) = Φr

(

ad(ξ̄k+1|k)
)

ek+1|k(i) (73)
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Fig. 1. The relation between a predicted error vector ek+1|k(i) propagated on TTk|k
G, denoted π1, and the corresponding error vector

ǫk+1|k(i) on TTk+1|k
G, denoted π2, is given through the Jacobian.

Figure 1 illustrates how an error vector on the logarithm, e, maps to an error vector, ǫ, on the tangent plane shifted

by the exponential map of the mean vector, ξ̄. The covariance is then calculated as

Pk+1|k =

2m
∑

i=0

wP
i ǫk+1|k(i)ǫk+1|k(i)

T (74)

where wP
i is computed according to step 2 in Algorithm 1.

The new contribution is that the sigma points are computed as in (69) from the kinematic differential equation

of the logarithm. Then the mean of the time update can be computed as an average of vectors as in (70), while

the covariance is calculated in terms of vectors on the tangent plane and is transformed to the next tangent plane

by a matrix operation. This is computationally more efficient than averaging on G, which is typically done in

previous work [23], [22], [31], [36], or computing the time propagation on G and then averaging the logarithm

and using parallel transport of the covariance as in [30]. In [22] it was stated that the mean and the covariance

can be computed in terms of the logarithm, and that the covariance could be transformed with parallel transport,

however, details on the time propagation of the sigma points and the parallel were not included. In [10] the mean

was not calculated from the sigma points, instead, based on [3], velocity measurements were used to calculate the

mean. Moreover, we would like to point out that the proposed formulation gives a UKF for Lie groups that is more

similar to the original formulation on R
n, which could facilitate ease of understanding and implementation.

D. Measurement Update

The measurement update is to a large extent based on the formulation of [10]. The sigma points of the measurement

update are given by

ξak+1|k(i) =





ξx
k+1|k(i)

ξνk+1|k(i)



 (75)
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Algorithm 1 UKF-LieAlg Time Update on SE(3)

Input: Tk|k,Pk|k,Qk,Vk, h, α, β

1: λ = (α2 − 1)m ⊲ m = 12

2: wµ
0 = λ

λ+m
, wµ

j>0 = 1
2(λ+m)

wP
0 = λ

λ+m
+ 1− α2 + β, wP

j>0 = 1
2(λ+m) ⊲ β = 2

3: P a
k|k = diag(Pk|k,Qk)

4: σk|k = Chol((m+ λ)P a
k|k)

5: ξa
k|k(0) = 0 ∈ R

m

ξak|k(i) = coli(σk|k) ⊲ i = 1 . . .m

ξa
k|k(i+m) = −coli(σk|k)

6: ξak|k(i) = [ξxk|k(i)
T, ξwk|k(i)

T]T ⊲ ξx(i), ξw(i) ∈ R
6

7: ξx
k+1|k(i) = ξx

k|k(i) + hΦ−1
r (ad(ξx

k|k(i)))(Vk + ξw
k|k(i))

8: ξ̄k+1|k =
∑2m

i=0 w
µ
i ξ

x
k+1|k(i)

9: ek+1|k(i) = ξx
k+1|k(i)− ξ̄k+1|k

10: Pk+1|k = J1

[

∑2m
i=0 w

P
i ek+1|k(i)ek+1|k(i)

T
]

JT
1 ⊲ J1 = Φr(ad(ξ̄k+1|k))

11: Tk+1|k = Tk|k exp([ξ̄k+1|k]
∧
SE(3))

Output: Tk+1|k,P
π2

k+1|k

which are computed as in Algorithm 2. The measurements corresponding to the sigma points are

Zk+1|k = Tk+1|k exp
(

[ζk+1|k(i)]
∧
SE(3)

)

(76)

It is seen that the logarithms [ζk+1|k(i)]
∧
SE(3) are on the tangent plane at Tk+1|k . The logarithm is given in terms

of the sigma points as

exp
(

[ζk+1|k(i)]
∧
SE(3)

)

= exp
(

[ξxk+1|k(i)]
∧
SE(3)

)

exp
(

[ξνk+1(i)]
∧
SE(3)

)

(77)

which can be calculated as the logarithm of the expression in (77), or it can be approximated on the tangent plane

as

ζk+1|k(i) = ξxk+1|k(i) + ξνk+1(i) (78)

which was pointed out in [10]. The predicted measurement is computed as

ζ̄k+1|k =

2m
∑

i=0

wµ
i ζk+1|k(i) (79)

where wµ
i is found in step 2 in Algorithm 2, and the covariance is

Pzz =
2m
∑

i=0

wP
i ∆ζk+1|k(i)∆ζk+1|k(i) (80)

where ∆ζk+1|k(i) = ζk+1|k(i)− ζ̄k+1|k. The cross covariance is

Pxz =

2m
∑

i=0

wP
i ξk+1|k(i)∆ζk+1|k(i) (81)
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where the coefficient wP
i is found in step 2 in Algorithm 2. The Kalman gain is computed as K = PxzP

−1
zz , and

the error between the state and the measurement is, similarly to [1], defined as T−1
k+1|kZk+1 which follows from

the relation in Equation (76). The innovation term is defined as the vector form of the error logarithm

ηk+1 =
[

log(T−1
k+1|kZk+1)

]∨

SE(3)
(82)

If a measurement Zk+1 is available, then the correction term is found according to

mk+1 = Kkηk+1 (83)

and the estimate updated from the measurement is found from

Tk+1|k+1 = Tk+1|k exp
(

[mk+1]
∧
SE(3)

)

(84)

The updated covariance is

P−
k+1|k+1 = Pk+1|k −KPzzK

T (85)

This covariance is calculated on the tangent plane at the predicted state Tk+1|k about the mean logarithm mk+1.

The covariance must be transformed to the tangent plane at Tk+1|k+1, which is done as in (16). This gives

Pk+1|k+1 = J2P
−
k+1|k+1J

T
2 (86)

where J2 = Φr(ad(mk+1)). It is noted that this transformation of the covariance was not performed in [10], but

appeared in [8] for an EKF on Lie groups.

As for the time update, the calculations are done in terms of vectors in the tangent plane, which simplifies

implementation, and can potentially reduce computational costs. This method was used in [10], while [22], [23],

[31], [36] used Lie group elements which were transformed to the tangent plane.

V. SIMULATIONS

In this section, we present a comparison of 3 UKF filters: The UKF-LG of [10], our proposed Lie algebraic UKF

(UKF-LA) described in IV, and the our method with optimization on the manifold in the prediction step (UKF-LA-

Opt) as described in Section II-E. The parameter α = 10−3 was used in all cases. The velocity measurements were

body-fixed and obtained at a rate of 100 Hz, while the pose measurements were given in the inertial frame and

obtained with a sample rate of 1 Hz. Furthermore, the measurements were elements of SE(3), and the measurement

noise was multiplicative and assumed to be given as in (67). The angular and linear velocity in the time interval

t ∈ [0, T ] were given by

ωb(t) =
[

0 0 2t
1

1000
t2+8t+1

]T

rad/s (87)

vb(t) =
[

t
1+2t 0 0

]T

m/s (88)

and were used to describe the right velocity as given in (45). The analytic expressions allowed for exact solutions, and

we could therefore use an exact true trajectory for comparisons. All simulations were initiated with the covariance

P0|0 = 0.01I6×6 (89)
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Algorithm 2 UKF-LieAlg Measurement Update on SE(3)

Input: Tk+1|k,Pk+1|k,Zk+1,Nk ∈ R
6×6

1: λ = (α2 − 1)r ⊲ r = 12

2: wµ
0 = λ

λ+r
, wµ

j>0 = 1
2(λ+r)

wP
0 = λ

λ+r
+ 1− α2 + β, wP

j>0 = 1
2(λ+r) ⊲ β = 2

3: P a
k+1|k = diag(Pk+1|k,Nk)

4: σk+1|k = Chol((r + λ)P a
k|k)

5: ξa
k+1|k(0) = 0 ∈ R

r

ξak+1|k(i) = coli(σk+1|k) ⊲ i = 1 . . . r

ξa
k+1|k(i+ r) = −coli(σk+1|k)

6: ξa
k+1|k(i) =

[

ξx
k+1|k(i)

T, ξν
k+1|k(i)

T

]T

⊲ ξν ∈ R
6

7: ζk+1|k(i) =
[

log(exp([ξx
k+1|k(i)]

∧
SE(3)) exp([ξ

ν
k+1(i)]

∧
SE(3)))

]∨

SE(3)

8: ζ̄k+1|k =
∑2m

i=0 w
µ
i ζk+1|k(i)

9: ∆ζk+1|k(i) = ζk+1|k(i)− ζ̄k+1|k

10: Pxz =
∑2m

i=0 w
µ
i (ξk+1|k(i))(∆ζk+1|k(i))

T

11: Pzz =
∑2m

i=0 w
µ
i (∆ζk+1|k(i))(∆ζk+1|k(i))

T

12: P−
k+1|k+1 = Pk+1|k −KPzzK

T ⊲ K = PxzP
−1
zz

13: ηk+1 =
[

log(T−1
k+1|kZk+1)

]∨

SE(3)

14: mk+1 = Kηk+1

15: Pk+1|k+1 = J2P
−
k+1|k+1J

T
2 ⊲ J2 = Φr(ad(mk+1))

16: Tk+1|k+1 = Tk+1|k exp([mk+1]
∧
SE(3))

Output: Tk+1|k+1,Pk+1|k+1

The process noise matrix was given as

Q = diag(Qω ,Qv) (90)

where Qω = σ2
ωI3×3 and Qv = σ2

vI3×3, which describes the uncertainty of the velocity measurements. The noise

parameters were set to σω = 0.1 rad/s, and σv = 0.05 m/s.

The covariance matrix describing the measurement noise matrix was given as

N = diag(NR,Np) (91)

where NR = σ2
RI3×3 and Np = σ2

pI3×3. The measurement noise parameters were given as σR = π
180 rad and

σp = 0.01 m. The angular error at time tk was computed as θe,k = ‖[log(RT
k|kRk)]

∨
SO(3)‖ where Rk|k is the

estimated rotation matrix between the body-fixed frame and the inertial frame, and Rk was the true attitude of the

system. The positional error was found as re,k = ‖rk|k − rk‖ where rk|k was the estimated position and rk was

the true position, both given in the inertial frame.
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Fig. 2. The body frame was initiated with a 45◦ angular error as well as 0.5 meters off the initial position. Before any measurement updates

had been obtained the predicted motion was incorrect and the body frame was heading away from the xy plane which the true trajectory reside

on, but was able to converge towards the true trajectory as the pose was measured.
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Fig. 3. The estimation error due to a poorly chosen initial condition was reduced when the pose of the body had been measured.
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A. Case Studies

The first case the trajectory to be estimated was in terms of the the right velocity in (87) and (88) over T = 40

seconds. The trajectory is in the xy plane. The estimator had initial state given by

T0|0 =

















√
2/2 0 −

√
2/2 0

0 1 0 1/2
√
2/2 0

√
2/2 0

0 0 0 1

















(92)

which corresponds to an initial estimation offset of a rotation of 45◦ about the y axis, and a positional offset of

0.5 m along the y axis. Due to the initial angular offset, estimated state left the xy plane for the first 100 samples

(Figure 2), until the first pose measurement made the estimator errors converge to values close to zero, as seen in

Figure 3.

In the second case, the three estimators were had initial states given by identity matrices, such that T0|0 = I4×4

before estimating the trajectory. It is seen in Figure 4 that the all the three estimators tracked the trajectory with

high accuracy. The estimates provided by the three filters were close to indistinguishable when they are used with

the same set of measurements. This is seen in Figures 3 and 5.

Fig. 4. Spiral trajectory initiated with zero offsets.
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UKF-LA UKF-LG UKF-LA-Opt

0.6117 s 1.6385 s 1.9220 s

37.3 % 100 % 117.3 %

TABLE I

THE UKF-LA REQUIRED LESS COMPUTATIONAL EFFORT COMPARED TO UKF-LG AND UKF-LA-OPT.
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Fig. 5. Angular and positional error compared with the ground truth when the system after the system had been initialized with zero offsets.

B. Computational efficiency

In order to evaluate the computational effort of the UKF filters, 100 different sets of full pose measurements of

1000 samples were generated, where the time update was performed at a rate of 100 Hz, and the measurement update

was performed at 1 Hz. The computational time over each set of measurements was evaluated for each estimator, and

the mean computational time was computed. The average computational time spent for each estimator is provided

in Table I together with the difference given in terms of percentages. It is seen that the proposed UKF-LA gave

computational time which was 37.3 % of the computational time of UKF-LG, which was set to 100 %. When the

mean was obtained through optimization on the manifold, then UKF-LA was slower than UKF-LG. It is noted

that closed form solutions of the exponential and logarithmic maps on SE(3), as described in Equation (41) and

(42), were used for efficiency in computation. If library functions in MATLAB were used for computation of the

exponentials and the logarithms maps, then UKF-LA could perform up to 10 times faster than UKF-LG. This

becomes evident when studying the prediction step presented in [10], as the exponential map must be computed

twice, the logarithmic map once, and two matrix multiplications are required for each sigma point in each prediction

step. In contrast, the exponential map is computed once per prediction step in UKF-LA, and no logarithms must

be called unless the estimated mean is obtained through optimization.
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VI. CONCLUSION AND FUTURE WORKS

A UKF for matrix Lie groups has been proposed where the time propagation is formulated in terms of the

kinematic differential equation of the logarithm. The proposed method is to a large extent formulated in terms of

vector operations on the Lie algebra, and the formulation is closer to the original UKF on R
n than previous works

on Lie groups. This leads to efficient formulations and potentially to reduced computational costs, in particular in

the time update. The paper includes details on how to implement the proposed UKF for SE(3). The method was

compared to the UKF-LG of [10] in simulations on SE(3), where it was found that the difference in the estimator

errors was not significant, while the computational cost of the proposed method was 37 % of the UKF-LG. The

proposed method with averaging of the sigma points on the Lie algebra was compared to a method with averaging

of the sigma points on the manifold. Again, there was no significant difference in the estimation error, and the

computation time of the proposed method was 32 % of the method with averaging on the manifold. Future work

may include equations of motion and different sensor systems including IMUs and bias modeling.
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