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Abstract

The Webster horn equation describes the pressure wave in a duct of slowly varying cross section. We
discuss symmetry reductions and exact solutions of the Webster horn equation using the classical Lie
method of infinitesimals. The particular case of the exponential horn is examined and a complete set of
reductions and solutions is formulated. The generation of a complete set of solutions using Lie analysis
produces a set of group transformations. Particular attention is given to a new solution found, which
contains an exponentially decaying Bessel function. The use of these group transformations as a tool for
audio object recognition is also explored. Results indicate that the decaying Bessel function solution
provides a particularly useful insight into exponential horn object recognition. Practical results are
presented which indicate the group transformations offer an exciting new mechanism for identifying a
specific audio object in a mixed audio scene.
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ABSTRACT

~In this paper we discuss symmetry reductions and exact
solutions of the Webster Horn Equation using the classical Lie
method of infinitesimals. The particular case of the exponential
horn is examined and a complete set of reductions and solutions
is formulated. The geneiation of a complete set of solutions
using Lie analysis produces a set of group transformations.
Particular attention is given to a new solution found, which
contains an exponentially decaying Bessel function. The use of
these group transformations as a tool for audio object
recognition is also explored. Results indicate that the decaying
Bessel function solution provides a particularly useful insight
into exponential horn object recognition. Practical results are
presented which indicate the group transformations offer an
exciting new mechanism for identifying a specific audic object
in a mixed audio scene.

1. INTRODUCTION

Lie analysis methods are used throughout Mathematics as a
technique for finding a complete set of solutions to partial and
ordinary differential equations [1], [2]. Recently these methods
have also found application as an object recognition tool in two-
dimensional subspaces such as image processing [3], [4]), with a
notable degree of success. In this paper both of these
applications are applied to a mono audio signal as described by
the Webster Hom Equation.

A brief outline of the theory of Lie analysis is given in
Section 2. In Section 3 the details of the application of Lie
analysis to the Webster Horn Equation, establishing a complete
set of group transformations and solutions is provided. Section 4
explores the use of applying the group transformations found in
Section 3 1o a mono audic signal mixture, which contains
objects satisfying the Webster Horn Equation.

The Webster Horn Equation describes the pressure wave in a
duct of slowly varying cross section. Methods for its derivation
can be found in Blackstock [5], Putland [6] and Rienstra [7]. It
is given by the following partial differential equation:

p.=c((inS{x)).p +p, ), ()
where ¢ is the speed of sound, S{x) is the sorface area, and pix.1)
is the pressure of the wave front. Subscript notation is used to
* denote partial differentiation. The case when S(x} has an
exponential profile holds particular interest in acoustic
engineering, especially loudspeaker technology. In this instance

0-7803-7850-4/03/$17.00 © 2003 1IEEE

we have S{ x )=Soe”’“ where m is a flare constant. Substitution
into our governing equation (1) results in the exponential
Webster Horn Equation:
Pa=c{mp,+p, ). @
Most commonly the solution is given as 2 time-harmonic
wave function, [5], [8]: ’

-
p=Ae" ™ with k=32 1—(T—CJ -iZ3),
c 20 2

where @ is radian frequency.

2. LIE GROUP ANALYSIS

This section gives a brief overview of the ideas of Lie
Symmetry methods for differential equations. For a more
detailed explanation the reader is referred to the works of Olver
[1], and Bluman and Kumei [2]. Lie symmetry methods deal
with invertible point transformations of a differential equation,
which map every solution of a differential equation to another
solution, In section Il we utilize this method to determine group
transformations and reductions of the exponential Webster Hom
equation to derive new solutions.

Given an equation of the form

f(x)=0, C)]
where x=(x,x,,..x,Je R", and f is a differentiable
function. We consider a set of point transformations
X =X(x;£}, depending on parameter £€ R . Expanding in
the neighbourhood of J(x)=0 leads 1o

X =x+eX(x)+ (). . 5)
The transformation 5) is called the infinitesimal
transformation of (4), where X =(X  X,,..X ) is given by

dX;
X, =a—’( X&)l 15i€n and the quantities X, are called
x

the infinitesimals. Hence, given (5), solving the initial value

' (x:e)

problem =X(x) x(x,0)=x recovers the one-

parameter transformation group.
The infinitesimal operator of a one-parameter group, with
infinitesimals X, is defined as the first order operator
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An equation of the form (4) is invariant under (5) if
F(x )=f(x). Hence substitution of (5) into (4) leads to a
system of determining eguations, which are linear partial
differential equations (PDEs) in X,. The most general

V=X(x)

infinitesimal operator V is found by solving this system of
PDEs. A function Gfx) is an invariant of (4) under (5) if VG(x}
= (. We form these invariants by solving the characteristic
equation:
dxl — dxz — e dxn
X\(x) X,(x) X.(x)

This determines a basis of functionally independent
invariants for a group with operator V. Several algorithms and
packages exist which determine the symmetries of systems of
PDEs. This work uses the symmetry-determining package
Dimsym [9] under Reduce [10}.

3. LIE GROUP ANALYSIS OF THE EXPONENTIAL
WEBSTER HORN EQUATION

Consider the exponential Webster Horn Equation (2), we
seek a group transformation of the form:

X =x+X(xt,plE (6)
£=t+T(x,tpJE N
p=p+P(xt,plE (8)

where V=X{x,t,p)3—+T(x,t,p)i-!-P(x,r,p%a— is the
dx ot ap

wmfinitesimal generator.
Using the symmetry-determining package Dimsym [9], the
symumetries found were:

_9
ar’

i’ ‘/; =2i_nlpi!
dp

Y ox ap

V,=p

0 , 0, d
V,=2x—+2ct ——~c"mp—.
YRR AL g

and the infinite symmetry: V_ =6( x,? )sa- where 8( x,1) is
/4

any arbitrary solntion to equation (2), The infinite symmetry
arises due to the linearization of equation (2) and enables any
linear combination of solutions to also be a solution.

While any symmetry may result in a solution to the governing
equation (2), so too any linear combination of symmetries can
lead to a solution. We seek to find the minimal set of linear
combinations such that the maximal set of solutions is found.
Following the method of commutators and adjeint maps,
outlined in Olver [1}, the minimal set is found to be:
(V. V,+aV, Vu+aV;; V,, V,+a,V, ) where aeR. We

1T
examine each element of the minimal set to establish our set of
transformations and solutions.

Take, for example, the element V, +a,V, and set @, =0.

218
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Solving the initial value problems:
ox (x.1, p’£)=2c2r, X
de
o (x.t.p.e)
a&
dp (x1,p.€)_
o€ -

results in the group transformation:
X' =xcosh{2ce]+ct sinh[2ce]

e=p =X

=2x, 1

::OZI

b *
- mrp, P je=0= P

1 =tcosh|2ce] +Z sink| 2cz] )]
c

p =pexp (_sza {t coshj2ce]+ X sinh [2c£] }J
c
The corresponding characteristic equation is:
i _dr_ dp
2% 2% ~ctmtp

with solution:

=y
p=x'-c** p=A(p)e ® .
Substitution into the governing equation (2) produces the

reduced ordinary differential equation (CDE):
2 2
4¢§-ﬁ2+49_’?‘-—(-’”—) A=0 (10)
d¢ d¢ \ 2

with solution:

A(¢)=aBessell (0,%,}-1113(&) + fBesselY (O,%\/—ml(a) .

Where o, ﬂE R and Bessell, BesselY are Bessels functions of

the first and second kind respectively. Since we require the
solution to be finite we take B=0 and hence

e
p=@Bessel] (0,-;-1}1712 (02!2 -x ))e 2 is a solution to

equation (2). .
Employing the same method for each of the elements of the
minimal set of symmetry combinations results in the complete
set of transformations and solutions. These results are
summarized in Table I and Table 1I respectively. It is clear that
the time harmonic wave solution (3) can be recovered from the
general solutions listed in Table I by selecting appropriate
parameters. Take, for example, the solution listed for the

cm
generator V,, by choosing #=0 and —-2—-——(0 the solution (3)

is returned.

4. OBJECT RECOGNITION

Solving the initial value problem for each of the elements of
the minimal set of symmetry combinations results in the
complete set of transformations as summarized in Table L
Consider a signal p, which satisfies the equation (2} angd the
transformations (9). Under these transformations the governing
equation (2} is invariant ie. equation (2), will hold for the
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transformed variables (9). Hence p, ‘—-ap:.'. + B where it is
‘desired that @=1and f=0. Under the transformation (9)
a=cosh(2ce) thus a~1 for small £. Also B<O(g)

hence =0 for small £, and so p, r—p:.r. for any p which
satisfies ).

To verify the invariance of a signal in a practical
situation, p, was measured using a polynomial fit as outlined in
[11). This was performed before and after p underwent
transformation and the normalized mean squared error (NMSE),
between the two measurements, was calculated. Tt was
posiulated that, for a signal which satisfies (2), the NMSE will
be 2 minimum. For normalization and calibration purposes the

Besscl solution generated from V, was tested, using

E=

; the resulting NMSE was found to be 0.0044, and
2000c

this was then normalized to 1 to give a baseline for further
EXpEriments..

A variety of mono audio signals, as summarized in Table II,
were then tested. The majority of the resultant NMSE were
found to range from double to over thirty times larger than for
the pure Bessel solution. The exceptions to this are for the
sinusoidal solution and the timpani. This is reasonable as the
sinusoidal solution is the solution generated from V, and the

timpani has a Bessel function inherent in its description. Thus
the method is limnited to identifying signals with similar
characteristics.

The Bessel solution was then added to the individual audio
signals 10 create mixtures where the Bessel solution comprised
from 10 to 50 % of the mixture. The mixed signals were then
tested pre and post transformation. The results are again
summarized in Table II. It can be seen that, with an increasing
percentage of the Bessel solution present in the mixture, the
NMSE approaches that of the pure Bessel solution (in this case
normalized, for convenience, to 1). For example the female
speech signal starts with a NMSE 17.8 times that of the Bessel
Solution but is reduced to 3.75 times with the addition of only a
10% contribution of the Bessel solution. Similarly, the clarinet,
which starts out with a NMSE of 36.8 times the Bessel solution,
reduces to near unity by the time the mixture contains 30% of
the Bessel solution. Thus the NMSE is a clear indicator of the
presence of the Bessel solution in the audio mixture.

5. CONCLUSION/DISCUSSION

The symmetry reductions and exact solutions of the
Webster Horn Equation (1) using the classical Lie method of
infinitesimals has been discussed. Detailed analysis of the
particular case of the exponential horn has resulted in a
complete set of group transformations and solutions. A new
solution was found which contains an exponentiaily decaying
Bessel function. The general solutions found were examined
and it was established that the known time-harmonic wave
solution (3) was embedded therein. The use of the group
‘transformations as a tool for audio object recognition was also

October 19-22, 2003, New Paltz, NY

explored with results indicating that the decaying Bessel
function solution provides a particularly useful insight into
audio object recognition. Practical results were presented which
indicate the group transformations offers a mechanism for
coarse recognition of audio objects which satisfy the
exponential Webster Horn Equation (2).
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TABLE I: TRANSFORMATIONS

(21

3]

14}

[5]
[6]

7

18]

19]

1 X =x;f =t+&p=p
v, Asfor V,+4V, or V, +aV;

with @, =0 throughout
v, X =x+26;0 =t; p =pe™
LA As for V, +4a,V, with @, =0 throughout
V,+aV,| x'=x;t" =t+a,€ p =pe
Vi+a V| ¥ =x+2a.6:0 =1, p = p' >
V, +aV,| x" =xeosh(2ce)+ctsinh(2ee);

=t cosh(2cg)+%sinh(2ce);

‘ . p= pexp[azs —F?rne{tcosh(k£)+%sinh (ZCE}}]
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TABLE I REDUCED ODES AND SOLUTIONS

v ey
! ODE: ZT?-%m-Z—%:O where ¢=x; p=A(¢), Solution: p=a+fe™; o.feR
Vv, No Invariant Solution
v d’A (emY —mix

ODE: + — | A=0wh =t;p=A —

ag° [ 2] e d=tip (me"p{ 2 ]

Solution: p = (aexp[]zm ]+ﬁexp[ﬂ;mtDexp[_;H}- a, feR
Va A dA (mY , —mx

ODE: 4¢W+4EE—(?J A=0 where ¢=x" -c’t*; p=A(p)exp —

Solution: p = & BesselJ (0’%1}'”2 (L'zt2 -x )]L’XP |:—_2m£], oeR

V,+aV, A da (1Y f
ODE: —+———| — | A=0 where ¢=x; p=A(f)exp| — |.a, 20
d¢” d¢ \ac q v
Solution: p = ( aexp [“—;Ex—+ Aji + Bexp [%—AD exp {L} where A=x (L;’—)2 + (J—() a, PeR
a !
vV, +a.V, 2 1—mla® 1—
o ODE: d '?: c _mza__‘ A where g=1; p=A(¢)exp| x s Ja, 20
d¢r 4a; 2a, '
- i-—
Solution: p =| aexp /A + Bexp /A expl x % | whena =1-n’al>0;
2a, 2a, 2a, |
Ny —ictdA _
p=| cexp Jenza +Bexp ZJNTD exp x1Zmay when A =1-m’al <0 ;
2a, 2a, 2a, )
p=(a+pr) whena‘,m"l—; p ={( a+fr)exp[-mx] whena3=:—1, a pfeR
m m
V, +a,V, No Invariant Solution
TaBLE III: NORMALIZED MEAN SQUARED ERROR FOR MIXED AUDIO SIGNALS
individual Mixt 10 % Mixt 20 % Mixt 30 % Mixt 40 % Mixt 50 %
Sounds Sounds Bessel + 90% | Bessel + 80% | Bessel + 70% | Bessel + 60% | Bessel + 50%
Sound Sound Sound Sound Sound
01 Bessel 1.0000 .
02 Sinusoid Sclution - 1.2273 1.1818 1.1591 1.1364 1.1364 1.1136
03 Timpani 1.2727 1.1364 _1.0455 1.0227 1.0000 0.9773
04 Drum Mixture . 2.0455 2.0455 2.0227 2.0227 2.0227 1.5000
05 Cello ﬁ 4,4545 1.6364 1.2500 1.0909 1.0000 0.9545
06 Dulcimer 2.2273 1.6591 1.1364 0.7955 0.7045 0.6818
07 French Horn 2.6591 1.5000 1.1818 1.0682 1.0227 1.0000
08 Trumpet ' 7.6591 3.1591% 1.6136 1.1136 0.9091 0.7955
9 Clarinet 36.8636 7.9318 7.3182 1.3182 1.0682 0.9545
10 Saxophone ) 2.2045 1,3636 0.9318 0.6818 0.5682 0.5227
11 Female Speech 17.8636 3.7500 2.0000 1.5000 1.3182 1.2273
12 Male Speech 21.8409 - 20.0227 14,2273 1.1364 0.9545 0.8636
13 White Noise _ 2.7727 2.9545 1.4318 1.2045 1.0227 0.9545
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