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1. Introduction. If 8 is a finite-dimensional split semisimple Lie 
algebra of rank n over a field $ of characteristic zero, then there is 
associated with 8 a unique nXn integral matrix (Ay)—its Cartan 
matrix—which has the properties 

Ml . 

M2. 

M3. 

An = 2, i = 1, • • • , n, 

Ay = 0, implies An = 0. 

These properties do not, however, characterize Cartan matrices. 
If (Ay) is a Cartan matrix, it is known (see, for example, [4, pp. 

VI-19-26]) that the corresponding Lie algebra, 8, may be recon­
structed as follows: Let e y fy hy i = l, • • • , n, be any Zn symbols. 
Then 8 is isomorphic to the Lie algebra 8 ((A y)) over 5 defined by the 
relations 

Ml = 0, 
bifj] = dyhy 

[eihj] = Ajid 

«<(ad ej)-A>'i+l = 0,1 

/,(ad fà-W = (J 

If or all i and j 

[f*,] = ~A„fy\ 

\ii i 7* j . 

In this note, we describe some results about the Lie algebras 
2((Ay)) when (Ay) is an integral square matrix satisfying M l , M2, 
and M3 but is not necessarily a Cartan matrix. In particular, when 
the further condition of §3 is imposed on the matrix, we obtain a 
reasonable (but by no means complete) structure theory for 8(04t/)). 

2. Preliminaries. In this note, * will always denote a field of char­
acteristic zero. An integral square matrix satisfying M l , M2, and M3 
will be called a generalized Cartan matrix, or g.c.m. for short. Z will 
denote the integers, and in any Lie algebra we will use the symbol 
[lu h, - - - , In] to denote the product [ • • • [[hh] • • • ]L]. 

1 These results were obtained in my dissertation at the University of Toronto 
under the supervision of Professor M.J. Wonenburger. 
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Let (Ai/) be a g.c.m. and let 2^2((Ay)) be the Lie algebra over 
<£ which is obtained by using the method of § 1. Many of the 
customary features of finite-dimensional split semisimple Lie algebras 
appear ing . For example, 8 is graded by Z X • - * XZ (taken n times), 
and if we denote the subspace of elements of degree (di, • • • , dn) by 
2(di, • • • , d»), we find that |)s=8(0, • • - , 0) is the subspace gen­
erated by Ai, • • • , hnt and 8(<2i, • • • , dn) = (0) unless di, • • • , dn are 
all nonnegative or all nonpositive. Furthermore, if di, • • • , dn are 
all nonnegative (respectively all nonpositive) and not all zero, then 
8(di, • • • , dn) is spanned by the elements of the type [eiv • • • , e^] 
(respectively \fy, • • • ,ƒ»>]) where each ej (respectively ƒ/) appears 
precisely \dj\ times. 

Let G be an «-dimensional vector space over $ with a basis ai, 
• • • , a», and define a mapping, ^>, of Gt into | )* , the dual space of |>, 

by puttingQLi(hj)—Ajiiori,j= 1, • • • , n. Then, if a&(di, • • • , d«), 
[a *] = (£?-i<*«*<)~(*)* f ° r all he& If 8(di, • • • , d»)*(0) , we 
call j3 = y^d taj a root and write 8# for 8(di, • • • , dn). We use the words 
positive and negative for the nonzero roots in the usual way. 

A g.c.m., (Aij), is said to be decomposable if, after a suitable permu­
tation of the rows together with the corresponding permutation of the 
columns, it takes a diagonal block form. Clearly, any block obtained 
in this manner is a g.c.m. (Ay) is called indecomposable if it is not 
decomposable. If (Ay) decomposes into indecomposable blocks 
Bi, • • • tBkithen2((Ay))^(Bx)X • • • X8(Bk). Consequently, we 
restrict our attention to indecomposable g.c.m.'s. 

At this point, we impose a strong condition on our g.c.m.'s. Further 
results on the algebras 8 ((A y)) when no further restrictions are placed 
on the matrix are discussed in a forthcoming note in this journal by 
Daya-Nand Verma. 

3. G.C.M.'s of Type (1) and (2), and their classification. Let 
(Ay) be an indecomposable g.c.m. which satisfies the following condi­
tion: If £i, • • • , £n are any nonnegative rational numbers such that 
X X i £ ^ y i ^ 0 , j = = l , • • • , », then ] [ X i W/< = 0 , i = l , • • • , ». Such 
a matrix will be called a g.c.m. of type (2) if there exist nonnegative 
rationals £i, • • • , fn, not all zero, such that XI?-I %iAji = 0y 7 = 1, 

• • • , » , and a g.c.m. of type (1) otherwise. From now on all g.c.m.'s 
will be of type (1) or (2). 

A real, symmetric nXn matrix is called an a-form, [l, p. 175], if 
every entry off the diagonal is nonpositive. I t is called connected 
if it is indecomposable in the sense above. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



i967] LIE ALGEBRAS ASSOCIATED WITH CARTAN MATRICES 219 

THEOREM 1. If (Ay) is a g.c.m. of type (1) or (2), then there exist 
unique positive rational numbers a>i, • • • , cow such that (i) o)iAy = o)jAji 
for i, j=l, • * • , n, and (ii) {«ii4«| i = l , • • • , n\ is a set of integers 
with no common f actor. The matrix (ay) = (coiAy) is a connected a-form. 
It is positive definite or positive semidefinite according as (Ay) is of 
type (1) or (2), and Ay —lay/an. Conversely, if (ay) is a positive defi­
nite (respectively positive semidefinite) connected a-form such that Ay 
^ 2a y/an is an integer for each i and j , then (Ay) is a g.c.m. of type (1) 
(respectively type (2)). 

Let do be the rational space spanned by «i, • • • , an, and define a 
bilinear form <r on do by a(au dj) =ay. a is positive definite or positive 
semidefinite according as (Ay) is of type (1) or (2), and in the latter 
case, do contains precisely one isotropic line, and it is the radical of cr. 

On do we define Si to be the reflection determined by the hyper-
plane orthogonal to at- (i= 1, • • • , n). The group "W generated by the 
Si is called the Weyl group of %((Ay)). Let T = {j8Ga0 | P = *jT for 
some j = 1, • • • , n, and some TG'W}. 

THEOREM 2. (i) AyAji=*0$ 1, 2, 3, or 4 for all i, j . 
(ii) (5i5y)«» = i where 

Py = T/(CoarH(i4</i4y«)1/2/2)), *ƒ i * j 

= i, */ ; = y. 
(iii) ay/(anajj)ll2= —co$(ir/py) for all i and j . 

The positive definite and positive semidefinite matrices of the type 
(--cosfr/py)), where the py are integers such that pu=lf py>l if 
ir^j, and py = Pji for all i and i , have already been classified [l, 
Chapter 11 ], and Theorem 2 (iii) provides us with a link by which we 
may classify the g.c.m.'s of type (1) and (2). These matrices may be 
diagrammatically described in the way customary for Cartan matrices 
—namely by drawing a dot for each number 1, • • • , n, joining the 
ith. and jth dots by AyAji lines, and writing the weight <r(ai, a t) =#,»• 
over the ith dot. The g.c.m.'s of type (1) turn out to be precisely the 
indecomposable Cartan matrices, and the Lie algebras 2((Ay)) 
obtained from them are, of course, the corresponding finite-dimen­
sional split simple Lie algebras over $ . The diagrams for the type 
(2) matrices are, except for the weights, basically those given in 
[2, p. 142]. The only change required is the replacement of any line 
with a number m appearing over it by 4 cos2(7r/w) lines. Each type 
(2) matrix is designated by the letter attached to its diagram by 
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Coxeter. As in the case of Cartan matrices, different matrices may 
have the same diagram with only the weight distribution differing. 
We use a second subscript to distinguish matrices with the same dia­
gram. With this notation, the complete list of type (2) g.c.m.'s is: 
P„, n>2; Sn.i, Sn,2, n>2; Rn,i, i?»,2, Rn,z, n>2; Qn, n > 4 ; T7, T%, T9; 
U,tl, tfM; Vt.u F3,2; T7,,I, W^S 

REMARK. If (Ay) is a g.c.m. of type (1), then W is the group defined 
by the relations of Theorem 2 (ii). We do not know whether this result 
holds for the g.c.m.'s of type (2). 

4. The structure theory. If (Ay) is of type (2), then %((Ay)) has a 
centre, 6. C is a homogeneous ideal, and %((Ay))&s1i((Ay))/(3i still 
decomposes into a direct sum of root spaces. The image, § , of § in 
%((Ay)) is of dimension n — 1 . %((Ay)) has no centre. We often desig­
nate 2 ((Ay)) by the symbol for the matrix (Ay). The algebras 
%((Ay)), when (Ay) is a g.c.m. of type (2), are called tiered algebras 

THEOREM 3. If 8 is tiered, then /?£($o is a nonisotropic root if and 
only if / 3 £ r , and for such roots dim 8/? = 1. There exists a positive iso­
tropic root f such that the set of isotropic roots is precisely ZÇ. There 
exists a positive integer r such that if (3 is a root, then {(}+ZrÇ} are all 
roots (clearly, then, 8 is infinite dimensional). The minimum r for 
which this is true is called the tier number of 8, and 8 is said to be r-tiered. 
The tier number is always 1, 2, or 3. In fact, the algebras Pn, Sn,i, 
-Rn.i» Qn, T-i, T8, T9t Z76tl) Vz,i, and W%,\ are 1-tiered, and the remaining 
ones are 2-tiered with the exception of V%,% which is 3-tiered. 

THEOREM 4. If 8 is r-tiered, and is treated as an 2-module relative to 
its adjoint representation, then there exists an 2-module automorphism 
of 8 (denoted by ') such that S/s—^+rf for all roots /3. 

The mapping of Theorem 4 is called the shift mapping, and plays 
a fundamental role in proving the remaining theorems. If Z£8, we 
define J<«, i = 0, 1, 2, • • • inductively by /«»=/, /co» (/<«-»)' for 

i>Q. 

THEOREM 5 . 7 / 3 is a nonzero ideal of the tiered Lie algebra 8, then 3 
is generated by a single element of the form X X o ^ i * * w ^ ^o^O, 
and X, = l. The correspondence between nonzero ideals and elements of 
this type is bijective. 

Let <$(#) denote the ring of polynomials of the form X X ~ « M;#* 
with almost all of the /x» = 0. 

2 I am grateful to Professor G. B. Seligman for pointing out that the matrices of 
type W were omitted in my original classification. 
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THEOREM 6. The lattice of ideals of a tiered Lie algebra over $ is 
isomorphic to the lattice of ideals of $(#). 

If #£<£, A*5^0, the ideal generated by hi—fxh^ is maximal. We 
denote its quotient in 8 by 8(M)« 

THEOREM 7. 2(fx) is finite-dimensional and central simple, dim 8(ju) 
is the same for all nonzero fx. 

The next theorem tells us that the 1-tiered algebras are not really 
anything new. 

THEOREM 8. If 8 is 1-tiered, then 8—8(1)®**(#). The relation be­
tween 8(1) and (A^) is given by the table: 

(A <,) 

P» 
S*,l 

1 -Rn,l 

0. 
r7 

8(1) 

^4»-i 

-Bn-l 

Cn—1 

A,- i 
£8 

(-4.7) 

r8 
T9 

U*.i 

V»,i 

Wt.i 

8(1) 

Ei 

E8 

F4 

G, 
i l l 

THEOREM 9. If (Ai3) is annXn g.c.m. of type (2), and dim 8(M) = w 
and if Oui/x^1)**"**1 w a nonsquare in $ , tóew 8(/xi)^8(/X2). 

This theorem is difficult to apply because we do not know the 
dimension of 8(/i) in general. However, a low dimensional survey 
reveals that if $ contains nonsquares there are at least two non-
isomorphic algebras of each of the forms 55,2(M)> -^.aO*)» ^M(M)> and 
R4tz(fx), and they are of the types (in the sense of [3, p. 299]) AT, DA, 
JD6, and A* respectively. 

Added in proof: The problem raised in the "Remark" has been 
answered in the affirmative. 
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