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1. Introduction. If  is a finite-dimensional split semisimple Lie
algebra of rank # over a field ® of characteristic zero, then there is
associated with £ a unique #Xn integral matrix (4)—its Cartan
matrix—which has the properties

M1. Au=12i=1---,m,
M2. Ay 50, ifis=j,
Ma3. Ag,' = 0, implies A,‘,‘ = 0.

These properties do not, however, characterize Cartan matrices.

If (4;) is a Cartan matrix, it is known (see, for example, [4, pp.
VI-19-26]) that the corresponding Lie algebra, €, may be recon-
structed as follows: Let e, fi, ki, =1, - - -, n, be any 3n symbols.
Then @ is isomorphic to the Lie algebra §((4)) over & defined by the
relations

[2:k;] = 0,
[e‘f,'] = 3,‘,"“, for all 1 andj
lets] = Ajies, [fiks] = —A4jifs,
ei(ad e;)—4ist!l = Q,
ade) Fi#ﬁ
fi(ad f)~4itt = 0,
_ In this note, we describe some results about the Lie algebras
Q((4:;)) when (4;;) is an integral square matrix satisfying M1, M2,
and M3 but is not necessarily a Cartan matrix. In particular, when

the further condition of §3 is imposed on the matrix, we obtain a
reasonable (but by no means complete) structure theory for ((44;)).

2. Preliminaries. In this note, ® will always denote a field of char-
acteristic zero. An integral square matrix satisfying M1, M2, and M3
will be called a generalized Cartan matrix, or g.c.m. for short. Z will
denote the integers, and in any Lie algebra we will use the symbol
[, &, - - -, L.] to denote the product [ - - - [[Lk] - - - il

1 These results were obtained in my dissertation at the University of Toronto
under the supervision of Professor M. J. Wonenburger.
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Let (A;;) be a g.c.m. and let =%((4+;)) be the Lie algebra over
® which is obtained by using the method of § 1. Many of the
customary features of finite-dimensional split semisimple Lie algebras
appear in £ For example, 2is graded by ZX - - - X Z (taken # times),
and if we denote the subspace of elements of degree (dy, - - -, da) by
s, - -+, dn), we find that $=8(0, - - -, 0) is the subspace gen-
erated by by, - - -, by, and 8(dy, - - -, ds)=(0) unless dy, - - -, d, are
all nonnegative or all nonpositive. Furthermore, if dy, - - -, d, are
all nonnegative (respectively all nonpositive) and not all zero, then
Q(dy, - - -, dn) is spanned by the elements of the type [e;, - - -, €]
(respectively [fi, - - -, fi]) where each e; (respectively f;) appears
precisely |d;| times.

Let @ be an n-dimensional vector space over ® with a basis a4,

-+ -, ata, and define a mapping, «, of @ into $*, the dual space of §,
by putting &;(h;) =Aj;for7,j=1, - - -, n. Then, if a ER(dy, - - -, da),
[a B]l=(30, di)~(B)a for all RED. If dy, - - -, da)#(0), we
call B= D dia;a root and write & for &(dy, - - - , d,). We use the words
positive and negative for the nonzero roots in the usual way.

A g.c.m., (4), is said to be decomposable if, after a suitable permu-
tation of the rows together with the corresponding permutation of the
columns, it takes a diagonal block form. Clearly, any block obtained
in this manner is a g.c.m. (4;) is called indecomposable if it is not
decomposable. If (4) decomposes into indecomposable blocks
By, -+ -, By, then 8((4:))=8B) X - - - X¥(B:). Consequently, we
restrict our attention to indecomposable g.c.m.’s.

At this point, we impose a strong condition on our g.c.m.’s. Further
results on the algebras ((4,)) when no further restrictions are placed
on the matrix are discussed in a forthcoming note in this journal by
Daya-Nand Verma.

3. G.C.M.’s of Type (1) and (2), and their classification. Let
(4;) be an indecomposable g.c.m. which satisfies the following condi-
tion: If &, - - -, &, are any nonnegative rational numbers such that
Z?-l £:i4;:<0,j=1, - - -, n, then Z?—l $:4;,=0,7=1, - - -, n. Such
a matrix will be called a g.c.m. of type (2) if there exist nonnegative
rationals £, - - -, &, mot all zero, such that Y &, £4;=0, j=1,

-+, n,and a g.c.m. of type (1) otherwise. From now on all g.c.m.’s
will be of type (1) or (2).

A real, symmetric # X7 matrix is called an a-form, [1, p. 175], if
every entry off the diagonal is nonpositive. It is called connected
if it is indecomposable in the sense above.
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TureoRrREM 1. If (44;) is a g.c.m. of type (1) or (2), then there exist
unique positive rational numbers wy, + - + , W, such that (1) wdij=w;A4;;
for i, j=1, - -+ n, and (i) {w,-A,-il =1, - .-, n} s a set of integers
with no common factor. The matrix (ai;) = (wid ;) is a connected a-form.
It is positive definite or positive semidefinite according as (A.j) s of
type (1) or (2), and A;;=2a;;/ai. Conversely, if (a;;) is a positive defi-
nite (respectively positive semidefinite) connected a-form such that A.;
=2a,;/a:; is an integer for each 1 and j, then (4.;) is a g.c.m. of type (1)
(respectively type (2)).

Let @, be the rational space spanned by ay, * - -, &, and define a
bilinear form ¢ on @, by o(a;, ;) =a;. ¢ is positive definite or positive
semidefinite according as (4;) is of type (1) or (2), and in the latter
case, Qo contains precisely one isotropic line, and it is the radical of o.

On @, we define S; to be the reflection determined by the hyper-
plane orthogonal to a; (¢=1, - - -, n). The group W generated by the
S; is called the Weyl group of €((44)). Let T'={BEq¢| B=a;T for
some j=1, - - -, », and some TE"W}.

TaEOREM 2. (1) 4,;4;:=0,1, 2, 3, or 4 for all 1, j.
(i) (S:S;)?i=1 where

pii = 7/(Cos™((4:;4;)1%/2)),  ifis*]
== 1’ if‘i = j-
(iii) ay;/(aaj;)2= —cos(w/pij;) for all i and j.

The positive definite and positive semidefinite matrices of the type
(—cos(w/pi;)), where the p;; are integers such that piu=1, p;>1 if
i5%j, and p;=p;; for all ¢ and j, have already been classified [1,
Chapter 11], and Theorem 2 (iii) provides us with a link by which we
may classify the g.c.m.’s of type (1) and (2). These matrices may be
diagrammatically described in the way customary for Cartan matrices
—namely by drawing a dot for each number 1, - - -, %, joining the
sth and jth dots by 4,;4;; lines, and writing the weight o (o, a:) =ai;
over the 7th dot. The g.c.m.’s of type (1) turn out to be precisely the
indecomposable Cartan matrices, and the Lie algebras £((4s))
obtained from them are, of course, the corresponding finite-dimen-
sional split simple Lie algebras over ®. The diagrams for the type
(2) matrices are, except for the weights, basically those given in
[2, p. 142]. The only change required is the replacement of any line
with a number m appearing over it by 4 cos?(wr/m) lines. Each type
(2) matrix is designated by the letter attached to its diagram by
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Coxeter. As in the case of Cartan matrices, different matrices may
have the same diagram with only the weight distribution differing.
We use a second subscript to distinguish matrices with the same dia-
gram. With this notation, the complete list of type (2) g.c.m.’s is:
Payn>2; Sp1, Suz, 8>2; Ray Ruygy Ruzy, 8>2; Qu, n>4; Ty, T, T;
Usa, Usa; Ve, Vs Waa, Wee?

REMARK. If (4) isa g.c.m. of type (1), then W is the group defined
by the relations of Theorem 2 (ii). We do not know whether this result
holds for the g.c.m.’s of type (2).

4. The structure theory. If (4,)) is of type (2), then &((4;)) has a
centre, €. € is a homogeneous ideal, and 2((4:))=8((4))/€ still
decomposes into a direct sum of root spaces. The image, $, of § in
((4,)) is of dimension n—1. £((4;)) has no centre. We often desig-
nate {((4;)) by the symbol for the matrix (4.). The algebras
2((44)), when (4y;) is a g.c.m. of type (2), are called tiered algebras

TuEOREM 3. If & s tiered, then BE Qo is @ nonisotropic root if and
only if BET, and for such roots dim L=1. There exists a positive iso-
tropic root ¢ such that the set of isotropic roots is precisely Z¢. There
exists a positive integer v such that if B is a root, then {f+Zrt} are all
roots (clearly, then, R is infinite dimensional). The minimum r for
which this is true is called the tier number of L, and L is satid to be r-tiered.
The tier number is always 1, 2, or 3. In fact, the algebras P,, Sy,
Ray Qn, T2, Ts, Ty, Us,, Vs, and Way are 1-tiered, and the remaining
ones are 2-tiered with the exception of Vs,s which is 3-tiered.

THEOREM 4. If & is r-tiered, and is treated as an {-module relative to
its adjoint representation, then there exists an {-module automorphism
of ® (denoted by ') such that R—R4rt for all roots B.

The mapping of Theorem 4 is called the skift mapping, and plays
a fundamental role in proving the remaining theorems. If IEQ, we
define I, =0, 1, 2, - - - inductively by [® =], & =(G-D)’ for
>0,

THEOREM 5. If & is a nonzero ideal of the tiered Lie algebra L, then &
is gemerated by a single element of the form D 5_o NA® with Ng5<0,
and N\;=1. The correspondence between nonzero ideals and elements of
this type is bijective.

Let ®(x) denote the ring of polynomials of the form > ;o _, ux?
with almost all of the u;=0.

2 I am grateful to Professor G. B. Seligman for pointing out that the matrices of
type W were omitted in my original classification.
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THEOREM 6. The lattice of ideals of a tiered Lie algebra over ® is
isomorphic to the lattice of ideals of ®(x).

If pE®, =0, the ideal generated by h —ph is maximal. We
denote its quotient in € by R(u).

THEOREM 7. &(u) is finite-dimensional and central simple. dim R(u)
is the same for all nonszero p.

The next theorem tells us that the 1-tiered algebras are not really
anything new.

THEOREM 8. If R is 1-tiered, then R=28(1) @ +®(x). The relation be-
tween (1) and (A4 ;) is given by the table:

(4:5) ) (44) 2(1)
P,, A n—1 Ts E7
Sa.l -Bn—-l T9 Es
Raa Cna Us, F4
Oa D, Vsa G
T7 Ea W2,1 Al

THEOREM 9. If (44;) is an nXn g.c.m. of type (2), and dim R(u) =m’
and if (uug V)™ "+ is a nonsquare in ®, then (u1)EL(uz).

This theorem is difficult to apply because we do not know the
dimension of {(u) in general. However, a low dimensional survey
reveals that if ® contains nonsquares there are at least two non-
isomorphic algebras of each of the forms Ssa2(u), Rs2(u), Rse(u), and
Rus(k), and they are of the types (in the sense of [3, p. 299]) 4y, Dy,
Ds, and A4, respectively.

Added in proof: The problem raised in the “Remark” has been
answered in the affirmative.
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