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ABSTRACT 

In this paper we discuss symmetry reductions and exact 
solutions of the Webster Horn Equation using the classical.tie 
method of infinitesimals. The particular case of the exponential 
horn is examined and a complete set of reductions and solutions 
is formulated. The generation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a complete set of solutions 
using~Lie analysis produces a set of group transformations. 
Particular attention is given to a new solution found, which 
contains an exponentially decaying Bessel function. The use of 
these group transformations as a tool for audio object 
reco-ition is also explored. Results indicate that the decaying 
Bessel function solution provides a particularly useful insight 
into exponential horn object recognition. Practical results are 
presented which indicate the group transformations offer an 
exciting new mechanism for identifying a specific audio object 
in a mixed audio scene. 

1. INTRODUCTION 

Lie analysis methods are used throughout Mathematics as a 
technique for finding a complete set of solutions to partial and 
ordinary differential equations [I], [21. Recently these methods 
have also found application as an object reco,@ion tool in tww 
dimensional subspaces such as image processing 131, 141, with a 
notable degree of success. In this paper both of these 
applications are applied to a mono audio signal as described by 
the Webster Ham Equation. 

A brief outline of the theory of Lie analysis is given in 
Section 2. In Section 3 the details of the application of Lie 
analysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto the Webster Horn Equation, establishing a complete 
set of group transformations and solutions is provided. Section 4 
explores the use of applying the group transformations found in 
Section 3 to a mono audio signal mixture, which contains 
objects satisfying the Webster Horn Equation. 

The Wehster Horn Equation describes the pressure wave in a 
duct of slowly varying cross section. Methods for its derivation 
can be found in Blackstock [51, Putland [61 and Rienstra [71. It 
is given by the follou2ing partial differential equation: 

where c is the speed of sound, Sfx) is the surface area, and p(x,r) 
is the pressure of the wave front. Subscript notation is used to 
denote partial differentiation. The case when S(x) has an 
exponential profile holds particular interest in acoustic 
engineering, especially loudspeaker technology. In this instance 

~ , , = c ~ f f ~ ~ ~ S f x J ) , ~ . ~  +P,> ), (1) 

we have S( x)=S,e"" where m is a flare constant. Substitution 

into our governing equation (1) results in the exponential 
Webster Horn Equation: 

p,, =c'fmp, + p ,  ) . (2) 
Most commonly the solution is given as a time-harmonic 

wave function, [ 5 ] ,  [SI: 

where 0 is radian frequency. 

2. LIE GROUP ANALYSIS 

This section gives a brief overview of the ideas of Lie 
Symmetry methods for differential equations. For a more 
detailed explanation the reader is referred to the works of Olver 
[ I ] ,  and Bluman and Kumei [Z]. Lie symmetry methods deal 
with invertible p i n t  transformations of a differential equation, 
which map every solution of a differential equation to another 
solution. In section m we utilize this method to determine group 
transformations and reductions of the exponential Webster Ham 
equation to derive new solutions. 

Given an equation of the form 

f ( x ) = O ,  (4) 

where x=(x , ,x ,  ,... xm ) E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiw", and f is a differentiable 

function. We consider a set of point transformations 

x* = X (  x ;  & J , depending on parameter E E IW . Expanding in 

the neighbourhood of f( x)=O leads to 

x ' = X + & X ( X ) + O ( & ~ ) .  . ( 5 )  

The transformation ( 5 )  is called the infinitesimal 
transformation of (4). where X = ( X , , X ,  ,... X,) is given by 

X i  =-(x;&)L=O a x ,  1 Si<n  and the quantities X i  are called ax 
the infinitesimals. Hence, given (5).  solving the initial value 

problem X ( x J ,  x ' (x ,O)=x  remvers the one- a& 
parameter transformation group. 

infinitesimals 
The infinitesimal operator of a one-parameter group, with 

X i ,  is defined as the first order operator 
. .  . . 
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a 
ax. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= X,( x ) -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An equation of the form (4) is invariant under (5 )  if 

f (x' )= f ( x ) .  Hence substitution of ( 5 )  into (4) leads to a 

system of determining equations, which are linear partial 
differential equations (PDEs) in X i .  The most general 

infinitesimal operator V is found by solving this system of 
PDEs. A function c ( x )  is an invariant of (4) under ( 5 )  if V q x )  
= 0. We form these invariants by solving the characteristic 
equation: 

-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-A =...=- dr, 
X , ( X )  X , f X )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX J X ) '  

This determines a hasis of functionally independent 
invariants for a group with operator V.  Several algorithms and 
packages exist which determine the symmetries of systems of 
PDEs. This work uses the symmetry-determining package 
Dimsym [9] under Reduce [lo]. 

3. LIE GROUP ANALYSIS OF 1 H E  F.XFONENTlhL 
\VEHSTER IiORK EQUATION 

Consider the exponential Wehster Hom Equation ( 2 ) ,  we 
seek a group transformation of the form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i = x + x ( x , l , p J &  , (6)  

(7) 

(8) 

t' =:+T( x , f ,  p )& 

p* = p+ Pf x,:, p JE 

a a a 
where V =  X (  x, : ,  p )-+T( x , t ,  p )-+Pf x ,  1, p J- is the 

ax at aF 
infinitesimal generator. 

symmetries found were: 
Using the symmetry-determining package Dimsym [9], the 

a a a 
at ax v, = 2 x - + 2 c ~ t - - c ~ m t p - .  

a 
ap 

and the infinite symmetj: V_ =6'( x,: J- where 6'( x , t )  is 

any arbitrary solution to equation (2). The infinite symmetry 
arises due to the linearization of equation (2) and enables any 
linear combination of solutions to also be a solution. 

While any symmetry may result in a solution IO the goveming 
equation (2). so tco any linear combination of symmetries can 
lead IO a solution. We seek to find the minimal set of linear 
combinations such that the maximal set of solutions is found. 
Following the method of commutators and adjoint maps, 
outlined in Olver [I], {he minimal set is found to be: 
(V, ,  V, +a,V,, V, +a,V,; V,, V, +azV,  ) where 4 ER. We 

examine each element of the minimal set to establish our set of 
transformations and solutions. 

Take, for example, the element V, +a,Vz and set a, = O .  

results in the group transformation: 

x' = x c o s h [ 2 c ~ ] + c :  sinh[2c&] 

f *  = t  cosh [ 2C&]+X sink[ 2 C 4  (9) 
C 

The corresponding characteristic equation is: 

_=_=___ dx dt dp withsolution: 
2c'r 2x -c'm:p 

."Ll - 
) = ~ ' - c ~ : ~ , p = A ( ) ) e  . 

Substitution into the goveming equation ( 2 )  produces the 
reduced ordinary differential equation (ODE): 

(10) 

with solution: 

A(4)=aBesselJ ( O , ~ ~ ) + P B e s s e [ Y ( O , f ~ )  

Where a,/?€ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW and BesseU, BesselY are Bessels functions of 

the first and second kind respectively. Since we require the 
solution to be finite we take p=O and hence 

p=aBesseU(O.+,/-)e' is a solution to 

equation ( 2 ) .  
Employing the same method for each of the elements of the 

minimal set of symmetry Combinations results in the complete 
set of transformations and solutions. These results are 
summarized in Table I and Table ll respectively. It is clear that 
the time harmonic wave solution (3) can be recovered from the 
general solutions listed in Table ll by selecting appropriate 
parameters. Take, for example, the solution listed for the 

cm 

2 
generator V,, by choosing /3=0 and -=W the solution (3) 

is retumed. 

4. OBJECT RECOGNITION 

Solving the initial value problem for each of the elements of 
the minimal set of symmetry combinations results in the 
complete set of transformations as summarized in Table 1. 
Consider a signal p ,  which satisfies the equation ( 2 )  and the 
transformations (9). Under these transformations the governing 
equation (2) is invariant i.e. equation ( 2 ) ,  will hold for the 
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v, 

transformed variables (9). Hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,, =Up:.,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ p  where it is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. I  

x =x;t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= t + & ; p  = p  

As for V, +qV, or .V, +a,V, 

with a. =O throughout 

.desired that a=l and p=O. Under the transformation (9) 

ascosh(Zc&) thus a=l for small E .  Also p < O ( & )  

v 3  

v4 

V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+a,V 

hence p=O for small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&,  and so p,, =.ti for any p which 

satisfies (2). 
To verify the invariance of a signal in a practical 

situation, p ,  was measured using a polynomial fit as outlined in 

[ I l l .  This was performed before and after p underwent 
transformation and the normalized mean squared error (NMSE), 
between the two measurements, was calculated. It was 
postulated that, for a signal which satisfies (2), the NMSE will 
he a minimum. For normalization and calibration purposes the 
Bessel solution generated from V, was tested, using 

x' = x +  2.5;; =t;  p' = pe'"* 

As for V, +a2V, with a2 =O throughout 

x' =x;t* =?+a,&; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv* = pee 

&E-. , the resulting NMSE was found to be 0.0044, and 
2000c 

v, +alV, 

this was then normalized to 1 to give a baseline for further 

x* =xcosh (2cs) +cr sinh ( &E): 

experiments.. 
A variety of mono audio signals, as summarized in Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIll, 

were then tested. The maioritv of the resultant NMSE were . .  
found to range from double to over thirty times larger than for 
the pure Bessel solution. The exceptions to this are for the 
sinusoidal solution and the timpani. This is reasonable as the 
sinusoidal solution is the solution generated from V, and the 

timpani has a Bessel~function inherent.in its description. Thus 
the method is limited to identifying s iba ls  with similar 
characteristics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The Bessel solution was then added to the individual audio 
signals to create mixtures where the Bessel solution comprised 
from 10 to 50 % of the mixture. The mixed sigals were then 
tested pre and post transformation. The results are again 
summarized in Table m. It can he seen that, with an increasing 
percentage of the Bessel solution present in the inixture, the 
NMSE approaches that of the pure Bessel solution (in this case 
normalized, for convenience, to I). For example the female 
speech signal starts with a NMSE 17.8 times that of the Bessel 
Solution but is reduced to 3.75 times with the addition of only a 
10% contribution of the Bessel solution. Similarly, the clarinet, 
which starts out with a NMSE of 36.8 times the Bessel solution, 
reduces to near unity by the time the mixture contains 30% of 
the Bessel solution. Thus the NMSE is a clear indicator of the 
presence of the Bessel solution in the audio mixture. 

5. CONCLUSION/DISCUSSION 

The symmetry reductions and exact solutions of the 
Wehster Horn Equation (1) using the classical Lie method of 
infinitesimals has been discussed. Detailed analysis of the 
particular case of the exponential horn has resulted in a 
complete set of group transformations and solutions. A new 
solution was found which contains an exponencially decaying 
Bessel function. The general solutions found were examined 
and it was established that the known time-harmonic wave 
solution (3) was embedded therein. The use of the group 
.transformations as a tw l  for audio object recognition was also 

explored with results indicating that the decaying Bessel 
function solution provides a particularly useful insight into 
audio object recognition. Practical results were presented which 
indicate the group transformations offers a mechanism for 
coarse recognition of audio objects which. satisfy the 
exponential Wehster Hom Equation (2). 
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Mixt 10 % 
'ndividual Bessel + 90% 

Sound Sounds Sounds 

TABLE n: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARsuuain ODES AND SOLWIONS 

Mixt 20 % Mixt 30 % Mixt 40 % Mixt 50 % 
Bessel + 80% Bessel + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA70% Bessel + 60% Bessel + 50% 

Sound Sound Sound Sound 

ODE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+m-=O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 2 A  dA where ) = x ; p = A ( ) ) ,  Solution: p =a+f le-w; a,@W 
d e 2  d 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

\io Invariant Solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A=O where ) = t ; p = A ( ( ) e x p  

So1ution:p = [ aexp [ - j ~ ~ j + p e x p [ ~ ] ] e x p [ ~ ] ;  a,PER 

A=O where )=x2 -c2 r2 ;p=A( ) )exp [ - ]  mx 

2 

d'A 

So1ution:p = [ aexp ['if] - + p a p  [ e ] ] e x p  [ x?] when A =1- m'o: > 0 ;  

p = a e x p  - ] +pe.rp [ - ' ~ a ~ ] ] e x p [ x ~ ]  whenA=l-m*a:cO; 

p= (a+pr )whena ,= - ;  

[ [ 2a, 

a,pEw 
-1 1 

m m 
p = (  a+pr)exp[-ntr ]  whena,=--, 

No Invariant Solution 
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