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Abstract

In this course, we present an elementary introduction, including the

proofs of the main theorems, to the theory of Lie bialgebras and Poisson

Lie groups and its applications to the theory of integrable systems. We

discuss r-matrices, the classical and modified Yang-Baxter equations, and

the tensor notation. We study the dual and double of Poisson Lie groups,

and the infinitesimal and global dressing transformations.
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Introduction

What we shall study in these lectures are classical objects, not in the sense
that they date back to the nineteenth century, but in the sense that they ad-
mit a quantum counterpart. In fact, the theory of Lie bialgebras and Poisson
Lie groups, due for the most part to V. G. Drinfeld and M. A. Semenov-Tian-
Shansky, dates back to the early 80’s, while the concept of a classical r-matrix
was introduced a few years earlier by E. K. Sklyanin. It is somewhat surpris-
ing that these structures first appeared as the classical limit (the expression
“semi-classical limit” is sometimes used instead) of the mathematical structures
underlying the quantum inverse scattering method (QISM) developed by L.
Faddeev and his school in St. Petersburg (then Leningrad). The commutativ-
ity property of the row-to-row transfer matrices for solvable lattice models was
found to be a consequence of the existence of the so-called quantum R-matrix,
which figures in the now famous equation,

RT1T2 = T2T1R .
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Such an R-matrix satisifies the equation,

R12R13R23 = R23R13R12 ,

called the quantum Yang-Baxter equation (QYBE). The notion of a quantum
group, a deformation of either the algebra of functions on a Lie group or the
universal enveloping algebra of the associated Lie algebra, evolved from these
considerations.

Just as quantum R-matrices and quantum groups play an important role in
QISM, their classical limits, classiical r-matrices and Poisson Lie groups enter
into the theory of classical integrable systems.

Poisson Lie groups are Lie groups equipped with an additional structure,
a Poisson bracket satisfying a compatibility condition with the group multi-
plication. The infinitesimal object associated with a Poisson Lie group is the
tangent vector space at the origin of the group, which is, in a natural way, a Lie
algebra, g. The Poisson structure on the group induces on the Lie algebra an
additional structure, which is nothing but a Lie algebra structure on the dual
vector space g∗ satisfying a compatibility condition with the Lie bracket on g

itself. Such a Lie algebra together with its additional structure is called a Lie
bialgebra. In most applications, the group is a group of matrices, while its Lie
algebra is also an algebra of matrices of the same size, say p× p. The classical
r-matrices are then matrices of size p2 × p2. What is the relationship between
such a matrix and the notion of bialgebra? The answer involves taking the
Lie-algebra coboundary of the r-matrix (see Sect. 2.1). Another way to explain
this relationship is as follows: Assume that we can identify the Lie algebra with
its dual vector space by means of an invariant scalar product. Considering a
Lie algebra structure on the dual vector space then amounts to considering a
second Lie algebra structure on g itself. When the p2 × p2 r-matrix is identified
with a linear map from g to itself, which we denote by R, the second Lie bracket
is given by

[x, y]R = [Rx, y] + [x,Ry] .

The modified Yang-Baxter equation (MYBE) is a sufficient condition for R to
define a second Lie bracket on g by this formula, while the classical Yang-Baxter
equation (CY BE),

[r12, r13] + [r12, r23] + [r13, r23] = 0 ,

is the r-matrix version of this condition and is in fact obtained as a limit of the
quantum Yang-Baxter equation.

In these lectures, we have tried to give a self-contained account of the the-
ory of Lie bialgebras and Poisson Lie groups, including the basic definitions
concerning the adjoint and coadjoint representations, Lie-algebra cohomology,
Poisson manifolds and the Lie-Poisson structure of the dual of a Lie algebra, to
explain all notations, including the ‘tensor notation’ which is ubiquitous in the
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physics literature, and to present the proofs of all the results. We have included
the definitions of Manin triples, coboundary Lie bialgebras (triangular, quasi-
triangular and factorizable r-matrices), as well as the corresponding notions for
Poisson Lie groups.

The examples that we discuss in detail are elementary, so we refer to the
literature for a wealth of further examples.

Among the properties of Lie bialgebras and Lie groups, the existence of the
dual and of the double of a Lie bialgebra, the integration theorem of a Lie
bialgebra into a Poisson Lie group, whence the existence of the dual and of the
double of a Poisson Lie group, are the most important. In the proofs, we use
the Schouten bracket, whose importance in this theory was first pointed out by
Gelfand and Dorfman [17] and emphasized by Magri and myself [38] [39] [40].

Semenov-Tian-Shansky’s theorem, generalizing the theorem of Adler-Kostant-
Symes, has important applications to the theory of integrable Hamiltonain sys-
tems. It establishes that, when a Lie algebra with an invariant scalar product
is equipped with an R-matrix, the dynamical systems defined by an invariant
function are in Lax form, and possess conserved quantities in involution (see
Sect. 3.6). Whenever the original Lie algebra splits as a direct sum of two
Lie subalgebras, the difference of the projections onto the Lie subalgebras (or a
scalar multiple of this difference) is an R-matrix. (This occurs in many cases.
The infinite-dimensional examples are the most interesting for the applications,
but require some extension of the theory presented here. See [27] [28].) In
this situation, such Lax equations can be solved by factorization, a method
which replaces an initial-value problem with a problem of factorization in the
associated Poisson Lie group. This is the reason for the name “factorizable
R-matrix” given to the solutions of the modified Yang-Baxter equation. Thus,
the R-matrix formalism can be considered to be an infinitesimal version of the
Riemann-Hilbert factorization problem.

An essential ingredient of this theory and its applications to integrable sys-
tems is the notion of a Poisson action (of a Poisson Lie group on a Poisson
manifold). It is a new concept which reduces to that of a Hamiltonian action
when the Poisson structure on the Lie group vanishes. It was necessary to in-
troduce such a generalization of Hamiltonian actions in order to account for the
properties of the dressing transformations, under the “hidden symmetry group”,
of fields satisfying a zero-curvature equation. There are naturally defined ac-
tions of any Poisson Lie group on the dual Lie group, and conversely, and these
are Poisson actions. (We give a one-line proof of this fact in Appendix 2, using
the Poisson calculus.) In the case of a Poisson Lie group defined by a factor-
izable R-matrix, the explicit formulæ for these dressing actions coincide with
the dressing of fields that are solutions of zero-curvature equations. There is a
notion of momentum mapping for Poisson actions, and in this case it coincides
with the monodromy matrix of the linear system. This establishes the con-
nection between soliton equations which admit a zero-curvature representation
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(the compatibility condition for an auxiliary linear problem) in which the wave
function takes values in a group and the theory of Poisson Lie groups.

In the bibliography, we have given references to
A. a variety of books from which all the prerequisites for a study of these

lectures, and much more, can be learnt,
B. some of the articles that founded the subject, Drinfeld [15] [16], Gelfand

and Dorfman [17], Semenov-Tian-Shansky [18] [19].
C. later expositions in books and surveys, e.g., Reyman and Semenov-Tian-

Shansky [27], Chari and Pressley [22], Vaisman [30], Reyman [26] and, for a
survey of the Lie-algebraic approach to integrable systems, Perelomov [25].

D. a few of the most relevant publications that have further developed the
subject, foremost among which is the article by Lu and Weinstein [44].

These lecture notes are meant as the necessary background for the survey of
“Quantum and classical integrable systems” by Semenov-Tian-Shansky in this
volume,1 where he briefly recalls the notions and results that we explain here,
and some of their generalizations, and uses them extensively in the study of
classical integrable systems, before studying their quantum counterpart.

These notes have been revised for clarity, and misprints have been corrected
for the second edition of this book.

Acknowledgments. I gratefully acknowledge the support of CIMPA and of
CEFIPRA-Indo-French Center for the Promotion of Advanced Research which
permitted my stay at Pondicherry University in 1996 when I delivered the six
lectures from which this text has been drawn.

1Remark on notations and conventions. Throughout these lectures, we reserve the term

r-matrix on g for elements of g ⊗ g, and the term R-matrix for endomorphisms of g, while

Semenov-Tian-Shansky uses the same letter r, and the term r-matrix, in both cases. In any

case, these classical r-matrices and R-matrices should not be confused with the quantum

R-matrices satisfying the quantum Yang-Baxter equation.

The bracket that we have associated here with a given R-matrix is twice the one which is

defined in Semenov-Tian-Shansky’s lectures. However, in the important special case where the

second bracket is obtained as a result of the splitting of a Lie algebra into complementary Lie

subalgebras, this bracket coincides with the bracket in his lectures, because the R-matrix that

we consider is one-half of the difference of the projections, while he considers the difference of

the projections.

5



1 Lie bialgebras

We shall study Lie algebras g whose dual vector space g∗ carries a Lie-algebra
structure satisfying a compatibility condition, to be described in Sect. 1.3, with
that of g itself. Such objects are called Lie bialgebras. The corresponding Lie
groups carry a Poisson structure compatible with the group multiplication (see
Sect. 3 and 4). They constitute the semi-classical limit of quantum groups. In
this section we shall study the general, abstract framework, and in Sect. 2 we
shall describe the Lie-bialgebra structures defined by r-matrices, i.e., solutions
of the classical Yang-Baxter equation.

1.1 An example: sl(2, C)

Let us consider the Lie algebra g = sl(2,C), with basis

H =

(

1 0
0 −1

)

, X =

(

0 1
0 0

)

, Y =

(

0 0
1 0

)

and commutation relations,

[H,X ] = 2X, [H,Y ] = −2Y, [X,Y ] = H .

The dual vector space g∗ has the dual basis H∗, X∗, Y ∗, where, by definition,
〈H∗, H〉 = 1 , 〈X∗, X〉 = 1 , 〈Y ∗, Y 〉 = 1, and all other duality brackets are
0. We shall consider the following commutation relations on g∗,

[H∗, X∗]g∗ =
1

4
X∗, [H∗, Y ∗]g∗ =

1

4
Y ∗, [X∗, Y ∗]g∗ = 0 .

Now consider g⊕g∗. We can turn g⊕g∗ into a Lie algebra, denoted by g ./ g∗

or d, and called the double of g, such that both g and g∗ are Lie subalgebras of
d, by setting

[H,H∗]d = 0, [H,X∗]d = −2X∗, [H,Y ∗]d = 2Y ∗

[X,H∗]d = 1
4X − Y ∗, [X,X∗]d = − 1

4H + 2H∗, [X,Y ∗]d = 0
[Y,H∗]d = 1

4Y +X∗, [Y,X∗]d = 0, [Y, Y ∗]d = − 1
4H − 2H∗.

We can prove the following facts :
(i) This is a Lie-algebra bracket on d, since we can show that it satisfies the

Jacobi identity.
(ii) There is a natural scalar product ( | ) on d, defined by

(H |H∗) = (X |X∗) = (Y |Y ∗) = 1 ,

while all other scalar products of elements in the basis vanish. With respect to
this scalar product, g and g∗ are isotropic, because the definition of an isotropic
subspace is that the scalar product vanishes on it.

6



(iii) The scalar product is invariant for the Lie-algebra structure of d defined
above. Recall that a scalar product ( | ) on a Lie algebra a with bracket [ , ] is
called invariant if, for any u, v, w ∈ a,

([u, v]|w) = (u|[v, w]) .

1.2 Lie-algebra cohomology

In order to formulate the definition and properties of Lie bialgebras in general,
we shall need a few definitions from the theory of Lie-algebra cohomology.

Let g be a Lie algebra over the field of complex or real numbers. When M

is the vector space of a representation ρ of g, we say that g acts on M , or that
M is a g-module. For x ∈ g , a ∈M , we often denote (ρ(x))(a) simply by x.a.

Examples. Any Lie algebra g acts on itself by the adjoint representation,
ad : x ∈ g 7→ adx ∈ End g, defined, for y ∈ g, by adx(y) = [x, y].

More generally, g acts on any tensor product of g with itself in the following

way. For decomposable elements, y1 ⊗ · · · ⊗ yp in
p

⊗ g = g ⊗ · · · ⊗ g (p times),

x · (y1 ⊗ · · · ⊗ yp) = ad(p)
x (y1 ⊗ · · · ⊗ yp)

= adxy1 ⊗ y2 ⊗ · · · ⊗ yp + y1 ⊗ adxy2 ⊗ y3 ⊗ · · · ⊗ yp + · · ·

+ y1 ⊗ y2 ⊗ · · · ⊗ yp−1 ⊗ adxyp .

For example, for p = 2,

ad(2)
x (y1 ⊗ y2) = adxy1 ⊗ y2 + y1 ⊗ adxy2 = [x, y1] ⊗ y2 + y1 ⊗ [x, y2].

Thus, denoting the identity map from g to g by 1,

ad(2)
x = adx ⊗ 1 + 1 ⊗ adx .

Since, when y ∈ g, adxy = [x, y], one often writes

(1.1) (adx ⊗ 1 + 1 ⊗ adx)(u) = [x⊗ 1 + 1 ⊗ x, u]

for u ∈ g ⊗ g.
Now, let g be a finite-dimensional Lie algebra, and let (e1, · · · , en) be a basis

of g. Using the Einstein summation convention, any element b in g ⊗ g can be
written, b = bijei ⊗ ej , and then

ad(2)
x b = bij([x, ei] ⊗ ej + ei ⊗ [x, ej ]) .

We could expand this quantity further in terms of the structure constants of
the Lie algebra g and the components of x.

7



Similarly, g acts on the p-th exterior power of g,
∧p

g, for any p. For example,
for p = 2,

x.(y1 ∧ y2) = [x, y1] ∧ y2 + y1 ∧ [x, y2] ,

x.(
∑

i<j

aijei ∧ ej) =
∑

i<j

aij([x, ei] ∧ ej + ei ∧ [x, ej ]) .

Definition. For each nonegative integer k, the vector space of skew-symmetric
k-linear mappings on g with values in M , where M is the vector space of a
representation of g, is called the space of k-cochains on g with values in M .

A 1-cochain on g with values in M is just a linear map from g to M , while
a 0-cochain on g with values in M is an element of M .

We can now define the coboundary of a k-cochain u on g with values in M ,
denoted by δu. Since we shall need only the cases where k = 0 or 1, we shall
first write the definition in these two cases,

k = 0, u ∈M, x ∈ g , δu(x) = x.u ,

k = 1, v : g →M, x, y ∈ g, δv(x, y) = x.v(y) − y.v(x) − v([x, y]).

We immediately observe that for any 0-cochain u on g with values in M ,

δ(δu) = 0 .

In fact, for x, y ∈ g,

(δ(δu))(x, y) = x.(y.u) − y.(x.u)) − [x, y].u ,

and this quantity vanishes identically because x 7→ ρ(x) is a representation of g

in M . More generally,

Definition. The coboundary of a k-cochain u on g with values in M is the
(k + 1)-cochain, δu, with values in M defined by

δu(x0, x1, · · · , xk) =

k
∑

i=0

(−1)ixi.(u(x0, · · · , x̂i, · · · , xk))

+
∑

i<j

(−1)i+ju([xi, xj ], x0, · · · , x̂i, · · · , x̂j , · · · , xk),

for x0, x1, · · · , xk ∈ g, where x̂i indicates that the element xi is omitted.

Proposition. The property δ(δu) = 0 is valid for any k-cochain u, k ≥ 0.

This is a standard result, which generalizes the property proved above for
k = 0.
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Definition. A k-cochain u is called a k-cocycle if δu = 0. A k-cochain u (k ≥ 1)
is called a k-coboundary if there exists a (k − 1)-cochain, v, such that u = δv.

By the proposition, any k-coboundary is a k-cocycle. By definition, the
quotient of the vector space of k-cocycles by the vector space of k-coboundaries
is called the k-th cohomology vector space of g, with values in M .

Remark. The 0-cocyles of g with values in M are the invariant elements in M ,
i.e., the elements u ∈ M such that x.u = 0, for each x ∈ g.

1.3 Definition of Lie bialgebras

Let us now assume that g is a Lie algebra and that γ is a linear map from g

to g ⊗ g whose transpose we denote by tγ : g∗ ⊗ g∗ → g∗. (If g is infinite-
dimensional, g∗⊗ g∗ is a subspace of (g⊗ g)∗, and what we are considering is in
fact the restriction of the transpose of γ.) Recall that a linear map on g∗ ⊗ g∗

can be identified with a bilinear map on g∗.

Definition. A Lie bialgebra is a Lie algebra g with a linear map γ : g → g⊗ g

such that

(i) tγ : g∗ ⊗ g∗ → g∗ defines a Lie bracket on g∗, i.e., is a skew-symmetric
bilinear map on g∗ satisfying the Jacobi identity, and

(ii) γ is a 1-cocycle on g with values in g ⊗ g , where g acts on g ⊗ g by the
adjoint representation ad(2).

Condition (ii) means that the 2-cochain δγ vanishes, i.e., for x, y ∈ g,

(ii′) ad(2)
x (γ(y)) − ad(2)

y (γ(x)) − γ([x, y]) = 0 .

Let us introduce the notation

[ξ, η]g∗ = tγ(ξ ⊗ η) ,

for ξ, η ∈ g∗. Thus, by definition, for x ∈ g,

〈[ξ, η]g∗ , x〉 = 〈γ(x), ξ ⊗ η〉 .

Condition (i) is equivalent to the following,

{

[ξ, η]g∗ = −[η, ξ]g∗ ,

[ξ, [η, ζ]g∗ ]g∗ + [η, [ζ, ξ]g∗ ]g∗ + [ζ, [ξ, η]g∗ ]g∗ = 0 ,

An alternate way of writing condition (ii ′) is

〈[ξ, η]g∗ , [x, y]〉 = 〈ξ ⊗ η, (adx ⊗ 1 + 1 ⊗ adx)(γ(y))〉
− 〈ξ ⊗ η, (ady ⊗ 1 + 1 ⊗ ady)(γ(x))〉 .

(Recall that, by definition, (adx ⊗ 1)(y1 ⊗ y2) = [x, y1] ⊗ y2.)
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1.4 The coadjoint representation

We now introduce the important definition of the coadjoint representation of a
Lie algebra on the dual vector space.

Let g be a Lie algebra and let g∗ be its dual vector space. For simplicity, we
shall assume that g is finite-dimensional. For x ∈ g, we set

ad∗x = −t(adx) .

Thus ad∗x is the endomorphism of g∗ satisfying

〈ξ, adxy〉 = −〈ad∗xξ, y〉 ,

for y ∈ g , ξ ∈ g∗. Then, it is easy to prove that the map x ∈ g 7→ ad∗x ∈ End g∗

is a representation of g in g∗.

Definition. The representation x 7→ ad∗x of g in g∗ is called the coadjoint
representation of g.

1.5 The dual of a Lie bialgebra

In the notation of the preceding section, (ii ′) of Section 1.3 can be written

〈[ξ, η]g∗ , [x, y]〉 + 〈[ad∗xξ, η]g∗ , y〉 + 〈[ξ, ad∗xη]g∗ , y〉

−〈[ad∗yξ, η]g∗ , x〉 − 〈[ξ, ad∗yη]g∗ , x〉 = 0 .

We now see that there is a symmetry between g with its Lie bracket [ , ] and g∗

with its Lie bracket [ , ]g∗ defined by γ. In the same fashion as above, let us set

adξη = [ξ, η]g∗

and
〈adξη, x〉 = −〈η, ad∗ξx〉 ,

for ξ, η ∈ g∗, x ∈ g. Then ξ ∈ g∗ 7→ ad∗ξ ∈ End g is the coadjoint representation
of g∗ in the dual of g∗ which is isomorphic to g.

Now relation (ii) of Sect. 1.3 is equivalent to

(ii′′) 〈[ξ, η]g∗ , [x, y]〉 + 〈ad∗xξ, ad
∗
ηy〉 − 〈ad∗xη, ad

∗
ξy〉

−〈ad∗yξ, ad
∗
ηx〉 + 〈ad∗yη, ad

∗
ξx〉 = 0 .

It is now obvious that g and g∗ play symmetric roles. Let us call µ : g⊗ g → g

the skew-symmetric bilinear mapping on g defining the Lie bracket of g. Trans-
forming relation (ii ′′) again, it is easy to see that it is equivalent to the condition
that tµ : g∗ → g∗ ⊗ g∗ be a 1-cocycle on g∗ with values in g∗ ⊗ g∗, where g∗

acts on g∗⊗ g∗ by the adjoint action. In fact, since the left-hand side of (ii ′′) is

〈tµ[ξ, η]g∗ , x⊗ y〉 − 〈ξ, [x, ad∗ηy]〉 + 〈η, [x, ad∗ξy]〉
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+〈ξ, [y, ad∗ηx]〉 − 〈η, [y, ad∗ξx]〉 ,

condition (ii) is equivalent to

〈tµ[ξ, η]g∗ , x⊗ y〉 + 〈(adη ⊗ 1 + 1 ⊗ adη)(tµ(ξ)), x ⊗ y〉

−〈(adξ ⊗ 1 + 1 ⊗ adξ)(
tµ(η)), x ⊗ y〉 = 0

or
ad

(2)
ξ ((tµ)(η)) − ad(2)

η ((tµ)(ξ)) − (tµ)([ξ, η]g∗) = 0 .

Therefore

Proposition. If (g, γ) is a Lie bialgebra, and µ is the Lie bracket of g, then
(g∗, tµ) is a Lie bialgebra, where tγ is the Lie bracket of g∗.

By definition (g∗, tµ) is called the dual of Lie bialgebra (g, γ). Thus each Lie
bialgebra has a dual Lie bialgebra whose dual is the Lie bialgebra itself.

1.6 The double of a Lie bialgebra. Manin triples.

Proposition. Let (g, γ) be a Lie bialgebra with dual (g∗, tµ). There exists a
unique Lie-algebra structure on the vector space g ⊕ g∗ such that g and g∗ are
Lie subalgebras and that the natural scalar product on g ⊕ g∗ is invariant.

Proof. The natural scalar product on g ⊕ g∗ is defined by

(x|y) = 0 , (ξ|η) = 0 , (x|ξ) = 〈ξ, x〉 , for x, y ∈ g, ξ, η ∈ g∗ .

Let us denote by [u, v]d the Lie bracket of two elements u, v in d = g ⊕ g∗. By
the invariance condition on the natural scalar product and by the fact that g is
a Lie subalgebra, we obtain

(y|[x, ξ]d) = ([y, x]d|ξ) = ([y, x]|ξ)

= 〈ξ, [y, x]〉 = 〈ad∗xξ, y〉 = (y|ad∗xξ) ,

and similarly (η|[x, ξ]d) = −(η|ad∗ξx), which proves that [x, ξ]d = −ad∗ξx+ad∗xξ.
One must now prove that the formulæ

(1.2)







[x, y]d = [x, y]
[x, ξ]d = −ad∗ξx+ ad∗xξ

[ξ, η]d = [ξ, η]g∗

define a Lie-algebra structure on g ⊕ g∗. The proof of the Jacobi identity uses
conditions (i) and (ii) of the definition of a Lie bialgebra.

Definition. When g is a Lie bialgebra, g ⊕ g∗ equipped with the Lie bracket
[ , ]d defined by (1.2) is called the double of g, and denoted g ./ g∗ or d.
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We described an example in Sect. 1.1.

Note that d = g ./ g∗ is also the double of g∗. In the Lie algebra d, the
subspaces g and g∗ are complementary Lie subalgebras, and both are isotropic,
i.e., the scalar product vanishes on g and on g∗. Thus we see that, for any Lie
bialgebra g, (d, g, g∗) is an example of a Manin triple, defined as follows:

Definition. A Manin triple is a triple (p, a, b), where p is a Lie algebra with
an invariant, non-degenerate, symmetric bilinear form, and a and b are com-
plementary isotropic Lie subalgebras.

In the finite-dimensional case, we can show that, conversely, when (p, a, b) is
a Manin triple, a has a Lie-bialgebra structure. Since a and b play symmetric
roles, b also has a Lie-bialgebra structure, and the Lie bialgebra b can be iden-
tified with the dual of the Lie bialgebra a. Let ( | ) be the given scalar product
on p. To b ∈ b we associate the 1-form ι(b) on a defined by ι(b)(a) = (a|b). The
linear map b 7→ ι(b) from b to a∗ is injective. In fact, if ι(b) = 0, then (a|b) = 0
for all a ∈ a, and therefore for all a ∈ p, since b is isotropic and p = a⊕b. By the
non-degeneracy of the scalar product, we find that b = 0. Counting dimensions,
we see that b is isomorphic to a∗. The Lie bracket on b therefore defines a Lie
bracket on a∗. To see that it defines a Lie-bialgebra structure on a, we use the
Jacobi identity in p, and the invariance of the scalar product. Thus

Theorem. There is a one-to-one correspondence between finite-dimensional
Lie bialgebras and finite-dimensional Manin triples.

For a short, conceptual proof of this theorem, see Appendix 1.

1.7 Examples

1.7.1 Simple Lie algebras over C.

Let g be a simple Lie algebra over C, of rank r, with Cartan subalgebra h, and
with positive (resp., negative) Borel subalgebra b+ (resp., b−), generated by h

and positive (resp., negative) root vectors.
Set p = g⊕g (direct sum of Lie algebras); let p1 be the diagonal subalgebra,

and p2 = {(x, y) ∈ b− ⊕ b+|h-components of x and y are opposite}. Define the
scalar product of (x, y) and (x′, y′) to be − 1

2 ((x|x′)g−(y|y′)g) where ( | )g is the
Killing form of g. (The factor − 1

2 is conventional.) Then (p, p1, p2) is a Manin
triple, and the Lie brackets thus defined in g∗ can be explicitly written in terms
of Weyl generators, (Hj , Xj , Yj), j = 1, . . . , r.

Let us illustrate this fact for g = sl(2,C). The Killing form of g is such that

(H |H)g = 8 , (X |Y )g = 4 ,

and all other scalar products vanish. In this case b+ (resp., b−) is generated by
H and X (resp., H and Y ). A basis for p1 is e1 = (H,H), e2 = (X,X), e3 =
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(Y, Y ). A basis for p2 is f1 = (H,−H), f2 = (0, X), f3 = (Y, 0). We find that

(ei|ej) = 0, (fi|fj) = 0, (e1|f1) = −8, (e3|f2) = 2, (e2|f3) = −2 ,

and that all other scalar products vanish. We now identitfy p2 with p∗1 ' g∗ by
means of the scalar product, and we denote this identification map by ι. Then
ι(f1) = −8H∗, ι(f2) = 2Y ∗, ι(f3) = −2X∗. Now

[f1, f2] = (0,−[H,X ]) = −2(0, X) = −2f2,

[f1, f3] = ([H,Y ], 0) = −2(Y, 0) = −2f3,

[f2, f3] = 0,

and therefore we recover the commutation relations for g∗ given in Sect. 1.1,

[H∗, X∗] =
1

4
X∗, [H∗, Y ∗] =

1

4
Y ∗, [X∗, Y ∗] = 0 .

As a consequence, we see that the double of the Lie bialgebra sl(2,C) is isomor-
phic to sl(2,C) ⊕ sl(2,C).

1.7.2 Compact Lie algebras.

Let g be a simple complex Lie algebra of rank r, with Cartan subalgebra h and
Weyl basis (Hj , Xα, Yα), j = 1, · · · , r, and α ∈ ∆+, where ∆+ is the set of
positive roots. Then the real linear span of

iHj , Xα − Yα, i(Xα + Yα)

is a real subalgebra of gR, i.e., of g considered as a real Lie algebra, denoted by
k and called the compact form of g. The real linear span of iHj , j = 1, · · · , r, is
a Cartan subalgebra t of k, and h = t⊕ it. Let b = it⊕ n+, where n+ is the Lie
subalgebra generated by Xα, α ∈ ∆+. Then b is a solvable, real Lie subalgebra
of gR , and

gR = k ⊕ b .

Define the scalar product on gR, ( | )gR = Im( | )g, where ( | )g is the Killing form
of g, and Im denotes the imaginary part of a complex number. Then (gR, k, b)
is a Manin triple. Therefore k (resp., b) is a Lie bialgebra with dual b (resp., k).

We derive this Lie-bialgebra structure explicitly for g = sl(2,C), in which
case k = su(2). Let

e1 = iH, e2 = X − Y, e3 = i(X + Y ), f1 = H, f2 = X, f3 = iX ,

where H,X, Y are as in Sect. 1.1. Then (e1, e2, e3) is a basis of su(2), while
(f1, f2, f3) is a basis of the Lie subalgebra b of gR of complex, upper triangular
2×2 matrices, with real diagonal and vanishing trace. Thus sl(2,C) = su(2)⊕b.
We observe that
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e1 =

(

i 0
0 −i

)

, e2 =

(

0 1
−1 0

)

, e3 =

(

0 i

i 0

)

.

We now identify b with su(2)∗ by the mapping ι, where

ι(Z)(T ) = Im(Z|T )g .

Then ι(f1) = 8e∗1, ι(f2) = 4e∗3, ι(f3) = −4e∗2, where (e∗1, e
∗
2, e

∗
3) is the basis dual

to the basis (e1, e2, e3) of su(2). Since [f1, f2] = 2f2, [f1, f3] = 2f3, [f2, f3] = 0,
we find that

[e∗1, e
∗
2] =

1

4
e∗2, [e∗1, e

∗
3] =

1

4
e∗3, [e∗2, e

∗
3] = 0 .

These are the commutation relations of su(2)∗, which is a solvable Lie algebra.
Had we chosen the scalar product trX1X2 on g instead of the Killing form, we
would have obtained, as the commutation relations of su(2)∗,

[e∗1, e
∗
2] = e∗2, [e∗1, e

∗
3] = e∗3 , [e∗2, e

∗
3] = 0 .

Remark. Let γ0 be the 1-cocycle on k with values in
∧2

k defining the above
Lie-bialgebra structure of k. It can be shown (see Soibelman [49]) that the most
general Lie-bialgebra structure on the compact Lie algebra k is

γ = λγ0 + δu ,

where λ is a real constant and u is an arbitrary element of
∧2

t. (Recall that
δu was defined in Sect. 1.2.)

1.7.3 Infinite-dimensional Lie bialgebras

The construction given for simple Lie algebras is also valid for Kac-Moody
algebras.

Let a be a finite-dimensional simple Lie algebra over C, and let p = a((u−1))
be the Lie algebra of the a-valued Laurent series in u−1, p1 = a[u] the Lie
subalgebra of a-valued polynomials in u, and p2 = u−1a[[u−1]], the Lie algebra
of a-valued formal series in u−1, with no constant term. Given f, g ∈ p, we
define their scalar product to be the coefficient of u−1 in the scalar-valued
Laurent series in u−1 obtained by taking the scalar product of the coefficients
by means of the Killing form of a.

Then (p, p1, p2) is a Manin triple. The corresponding 1-cocycle γ on p1 = a[u]
can be written as follows. Since (a⊗a)[u, v] ' a[u]⊗a[v], for any f ∈ p1, γ(f) is
an (a⊗ a)-valued polynomial in two variables that can be expressed in terms of
t, the Killing form of a, viewed as an element of a⊗ a. (A priori, t is an element
of a∗ ⊗ a∗, but, by means of the Killing form itself, this twice covariant tensor
can be mapped to a twice contravariant tensor.) In fact,

(γ(f))(u, v) = (adf(u) ⊗ 1 + 1 ⊗ adf(v))
t

u− v
,
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where 1 is the identity map of a onto itself. If (Ik) is an orthonormal basis of a

with respect to the Killing form, then t =
∑

k I
k ⊗ Ik, and

(γ(f))(u, v) =
1

u− v

∑

k

([f(u), Ik] ⊗ Ik + Ik ⊗ [f(v), Ik ]).

1.8 Bibliographical note

For this section, see Drinfeld [15] [16], Chari and Pressley [22], Chapter 1 or
Vaisman [30], Chapter 10. (See also Kosmann-Schwarzbach [38], Verdier [31].)
There are summaries of results on simple Lie algebras in Perelomov [25] and in
Chari and Pressley [22, Appendix A] (page 562, line 4 of A2, read ±aij , and
page 564. line 9 of A6, read Ti(x

−
j )). For Lie-bialgebra structures on compact

Lie algebras, see Lu and Weinstein [45] and Soibelman [49]. For the infinite-
dimensional example in Sect. 1.7, see Drinfeld [16], Chari and Pressley [22].

2 Classical Yang-Baxter equation and r-matrices

In this section, we shall study the Lie-bialgebra structures on a Lie algebra
g defined by a cocycle δr which is the coboundary of an element r ∈ g ⊗ g.
Such elements r ∈ g ⊗ g are called r-matrices. We shall show that the classical
Yang-Baxter equation (CY BE) is a sufficient condition for δr to define a Lie
bracket on g∗. We shall also define triangular, quasi-triangular and factorizable
Lie bialgebras, show that the double of any Lie bialgebra is a factorizable Lie
bialgebra, and we shall study examples.

2.1 When does δr define a Lie-bialgebra structure on g?

We already noted that a 1-cochain on g with values in g ⊗ g which is the
coboundary of a 0-cochain on g with values in g⊗g, i.e., of an element r ∈ g⊗g,
is necessarily a 1-cocycle. So, in order for γ = δr to define a Lie-bialgebra
structure, there remain two conditions:

(i) δr must take values in
∧2

g (skew-symmetry of the bracket on g∗ defined
by δr),

(ii) the Jacobi identity for the bracket on g∗ defined by δr must be satisfied.

Let us denote by a (resp., s) the skew-symmetric (resp., symmetric) part

of r. Thus r = a+ s, where a ∈
∧2

g , s ∈ S2g.
Let us assume for simplicity that g is finite-dimensional. To any element r

in g ⊗ g, we associate the map r : g∗ → g defined by

r(ξ)(η) = r(ξ, η) ,
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for ξ, η ∈ g∗. Here an element r in g ⊗ g is viewed as a bilinear form on g∗,
and an element r(ξ) in g is viewed as a linear form on g∗. Another notation for
r(ξ)(η) is 〈η, rξ〉. Let tr : g∗ → g denote the transpose of the map r. Then, by
definition,

a =
1

2
(r − tr) , s =

1

2
(r +t r) .

Now let γ = δr. Then, by definition,

γ(x) = ad(2)
x r = (adx ⊗ 1 + 1 ⊗ adx)(r) ,

where 1 is the identity map of g into itself. The right-hand side stands for

rij(adxei ⊗ ej + ei ⊗ adxej),

when (ei) is a basis of g and r = rijei ⊗ ej . As we explained in Sect. 1.2, the
following notation is also used,

ad(2)
x (r) = [x⊗ 1 + 1 ⊗ x, r] .

For ξ, η ∈ g∗, we have set [ξ, η]g∗ = tγ(ξ, η). When γ = δr, we shall write
[ξ, η]r instead of [ξ, η]g∗ .

Condition (i) above is satisfied if and only if δs = 0, that is, s is invariant
under the adjoint action,

ad(2)
x s = 0 ,

for all x ∈ g. This condition is often written [x ⊗ 1 + 1 ⊗ x, s] = 0. We shall
often make use of the equivalent form of the ad-invariance condition for s,

(2.1) adx ◦ s = s ◦ ad∗x, for all x ∈ g .

Whenever s is ad-invariant, δr = δa, and conversely. These equivalent condi-
tions are obviously satisfied when s = 0, i.e., when r is skew-symmetric (r = a).

Proposition. When r is skew-symmetric, then

(2.2) [ξ, η]r = ad∗rξη − ad∗rηξ .

Proof. By the definition of δr and that of the coadjoint action,

〈t(δr)(ξ, η), x〉 = ((adx ⊗ 1 + 1 ⊗ adx)(r))(ξ, η) = −r(ad∗xξ, η) − r(ξ, ad∗xη) .

By the skew-symmetry of r and the definition of r, we find that

−r(ad∗xξ, η) − r(ξ, ad∗xη) = r(η, ad∗xξ) − r(ξ, ad∗xη)

= r(η)(ad∗xξ) − r(ξ)(ad∗xη) = 〈ad∗xξ, rη〉 − 〈ad∗xη, rξ〉 .
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Since for x, y ∈ g, α ∈ g∗, 〈ad∗xα, y〉 = −〈α, [x, y]〉 = 〈α, [y, x]〉, we obtain the
general and useful relation,

(2.3) 〈ad∗xα, y〉 = −〈ad∗yα, x〉 .

Whence,
t(δr)(ξ, η) = ad∗rξη − ad∗rηξ ,

and the proposition is proved.

We shall now study condition (ii). We introduce the algebraic Schouten

bracket of an element r ∈
∧2

g with itself, denoted by [[r, r]]. It is the element

in
∧3

g defined by

(2.4) [[r, r]](ξ, η, ζ) = −2 	 〈ζ, [rξ, rη]〉 ,

where 	 denotes the summation over the circular permutations of ξ, η, ζ. (The
factor −2 is conventional.)

Proposition. A necessary and sufficient condition for γ = δr, r ∈
∧2

g, to

define a Lie bracket on g∗ is that [[r, r]] ∈
∧3

g be ad-invariant.

Proof. Here we give a computational proof. See Appendix 1 for a shorter, more
conceptual proof. Note that the element [[r, r]] is a 0-cochain on g with values

in
∧3

g. It is ad-invariant if and only if δ([[r, r]]) = 0. The proposition will then
follow from the identity

(2.5) 	 〈[[ξ, η]r, ζ]r, x〉 =
1

2
δ([[r, r]])(x)(ξ, η, ζ) ,

for ξ, η, ζ ∈ g∗, x ∈ g.
By (2.2),

〈[[ξ, η]r, ζ]r, x〉 = 〈[ad∗rξη − ad∗rηξ, ζ]
r, x〉

= 〈ad∗r(ad∗

rξ
η−ad∗

rηξ)ζ, x〉 − 〈ad∗rζ(ad
∗
rξη − ad∗rηξ), x〉 .

By (2.3), this expression is equal to

−〈ad∗xζ, r(ad
∗
rξη − ad∗rηξ)〉 + 〈ad∗x(ad∗rξη − ad∗rηξ), rζ〉 .

Using the skew-symmetry of r and the relation

ad∗xad
∗
y − ad∗yad

∗
x = ad∗[x,y] ,

valid for any x, y ∈ g, applied to y = rξ, we obtain

〈[[ξ, η]r, ζ]r, x〉 = 〈r ad∗xζ, ad
∗
rξη〉 − 〈r ad∗xζ, ad

∗
rηξ〉 + 〈ad∗rξad

∗
xη, rζ〉

+〈ad∗[x,rξ]η, rζ〉 − 〈ad∗xad
∗
rηξ, rζ〉 .

17



Using (2.3), we obtain 〈ad∗[x,rξ]η, rζ〉 = −〈ad∗rζη, [x, rξ]〉 = 〈ad∗xad
∗
rζη, rξ〉. There-

fore,

	 〈[[ξ, η]r, ζ]r, x〉 =	 (〈η, [r ad∗xζ, rξ]〉 + 〈ξ, [rη, r ad∗xζ]〉 + 〈ad∗xη, [rζ, rξ]〉)

+ 	 (〈ad∗xad
∗
rζη, rξ〉 − 〈ad∗xad

∗
rηξ, rζ〉) .

The last summation obviously vanishes. Now, by (2.4),

1

2
δ([[r, r]])(x)(ξ, η, ζ) =

1

2
ad(3)

x [[r, r]](ξ, η, ζ) = −
1

2
	 [[r, r]](ξ, η, ad∗xζ)

=	 (〈ad∗xζ, [rξ, rη]〉 + 〈η, [r ad∗xζ, rξ]〉 + 〈ξ, [rη, r ad∗xζ]〉) .

Comparing the two expressions we have just found, we see that (2.5) is proved.

Let r be a skew-symmetric element of g⊗g. The condition that [[r, r]] be ad-
invariant is sometimes called the generalized Yang-Baxter equation. Obviously,
a sufficient condition for [[r, r]] to be ad-invariant is

(2.6) [[r, r]] = 0 .

We shall see that condition (2.6) is a particular case of the classical Yang-Baxter
equation. (See Sect. 2.2.)

Definition. Let r be an element in g ⊗ g, with symmetric part s, and skew-
symmetric part a. If s and [[a, a]] are ad-invariant, then r is called a classical
r-matrix or, if no confusion is possible, an r-matrix. If r is skew-symmetric
(r = a) and if [[r, r]] = 0, then r is called a triangular r-matrix.

Remark 1. It follows from the preceding discussion that any r-matrix in g⊗ g

defines a Lie-bialgebra structure on g for which the Lie bracket on g∗ is given
by formula (2.2). This bracket is called the Sklyanin bracket defined by r.

Remark 2. Some authors (see Babelon and Viallet [35], Li and Parmentier
[43], Reiman [26]) define an r-matrix to be an element r in g ⊗ g such that
ad∗rξη−ad

∗
rηξ is a Lie bracket. In this definition, s is not necessarily ad-invariant,

and such a Lie bracket is not, in general, a Lie-bialgebra bracket.

In Sect. 2.4 we shall study the modified Yang-Baxter equation and its so-
lutions, which are called classical R-matrices, or when no confusion can arise,
R-matrices.

2.2 The classical Yang-Baxter equation

Let r be an element in g⊗ g, and let us introduce 〈r, r〉 :
∧2

g∗ → g, defined by

〈r, r〉(ξ, η) = [rξ, rη] − r[ξ, η]r .
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Setting
〈r, r〉(ξ, η, ζ) = 〈ζ, 〈r, r〉(ξ, η)〉,

the map 〈r, r〉 is identified with an element 〈r, r〉 ∈
∧2

g ⊗ g. We shall show
that, whenever the symmetric part of r is ad-invariant, the element 〈r, r〉 is in

fact in
∧3

g.

Theorem. (i) Let a be in g ⊗ g and skew-symmetric. Then 〈a, a〉 is in
∧3

g,
and

〈a, a〉 = −
1

2
[[a, a]] ,

(ii) Let s be in g⊗g, symmetric and ad-invariant. Then 〈s, s〉 is an ad-invariant

element in
∧3

g, and
〈s, s〉(ξ, η) = [sξ, sη] ,

(iii) For r = a + s, where a is skew-symmetric, and s is symmetric and ad-

invariant, 〈r, r〉 is in
∧3

g, and

〈r, r〉 = 〈a, a〉 + 〈s, s〉 ,

Proof.

(i) By definition, 〈a, a〉(ξ, η, ζ) = 〈ζ, [aξ, aη]〉 − 〈ζ, a[ξ, η]a〉. By (2.2) and the
skew-symmetry of a,

〈a, a〉(ξ, η, ζ) = 〈ζ, [aξ, aη]〉 − 〈ζ, a ad∗aξη〉 + 〈ζ, a ad∗aηξ〉

= 〈ζ, [aξ, aη]〉 + 〈ad∗aξη, aζ〉 − 〈ad∗aηξ, aζ〉

= 〈ζ, [aξ, aη]〉 + 〈η, [aζ, aξ]〉 + 〈ξ, [aη, aζ]〉 .

By (2.4), we see that

〈a, a〉(ξ, η, ζ) = −
1

2
[[a, a]](ξ, η, ζ) ,

and therefore (i) is proved.

(ii) If s is symmetric and ad-invariant, then clearly 〈s, s〉(ξ, η) = [sξ, sη]. To see

that 〈s, s〉 is in
∧3

g, we use the ad-invariance of s again and the symmetry of
s. Since

〈s, s〉(ξ, η, ζ) = 〈ζ, [sξ, sη]〉 ,

we find that
〈s, s〉(ξ, η, ζ) = 〈ζ, adsξsη〉 = 〈ζ, sad∗sξη〉
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= 〈ad∗sξη, sζ〉 = −〈η, [sξ , sζ]〉 = −〈s, s〉(ξ, ζ, η) .

Thus 〈s, s〉 is skew-symmetric in the last two variables, therefore 〈s, s〉 ∈
∧3

g.
To prove that 〈s, s〉 is ad-invariant, we must prove that

〈s, s〉(ad∗xξ, η) + 〈s, s〉(ξ, ad∗xη) = adx(〈s, s〉(ξ, η)) .

Now
〈s, s〉(ad∗xξ, η) + 〈s, s〉(ξ, ad∗xη)

= [adxsξ, sη] + [ξ, adxsη] = adx[sξ, sη] = adx(〈s, s〉(ξ, η)) .

(iii) From the ad-invariance of s, we know that

[ξ, η]r = [ξ, η]a .

Thus, since r = a+ s, we find that

〈r, r〉(ξ, η) = [aξ, aη] − a[ξ, η]a

+[aξ, sη] + [sξ, aη] − s[ξ, η]a + [sξ, sη] .

By (2.2) and the ad-invariance of s,

s[ξ, η]a = sad∗aξη − sad∗aηξ = adaξsη − adaηsξ ,

and therefore [aξ, sη] + [sξ, aη] − s[ξ, η]a = 0. Therefore 〈r, r〉 = 〈a, a〉 + 〈s, s〉,

thus proving (iii), since we already know that 〈a, a〉 and 〈s, s〉 are in
∧3

g.

It follows from the proof of (i) that,

〈a, a〉(ξ, η, ζ) =	 〈ζ, [aξ, aη]〉 ,

while, if s is ad-invariant, it follows from (ii) that

〈s, s〉(ξ, η, ζ) = 〈ζ, [sξ, sη]〉.

(In this case there is no summation over the circular permutations of ξ, η, ζ.)

From this theorem, we obtain immediately,

Corollary. Let r ∈ g ⊗ g, r = a + s, where s is symmetric and ad-invariant,
and a is skew-symmetric. A sufficient condition for [[a, a]] to be ad-invariant is

(2.7) 〈r, r〉 = 0 .

Thus an element r ∈ g ⊗ g with ad-invariant symmetric part, satisfying
〈r, r〉 = 0 is an r-matrix.
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Definition. Condition (2.7), 〈r, r〉 = 0, is called the classical Yang-Baxter
equation. An r-matrix satisfying the classical Yang-Baxter equation is called
quasi-triangular. If, moreover, the symmetric part of r is invertible, then r is
called factorizable.

Remark 1. When r is skew-symmetric, equation (2.7) reduces to equation
(2.6). Thus a triangular r-matrix is quasi-triangular but not factorizable.

Remark 2. Sometimes condition (2.7), written in the form 〈a, a〉 = −〈s, s〉 is
called the modified Yang-Baxter equation (for a), and the term classical Yang-
Baxter equation is reserved for the case where r is skew-symmetric, i.e., for
condition (2.6). The abbreviations CYBE and MYBE are commonly used.

Remark 3. It is clear from part (iii) of the theorem that if r = a + s, then
tr = −a+ s satisfies

〈tr,t r〉 = 〈r, r〉 .

Thus, whenever r is a solution of the classical Yang-Baxter equation, so are tr

and −tr = a− s. The notations

r+ = r, r− = −tr

will be used in Sect. 2.4, 2.5 and 4.9 below.

Observe also that if r is a solution of the CYBE, then so is any scalar multiple
of r. However, if a ∈

∧2
g is a solution of the MYBE in the sense of Remark 2

above, 〈a, a〉 = −〈s, s〉, for a given s ∈ g⊗g, then −a satisfies the same equation,
but an arbitrary scalar multiple of a does not.

The following proposition is immediate from the definition of 〈r, r〉.

Proposition. An r-matrix, r, is quasi-triangular if and only if r+ = a+ s and
r− = a− s are Lie-algebra morphisms from (g∗, [ , ]r) to g.

We now prove

Proposition. On a simple Lie algebra over C, any Lie-bialgebra structure is
defined by a quasi-triangular r-matrix.

Proof. First, the Lie-bialgebra structure of any semi-simple Lie algebra, g, is
necessarily defined by an r-matrix. In fact, when g is semi-simple, by White-
head’s lemma, any 1-cocycle is a coboundary, and any 1-cocycle γ with values
in

∧2
g is the coboundary of an element a ∈

∧2
g,

γ = δa .

We know that 〈a, a〉 = − 1
2 [[a, a]] is an ad-invariant element of

∧3
g, because tγ

is a Lie bracket on g∗, so a is an r-matrix.

Let t be the Killing form of g. It is an invariant, non-degenerate, symmetric,
bilinear form on g, and 〈t, t〉 is an ad-invariant element of

∧3
g, by (ii) of the
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theorem. We now use the result (see Koszul [11]) that, in a simple Lie algebra

over C, the space of ad-invariant elements of
∧3

g is 1-dimensional. Therefore
there exists a complex number µ such that

〈a, a〉 = −µ2〈t, t〉 .

Now, r = a+ µt is in fact a quasi-triangular r-matrix and δr = δa = γ.

2.3 Tensor notation

We have already observed in Sect. 1.2 that, for r ∈ g ⊗ g, there are various
notations for δr(x), x ∈ g,

δr(x) = (adx ⊗ 1 + 1 ⊗ adx)(r) = [x⊗ 1 + 1 ⊗ x, r] .

We now introduce a new notation, not to be confused with the usual indicial
notation of the tensor calculus. If r ∈ g ⊗ g, we define r12, r13, r23 as elements
in the third tensor power of the enveloping algebra of g (an associative algebra
with unit such that [x, y] = x.y − y.x),

r12 = r ⊗ 1 ,
r23 = 1 ⊗ r ,

and, if r = Σiui ⊗ vi, then r13 = Σiui ⊗ 1 ⊗ vi, where 1 is the unit of the
enveloping algebra of g. This notation is called the tensor notation.

In g ⊗ g ⊗ g, we now define

[r12, r13] = [Σiui ⊗ vi ⊗ 1,Σjuj ⊗ 1 ⊗ vj ] = Σi,j [ui, uj ] ⊗ vi ⊗ vj ,

and, similarly,

[r12, r23] = [Σiui ⊗ vi ⊗ 1,Σj1 ⊗ uj ⊗ vj ] = Σi,jui ⊗ [vi, uj ] ⊗ vj ,

[r13, r23] = [Σiui ⊗ 1 ⊗ vi,Σj1 ⊗ uj ⊗ vj ] = Σi,jui ⊗ uj ⊗ [vi, vj ] .

In these notations, if the symmetric part s of r is ad-invariant, then

(2.8) 〈r, r〉 = [r12, r13] + [r12, r23] + [r13, r23] ,

and

(2.9) 〈s, s〉 = [s13, s23] = [s23, s12] = [s12, s13] .

In fact,
[r12, r13](ξ, η, ζ) = 〈ξ, [trη,t rζ]〉

[r12, r13](ξ, η, ζ) = 〈η, [rξ,t rζ]〉
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[r13, r23](ξ, η, ζ) = 〈ζ, [rξ, rη]〉 ,

while
〈r, r〉(ξ, η, ζ) = 〈ζ, [rξ, rη]〉 − 〈ζ, r(ad∗rξη + ad∗trηξ)〉

= 〈ζ, [rξ, rη]〉 + 〈η, [rξ, trζ]〉 + 〈ξ, [trη,t rζ]〉 .

(We have used the fact that ad∗sξη + ad∗sηξ = 0, because of the ad-invariance of
s, and therefore

ad∗rξη + ad∗trηξ = ad∗aξη − ad∗aηξ = [ξ, η]r.)

Thus (2.8) is proved. Another way to state the ad-invariance of s is

〈ξ, [x, sη]〉 + 〈η, [x, sξ]〉 = 0 ,

and (2.9) follows.

So, in tensor notation, the classical Yang-Baxter equation (2.7) reads

(2.10) [r12, r13] + [r12, r23] + [r13, r23] = 0 .

Example 1. Let g be the Lie algebra of dimension 2 with basis X,Y and
commutation relation

[X,Y ] = X .

Then r = X ∧ Y = X ⊗Y −Y ⊗X is a skew-symmetric solution of CYBE, i.e.,
a triangular r-matrix. This fact can be proved using definition (2.4), or one can
prove (2.10). Here, for example,

[r12, r13] = [X ⊗ Y ⊗ 1 − Y ⊗X ⊗ 1, X ⊗ 1 ⊗ Y − Y ⊗ 1 ⊗X ]

= −[X,Y ] ⊗ Y ⊗X − [Y,X ]⊗X ⊗ Y = −X ⊗ Y ⊗X +X ⊗X ⊗ Y ,

and similarly

[r12, r23] = −X ⊗X ⊗ Y + Y ⊗X ⊗X,

[r13, r23] = X ⊗ Y ⊗X − Y ⊗X ⊗X,

so that 〈r, r〉 = 0.

Then δr(X) = 0, δr(Y ) = −X ∧Y . In terms of the dual basis X∗, Y ∗ of g∗,
[X∗, Y ∗]r = −Y ∗.

Example 2. On sl(2,C), we consider the Casimir element, t (i.e., the Killing
form seen as an element in g ⊗ g),

t =
1

8
H ⊗H +

1

4
(X ⊗ Y + Y ⊗X),
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and we set

t0 =
1

8
H ⊗H ,

t+− =
1

4
X ⊗ Y.

If we define

r = t0 + 2t+− =
1

8
(H ⊗H + 4X ⊗ Y ) ,

then the symmetric part of r is t, and the skew-symmetric part is a = 1
4X ∧ Y ,

and r is a factorizable r-matrix. Then

δa(H) = 0, δa(X) =
1

4
X ∧H, δa(Y ) =

1

4
Y ∧H,

or, in terms of the dual basis H∗, X∗, Y ∗ of g∗,

[H∗, X∗]r =
1

4
X∗, [H∗, Y ∗]r =

1

4
Y ∗, [X∗, Y ∗]r = 0.

Thus the Lie-bialgebra structure of sl(2,C) of Sect. 1.1 is defined by the factor-
izable r-matrix given above.

Example 3. On sl(2,C), we consider r = X⊗H−H⊗X , which is a triangular
r-matrix. Then δr(X) = 0, δr(Y ) = 2Y ∧X, δr(H) = X ∧H .

2.4 R-matrices and double Lie algebras

Let now R be any linear map from g to g. We define

(2.11) [x, y]R = [Rx, y] + [x,Ry] .

We consider the skew-symmetric bilinear form 〈R,R〉 on g with values in g

defined by

(2.12) 〈R,R〉(x, y) = [Rx,Ry] −R([Rx, y] + [x,Ry]) + [x, y].

for x, y ∈ g, and, more generally, we define 〈R,R〉k, by

(2.13) 〈R,R〉k(x, y) = [Rx,Ry] −R([Rx, y] + [x,Ry]) + k2[x, y],

where k is any scalar.
Let c ∈

∧3
g, and define c :

∧2
g∗ → g by

〈ζ, c(ξ, η)〉 = c(ξ, η, ζ) .

Then, for u ∈ g,

(aduc)(ξ, η, ζ) = −(c(ad∗uξ, η, ζ) + c(ξ, ad∗uη, ζ) + c(ξ, η, ad∗uζ))
= − 	 c(ξ, η, ad∗uζ) = − 	 〈ad∗uζ, c(ξ, η)〉,
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where 	 denotes the sum over cyclic permutations in ξ, η, ζ. We have thus
proved

Lemma. The ad-invariance of c is equivalent to the condition on c,

(2.14) 	 〈ζ, [u, c(ξ, η)]〉 = 0 ,

for all ξ, η, ζ ∈ g∗ , u ∈ g.

Proposition. The Jacobi identity for the bracket [ , ]R defined by (2.11) is
satisfied if and only if

(2.15) 	
x,y,z

[z, 〈R,R〉(x, y)] = 0,

for all x, y, z in g.

Proof. We can show by a direct computation, using the Jacobi identity for the
bracket [ , ] repeatedly, that

	 [[x, y]R, z]R− 	 [z, 〈R,R〉(x, y)]

=	 ([R[Rx, y], z]+[[Rx, y], Rz]+[R[x,Ry], z]+[[x,Ry], Rz])− 	 [z, 〈R,R〉(x, y)]

vanishes identically.

Definition. Condition

(2.16) 〈R,R〉k = 0

is called the modified Yang-Baxter equation (MYBE) with coefficient k2.
An endomorphism R of g satisfying 〈R,R〉k = 0 for some scalar k is called

a classical R-matrix, or simply an R-matrix. It is called factorizable if k is not
equal to 0.

Thus any R-matrix on g defines a second Lie-algebra structure [ , ]R on g.
For this reason, a Lie algebra with an R-matrix is called a double Lie algebra.
(This definition is not to be confused with that of the double of a Lie bialgebra,
given in Sect. 1.6.)

Let g be a Lie algebra with an ad-invariant, non-degenerate, symmetric
bilinear form defining a bijective linear map s from g∗ to g. A skew-symmetric
endomorphism of (g, s) is a linear map R from g to g such that R ◦ s : g∗ → g

is skew-symmetric.

Proposition. Let R be a skew-symmetric endomorphism of (g, s), and set
r = a+ s, where a = R ◦ s. Then

(2.17) [x, y]R = s[s−1x, s−1y]r = s[s−1x, s−1y]a,
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and

(2.18) 〈R,R〉(x, y) = 〈r, r〉(s−1x, s−1y) .

Proof. The relations between r = a+ s and R are
{

R = a ◦ s−1 ,

r = (R+ 1) ◦ s ,

where 1 is the identity map from g to g. By the ad-invariance of s,

[Rx, y] + [x,Ry] = ad(R◦s)s−1xy − ad(R◦s)s−1yx

= s(ad∗a(s−1x)s
−1y − ad∗a(s−1y)s

−1x).

This relation and (2.2) prove (2.17), and

R([Rx, y] + [x,Ry]) = a[s−1x, s−1y]a .

Thus, by the theorem of Sect. 2.2,

〈R,R〉(x, y) = [a(s−1x), a(s−1y)] − a[s−1x, s−1y]a + [s(s−1x), s(s−1y)]
= 〈a, a〉(s−1x, s−1y) + 〈s, s〉(s−1x, s−1y)
= 〈a+ s, a+ s〉(s−1x, s−1y) ,

and this is equality (2.18).

More generally, setting rk = a+ k s, we find that

〈R,R〉k(x, y) = 〈rk, rk〉(s
−1x, s−1y) .

Proposition. Let R be a skew-symmetric endomorphism of (g, s). Then R is
an R-matrix (resp., a factorizable R -matrix) if and only if rk = (R+ k1) ◦ s is
a quasi-triangular r-matrix (resp., a factorizable r-matrix), for some scalar k.

Proof. This follows from the preceding proposition.

In other words, R = a ◦ s−1 satisfies the MYBE with coefficient k2 if and
only if r = a+ ks satisfies the CYBE. In the terminology of Remark 2 of Sect.
2.2, R is a solution of the MYBE with coefficient 1 if and only if a, defined by
a = R ◦ s satisfies the MYBE.

Applying the lemma to c = 〈r, r〉, and using the preceding proposition, we
see that r = a+ s is an r-matrix with invertible symmetric part s if and only if
R = a ◦ s−1 satisfies the condition

	
x,y,z

〈s−1z , [u, 〈R,R〉(x, y)]〉 = 0 ,
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for each x, y, z, u ∈ g. Using the ad-invariance of s, we find that this condition
is equivalent to

	
x,y,z

[z, 〈R,R〉(x, y)] = 0 .

This fact furnishes an alternate proof of the first proposition of this section.

Example. If g = a ⊕ b, where both a and b are Lie subalgebras of g, then
R = 1

2 (pa − pb), where pa (resp., pb) is the projection onto a (resp., b) parallel
to b (resp., a), is a solution of the modified Yang-Baxter equation with coefficient
1
4 . The proof is straightforward. In this case, we find that

(2.19) [x, y]R = [xa, ya] − [xb, yb] .

As an example, we can consider g = sl(n,R), a the subalgebra of upper
triangular matrices, and b = so(n).

Proposition. If R is a solution of the modified Yang-Baxter equation with
coefficient k2, then

R± = R± k 1

are Lie-algebra morphisms from gR to g, where gR denotes g equipped with the
Lie bracket [ , ]R defined by (2.11).

Proof. In fact,

R±[x, y]R − [R±x,R±y] = (R± k 1)([Rx, y] + [x,Ry])− [(R± k 1)x, (R± k 1)y]

= R([Rx, y] + [x,Ry]) − [Rx,Ry] − k2[x, y] = −〈R,R〉k(x, y) .

Remark. When R is a solution of the MYBE with coefficient 1, and s is
invertible, then R± = r± ◦ s−1, and it follows from (2.11) and (2.17) that

R±[x, y]R − [R±x,R±y] = r±[s−1x, s−1y]r − [r±(s−1x), r±(s−1y)].

Therefore the morphism properties of R± can be deduced from those of r±
proved in Sect. 2.2.

As a consequence of the preceding proposition we obtain the following

Proposition. Let R be an R-matrix satisfying 〈R,R〉k = 0. Then

J : x ∈ gR 7→ (R+x,R−x) ∈ g ⊕ g

is an injective map which identifies gR with a Lie subalgebra of the direct sum
of Lie algebras g ⊕ g.

Proof. The linear map J is clearly injective since R+x = R−x = 0 implies
(R+ −R−)x = 0, and thus x = 0. Moreover,

J([x, y]R) = (R+[x, y]R, R−[x, y]R) = ([R+x,R+y], [R−x,R−y]) ∈ g ⊕ g,

proving the proposition.
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2.5 The double of a Lie bialgebra is a factorizable Lie bial-
gebra

Let (g, γ) be any Lie bialgebra, and let d be its double. Recall that, as a vector
space, d is just g⊕ g∗. There is a canonical R-matrix defined on the Lie algebra
(d, [ , ]d), namely

R =
1

2
(pg∗ − pg) .

Since g and g∗ are Lie subalgebras of d, this endomorphism of d is indeed a
factorizable R-matrix, which satisfies the modified Yang-Baxter equation with
coefficient k2 = 1

4 (with respect to the Lie bracket of the double). So d is a
double Lie algebra, with

[x+ ξ, y + η]R = −[x, y] + [ξ, η] .

Moreover d = g⊕g∗ has a natural scalar product, ( | ), which defines a linear
map sd from d∗ = g∗ ⊕ g to d. It is easily seen that

sd(ξ, x) = (x, ξ) .

Note that R is skew-symmetric with respect to this scalar product. Therefore,
by the third proposition in Sect. 2.4, rd = R ◦ sd + 1

2sd defines a factorizable
r-matrix on d.

Explicitly, rd is the linear map from d∗ to d defined by

rd(ξ, x) = (0, ξ) ,

with symmetric part 1
2sd and skew-symmetric part

ad(ξ, x) =
1

2
(−x, ξ) .

The bracket on d∗ defined by the r-matrix rd is

[ξ + x, η + y]d∗ = [ξ, η] − [x, y] .

(We use the notations (ξ, x) or ξ + x for elements of g∗ ⊕ g.) Thus in the Lie
bialgebra d, the dual d∗ of d is the direct sum of g∗ and the opposite of g.

Moreover, if the Lie bialgebra g itself is quasi-triangular (the cocycle γ is the
coboundary of a quasi-triangular r-matrix), then the Lie algebra d is a direct
sum that is isomorphic to g ⊕ g.

Proposition. If the Lie-bialgebra structure of g is defined by a factorizable
r-matrix, then its double is isomorphic to the direct sum of Lie algebras g ⊕ g.

Proof. We first embed g in g⊕ g by x 7→ (x, x). Then we embed g∗ in g⊕ g by
j : ξ 7→ (r+ξ, r−ξ). This map j is the map J of the last proposition of Sect. 2.4
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composed with s : g∗ → gR, and formula (2.17) shows that it is a morphism of
Lie algebras from g∗ to g ⊕ g .

We obtain a Manin triple (g ⊕ g, gdiag , j(g∗)), where gdiag is the diagonal
subalgebra of g ⊕ g, and g ⊕ g is equipped with the invariant scalar product

((x, y), (x′, y′)) = 〈sx, x′〉 − 〈sy, y′〉.

This Manin triple is isomorphic to (d, g, g∗).

Example. The double of g = sl(2,R) is sl(2,R) ⊕ sl(2,R). (This fact was
proved directly in Sect. 1.7.) This property extends to sl(n,R).

We shall see in Sect. 3.6 that Hamiltonian systems on double Lie algebras
give rise to equations in Lax form, and in Sect. 4.9 that the double plays a
fundamental role in the theory of dressing transformations.

2.6 Bibliographical note

This section is based on the articles by Drinfeld [15] [16] and Semenov-Tian-
Shansky [18] [19] [28]. See also Kosmann-Schwarzbach and Magri [40]. A survey
and examples can be found in Chari and Pressley [22], Chapter 2. (Chapter 3
of [22] deals with the classification of the solutions of the classical Yang-Baxter
equation, due to Belavin and Drinfeld, which we have not discussed in these
lectures.) The first proposition in Sect. 2.1 is in [15] and, in invariant form, in
[38] [40]. The proposition in Sect. 2.5 was proved independently by Aminou
and Kosmann-Schwarzbach [33] and by Reshetikhin and Semenov-Tian-Shansky
[47].

3 Poisson manifolds. The dual of a Lie algebra.

Lax equations

We shall now introduce Poisson manifolds and show that the dual of a finite-
dimensional Lie algebra g is always a Poisson manifold.

In particular, when g is a Lie bialgebra, we obtain a Poisson structure on g

itself from the Lie-algebra structure on g∗. We shall first express the Poisson
brackets of functions on the dual g∗ of a Lie algebra g in tensor notation and
then show that, for a connected Lie group, the co-adjoint orbits in g∗ are the
leaves of the symplectic foliation of g∗. Finally, we shall show that Hamiltonian
systems on double Lie algebras give rise to equations in Lax form.

3.1 Poisson manifolds

On smooth manifolds, one can define Poisson structures, which give rise to
Poisson brackets with the usual properties, on the space of smooth functions
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on the manifold in the following way. We shall henceforth write manifold for
smooth manifold, tensor for smooth field of tensors, etc. Let us denote the
space of functions on a manifold M by C∞(M). By a bivector on a manifold
M we mean a skew-symmetric, contravariant 2-tensor, i.e., if P is a bivector,
at each point x ∈ M , Px has skew-symmetric components in local coordinates,
(P ij(x)), i, j = 1, 2, · · · , dimM . At each point x, we can view Px as a skew-
symmetric bilinear form on T ∗

xM , the dual of the tangent space TxM , or as the
skew-symmetric linear map P x from T ∗

xM to TxM , such that

(3.1) 〈ηx, Px(ξx)〉 = Px(ξx, ηx), for ξx, ηx ∈ T ∗
xM .

If ξ, η are differential 1-forms on M , we define P (ξ, η) to be the function in
C∞(M) whose value at x ∈M is Px(ξx, ηx).

If f, g are functions on M , and df, dg denote their differentials, we set

(3.2) {f, g} = P (df, dg) .

Note that P (df) is a vector field, denoted by Xf , and that

(3.3) {f, g} = Xf .g .

It is clear that {f, gh} = {f, g}h + g{f, h}, for any functions f, g, h on M , so
that the bracket { , } satisfies the Leibniz rule.

Definition. A Poisson manifold (M,P ) is a manifold M with a Poisson bivec-
tor P such that the bracket defined by (3.2) satisfies the Jacobi identity.

When (M,P ) is a Poisson manifold, {f, g} is called the Poisson bracket of
f and g ∈ C∞(M), and Xf = P (df) is called the Hamiltonian vector field with
Hamiltonian f . Functions f and g are said to be in involution if {f, g} = 0.

Example. If M = R2n, with coordnates (qi, pi), i = 1, · · · , n, and if

P (dqi) = −
∂

∂pi

, P (dpi) =
∂

∂qi
,

then

Xf =
∂f

∂pi

∂

∂qi
−
∂f

∂qi

∂

∂pi

and

{f, g} =
∂f

∂pi

∂g

∂qi
−
∂f

∂qi

∂g

∂pi

,

the usual Poisson bracket of functions on phase-space. The corresponding bivec-
tor is P = ∂

∂pi
∧ ∂

∂qi .

In local coordinates, a necessary and sufficient condition for a bivector P to
be a Poisson bivector is

	 P i` ∂P
jk

∂x`
= 0 ,
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where 	 denotes the sum over the circular permutations of i, j, k (and the sum-
mation over ` = 1, 2, . . . , dimM is understood). In an invariant formalism, we
define [[P, P ]] to be the contravariant 3-tensor with local components

(3.4) [[P, P ]]ijk = −2 	 P i` ∂P
jk

∂x`
.

One can show that this defines a tri-vector (skew-symmetric, contravariant 3-
tensor), called the Schouten bracket of P (with itself), and that

(3.5) [[P, P ]](df1, df2, df3) = −2 	 {f1, {f2, f3}} .

From (3.5), it follows that P is a Poisson bivector if and only if [[P, P ]] = 0.
Alternatively, the bivector P is a Poisson bivector if and only if

(3.6) X{f,g} = [Xf , Xg], for all f, g ∈ C∞(M) .

Now let (M,ω) be an arbitrary symplectic manifold, i.e., ω is a closed, non-
degenerate differential 2-form on M . To say that ω is non-degenerate means
that for each x ∈ M, ωx : TxM → T ∗

xM defined by

〈ωx(Xx), Yx〉 = ωx(Yx, Xx) ,

for Xx, Yx ∈ TxM , is a bijective linear map.
Let us show that every symplectic manifold has a Poisson structure. Since

the linear mapping ωx is bijective, it has an inverse, which we denote by P x.
As above, we set Xf = P (df) = ω−1(df). Then

{f, g} = Xf .g = 〈ω(Xg), Xf 〉 = ω(Xf , Xg).

First, one can show, using the classical properties of the Lie derivative, that
dω = 0 implies

[Xf , Xg] = X{f,g} ,

for all f and g in C∞(M). Now

	 {f1, {f2, f3}} = Xf1
·Xf2

· f3 −Xf2
·Xf1

· f3 −X{f1,f2} · f3,

which vanishes by the preceding observation. Thus, when ω is a closed, non-
degenerate 2-form, the bracket { , } satisfies the Jacobi identity. Therefore, if
ω is a symplectic structure on M , then P defines a Poisson structure on M .
Conversely, if P is a Poisson bivector such that P is invertible, it defines a
symplectic structure.

Whereas every symplectic manifold has a Poisson structure, the converse
does not hold: a symplectic manifold is a Poisson manifold such that the linear
map Px is a bijection for each x in M .
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3.2 The dual of a Lie algebra

We shall show that, given a finite-dimensional Lie algebra g, its dual g∗ is a
Poisson manifold in a natural way. The Poisson structure on g∗ is defined by

(3.7) P ξ(x) = −ad∗xξ ,

where ξ is a point of g∗, and x ∈ g is considered as a 1-form on g∗ at point
ξ. This Poisson structure is called the linear Poisson structure (because P ξ

depends linearly on ξ ∈ g∗), or the Berezin-Kirillov-Kostant-Souriau Poisson
structure (or a subset of those names), or the Lie-Poisson structure (not to be
confused with the Poisson Lie structures on groups to be defined in Sect. 4.2).

For f ∈ C∞(g∗), dξf is in T ∗
ξ g∗ ' (g∗)∗ ' g, and

P ξ(dξf) = −ad∗dξf ξ ∈ g∗ ' Tξg
∗ ,

so that
Xf (ξ) = −ad∗dξf ξ ,

while
{f, g}(ξ) = Xf (ξ).g = −〈ad∗dξf ξ, dξg〉 ,

whence

(3.8) {f, g}(ξ) = 〈ξ, [dξf, dξg]〉 .

If, in particular, f = x, g = y, where x, y ∈ g are seen as linear forms on g∗, we
obtain

(3.9) {x, y}(ξ) = 〈ξ, [x, y]〉 .

It is clear that we have thus defined a Poisson structure on g∗ because, by (3.8),
the Jacobi identity for { , } follows from the Jacobi identity for the Lie bracket
on g. In fact

	 {x1, {x2, x3}}(ξ) = 〈ξ,	 [x1, [x2, x3]]〉 = 0 .

From the Jacobi identity for linear functions on g∗, we deduce the Jacobi identity
for polynomials, and hence for all smooth functions on g∗ (using a density
theorem).

3.3 The first Russian formula

We now consider the case where g is not only a Lie algebra, but has a Lie-
bialgebra structure defined by an r-matrix, r ∈ g ⊗ g. In this case g∗ is a Lie
algebra, with Lie bracket [ , ]r such that

〈[ξ, η]r, x〉 = δr(x)(ξ, η) = ((adx ⊗ 1 + 1 ⊗ adx)(r))(ξ, η)
= [x⊗ 1 + 1⊗ x, r](ξ, η) ,
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in the notations of Sect. 1.2, 2.1 and 2.3. Since the vector space g can be
identified with the dual of the Lie algebra g∗, it has the linear Poisson structure,
here denoted by { , }r ,

{ξ, η}r(x) = 〈x, [ξ, η]r〉 ,

whence

(3.10) {ξ, η}r(x) = [x⊗ 1 + 1 ⊗ x, r](ξ, η) .

Let us examine the case where g is a Lie algebra of matrices. It is customary to
write L for a generic element in g (because, in the theory of integrable systems,
L denotes the Lax matrix; see, e.g., Perelomov [25]). If L is a p× p matrix, and
1 is the identity p × p matrix, then L ⊗ 1 and 1 ⊗ L are p2 × p2 matrices. If
L = (aj

i ), then

L⊗1 =



































a1
1 0 · · · 0 · · · a1

p 0 · · · 0
0 a1

1 · · · 0 · · · 0 a1
p · · · 0

...
...

. . .
...

. . .
...

...
. . .

...
0 0 · · · a1

1 · · · 0 0 · · · a1
p

...
...

...
...

...
...

...
...

...
a

p
1 0 · · · 0 · · · ap

p 0 · · · 0
0 a

p
1 · · · 0 · · · 0 ap

p · · · 0
...

...
. . .

...
. . .

...
...

. . .
...

0 0 · · · a
p
1 · · · 0 0 · · · ap

p



































, 1⊗L =











L 0 · · · 0
0 L · · · 0

. . .

0 0 · · · L











.

Since r is an element in g ⊗ g, it is also a p2 × p2 matrix. Then, what we have
denoted by [L⊗ 1 + 1 ⊗ L, r] is the usual commutator of p2 × p2 matrices.

The Poisson structure of g ' (g∗)∗ is entirely specified if we know the Poisson
brackets of the coordinate functions on g. Since g ⊂ gl(p), it is enough to know
the pairwise Poisson brackets of coefficients {aj

i , a
`
k}, where aj

i , for fixed indices
i, j ∈ {1, · · · , p}, is considered as the linear function on g which associates its
coefficient in the ith column and jth row to a matrix L ∈ g. These Poisson
brackets can be arranged in a p2 × p2 matrix, which we denote by {L ⊗, L}. By
definition,
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{L ⊗, L} =







































{a1
1, a

1
1} · · · {a1

1, a
1
p} {a1

2, a
1
1} · · · {a1

p, a
1
p}

{a1
1, a

2
1} · · ·

...
...

...
...

...
...

...

{a1
1, a

p
1} · · · {a1

1, a
p
p} · · ·

...
{a2

1, a
1
1} · · · {a2

1, a
1
p} · · ·

...
...

{a2
1, a

p
1} · · · {a2

1, a
p
p} · · ·

...
...

{ap
1, a

p
1} · · · {ap

1, a
p
p} · · · {ap

p, a
p
p}







































.

Now, evaluating the element [L⊗ 1 + 1 ⊗ L, r] ∈ g ⊗ g on the pair aj
i , a

`
k ∈ g∗,

amounts to taking the
j `

i k
coefficient in the p2 ×p2 matrix [L⊗1+1⊗L, r].

Thus formula (3.10) becomes the equality of matrices,

(3.11) {L ⊗, L} = [L⊗ 1 + 1 ⊗ L, r] .

Sometimes the notations L1 = L⊗ 1, L2 = 1⊗L, {L ⊗, L} = {L1, L2} are used.
Then (3.11) becomes

(3.11′) {L1, L2} = [L1 + L2, r] .

Formula (3.11) is what I call the first Russian formula. The second Russian
formula to be explained in Sect. 4.3 will express the Poisson bracket of the
coordinate functions on a Poisson Lie group when the elements of that group
are matrices.

Remark. In formula (3.11), it is clear that r can be assumed to be a skew-
symmetric tensor, since its symmetric part is necessarily ad-invariant. This
does not mean that the p2 × p2 matrix of r, nor that matrix [L1 + L2, r] is
skew-symmetric.

Examples. We denote an element in sl(2,C) by L =

(

α β

γ δ

)

, with α+δ = 0.

Let a = 1
4 (X ⊗ Y − Y ⊗X) ∈

∧2
(sl(2,C)), as in Example 2 of Sect. 2.3. Then

we obtain from formula (3.11),

{α, β} =
1

4
β, {α, γ} =

1

4
γ, {β, γ} = 0.
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If we choose r = X ⊗H −H ⊗X , as in Example 3 of Sect. 2.3, then

r =









0 −1 1 0
0 0 0 −1
0 0 0 1
0 0 0 0









, and {α, β} = −2α, {α, γ} = 0, {β, γ} = 2γ.

3.4 The traces of powers of Lax matrices are in involution

We shall now show that whenever there exists an r-matrix r such that (3.11)
holds, the traces of powers of L are pairwise in involution, i.e.,

(3.12) {trLk, trL`} = 0 ,

for all k, ` ≥ 1. It will then follow that the eigenvalues of L (as functions on g)
are in involution.

For p× p matrices A and B, we similarly define

{A ⊗, B} = {A1, B2} .

First, we observe that

(3.13) tr{A1, B2} = {trA, trB} .

For matrices A and B, it is clear that (AB)1 = A1B1 and (AB)2 = A2B2. It
follows therefore from the Leibniz rule that, for matrices A,B and C,

{A1, (BC)2} = {A1, B2C2} = B2{A1, C2} + {A1, B2}C2 .

Induction then shows that for any matrix L,

{Lk
1 , L

`
2} =

k−1
∑

a=0

`−1
∑

b=0

Lk−a−1
1 L`−b−1

2 {L1, L2}L
a
1L

b
2 .

From this relation, we obtain

{trLk, trL`} = tr{Lk
1 , L

`
2} = k` trLk−1

1 L`−1
2 {L1, L2},

since A1B2 = (A⊗1)(1⊗B) = A⊗B = (1⊗B)(A⊗1) = B2A1 for any matrices
A and B. Now, we use (3.11′) and we obtain

{trLk, trL`} = k` trLk−1
1 L`−1

2 [L1 + L2, r] .

Now tr(Lk−1
1 L`−1

2 L1r − Lk−1
1 L`−1

2 rL1) = 0, and similarly tr(Lk−1
1 L`−1

2 L2r −
Lk−1

1 L`−1
2 rL2) = 0, and relation (3.12) is proved. (This result can be obtained

as a corollary of Semenov-Tian-Shansky’s theorem on double Lie algebras to be
stated in Sect. 3.6.)
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We know that when a dynamical system is in Lax form, i.e., can be written
as

(3.14) L̇ = [L,B] ,

where L and B are matrices depending on the phase-space coordinates, the
eigenvalues of L are conserved (isospectral evolution), and hence the traces of
powers of L are conserved. What we have proved is the following

Proposition.When the Poisson brackets of the coefficients of the Lax matrix
are given by an r-matrix, the traces of powers of the Lax matrix are conserved
quantities in involution.

If sufficiently many of these conserved quantites in involution are functionally
independent, the complete integrability of the system in the sense of Liouville
and Arnold (see Arnold [2]) follows.

Remark. Relation (3.12) is valid under the weaker assumption that r is an
r-matrix in the sense of Remark 2 of Sect. 2.1. In this more general case, we
obtain from [ξ, η]r = ad∗rξη − ad∗rηξ,

(3.15) {L1, L2} = [L1,−
tr] + [L2, r] = [ tr, L1] − [r, L2].

(This is formula (11) of Babelon and Viallet [35], where d = tr.)

3.5 Symplectic leaves and coadjoint orbits

We have remarked in Sect. 3.1 that any symplectic manifold is a Poisson man-
ifold but that the converse does not hold. In fact, any Poisson manifold is a
union of symplectic manifolds, generally of varying dimensions, called the leaves
of the symplectic foliation of the Poisson manifold. (In the case of a symplectic
manifold, there is only one such leaf, the manifold itself.) On a Poisson manifold
(M,P ), let us consider an open set where the rank of P is constant. At each
point x, the image of T ∗

xM under P x is a linear subspace of TxM of dimension
equal to the rank of P x. That the distribution x 7→ Im P x is integrable follows
from the Poisson property of P . (Here, ‘distribution’ means a vector subbundle
of the tangent bundle. See, e.g., Vaisman [30].) By the Frobenius theorem, this
distribution defines a foliation, whose leaves are the maximal integral manifolds.
If the rank of P x is not constant on the manifold, this distribution defines a
generalized foliation, the leaves of which are of varying dimension equal to the
rank of the Poisson map. This will be illustrated in the case of the dual of a Lie
algebra.

First, let us review the adjoint and coadjoint actions of Lie groups.
Let G be a Lie group with Lie algebra g. Then G acts on its Lie algebra by

the adjoint action, denoted by Ad. For g ∈ G, x ∈ g,

(3.15) Adgx =
d

dt
(g. exp tx.g−1)|t=0 .
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If G is a matrix Lie group, then g and x are matrices and we recover the usual
formula,

Adgx = gxg−1 .

By definition, the adjoint orbit of x ∈ g is the set of all Adgx, for g ∈ G. In the
case of a matrix Lie group, it is the set of matrices which are conjugate to x by
matrices belonging to G.

If we define

adxy =
d

dt
(Adexp txy)|t=0 ,

then

adxy =
d

dt

d

ds
exp tx. exp sy. exp(−tx)|t=s=0 = [x, y] .

Thus ad does coincide with the adjoint representation of g on itself introduced
in Sect. 1.2.

We can define an action of G on functions on g by

(3.16) (g.f)(x) = f(Adg−1x) , for x ∈ g, f ∈ C∞(g), g ∈ G .

A function f on g is called Ad-invariant (or G-invariant) if g.f = f , for all
g ∈ G. This means that f is constant on the orbits of the adjoint action. In the
case of a group of matrices, it means that the value of f at x depends only on
the equivalence class of x, modulo conjugation by elements of G. For example,
we can take f(x) = 1

k
tr(xk), for k a positive integer.

We now consider the dual g∗ of g, and we define the coadjoint action of G
on g∗, denoted by Ad∗, as

(3.17) 〈Ad∗gξ, x〉 = 〈ξ, Adg−1x〉 ,

for g ∈ G, ξ ∈ g∗, x ∈ g. By definition, the coadjoint orbit of ξ ∈ g∗ is the set of
all Ad∗gξ, for g ∈ G. If we define

ad∗xξ =
d

dt
Ad∗exp txξ|t=0 ,

we see that ad∗ coincides with the coadjoint representation of g on g∗ which we
introduced in Sect. 1.3. The tangent space at ξ ∈ g∗ to the coadjoint orbit Oξ

of ξ is the linear subspace of Tξg
∗ ' g∗,

(3.18) TξOξ = {ad∗xξ|x ∈ g} .

The Lie group G acts on functions on g∗ by

(3.19) (g.f)(ξ) = f(Ad∗g−1ξ), for ξ ∈ g∗, f ∈ C∞(g∗), g ∈ G .
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A function f on g∗ is called Ad∗-invariant (or G-invariant) if g.f = f , for all
g ∈ G.

Now we give infinitesimal characterizations of Ad-invariant functions on g

and Ad∗-invariant functions on g∗.

Proposition. Assume that the Lie group G is connected. A function f ∈ C∞(g)
is Ad-invariant if and only if

(3.20) ad∗x(dxf) = 0 , for all x ∈ g .

A function f ∈ C∞(g∗) is Ad∗-invariant if and only if

(3.21) ad∗dξf ξ = 0 , for all ξ ∈ g∗ .

Proof. Let f be a function on g. If G is connected, by (3.16), relation g.f = f

is satisfied for all g ∈ G if and only if

0 =
d

dt
f(Adexp(−ty)x)|t=0 = −〈dxf, [y, x]〉 = −〈ad∗x(dxf), y〉 ,

for all x, y ∈ g, proving (3.20). Similarly, if f ∈ C∞(g∗), then by (3.19), relation
g.f = f is satisfied for all g ∈ G if and only if

0 =
d

dt
f(Ad∗exp(−tx)ξ)|t=0 = −〈dξf, ad

∗
xξ〉 = 〈x, ad∗dξf ξ〉

for all x ∈ g , ξ ∈ g∗, proving (3.21).

Note that alternate ways of writing (3.20) and (3.21) are

(3.20′) dxf ◦ adx = 0, for all x ∈ g

and

(3.21′) ξ ◦ addξf = 0, for all ξ ∈ g∗ .

For example, if f(x) = 1
k
tr(xk), then dxf(h) = tr(xk−1h), for x, h ∈ g, and it is

clear that, for each y ∈ g,

tr(xk−1[x, y]) = 0 .

Let us examine the case where g∗ can be identified with g by means of an
ad-invariant, non-degenerate, symmetric, bilinear form s. This is the case if g

is semi-simple and we choose s to be the Killing form. Then s : g∗ → g satisfies

adx ◦ s = s ◦ ad∗x ,
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for all x ∈ g (see Sect. 2.1), so that in this identification the coadjoint action
becomes the adjoint action. If f is a function on g∗ ' g, its differential at a
point L is an element in g. By (3.20), the function f is G-invariant if and only
if

[L, dLf ] = 0 .

We can now prove

Proposition. Let G be a Lie group with Lie algebra g. The symplectic leaves of
the linear Poisson structure of g∗ are the connected components of the coadjoint
orbits in g∗.

Proof. By (3.7), the linear Poisson bivector P on g∗ is such that

Im P ξ = {ad∗xξ|x ∈ g} .

Thus, by (3.18), the image of P ξ coincides with the tangent space at ξ ∈ g∗ to
the coadjoint orbit of ξ. The result follows.

Example. If G = SO(3), g∗ is a 3-dimensional vector space identified with R3

in which the coadjoint orbits are the point {0} (0-dimensional orbit) and all
spheres centered at the origin (2-dimensional orbits).

Note that the coadjoint orbit of the origin 0 in the dual of any Lie algebra is
always {0}. In particular, the dual of a Lie algebra is not a symplectic manifold.

When a Poisson manifold is not symplectic, there are nonconstant functions
which are in involution with all functions on the manifold.

Definition. In a Poisson manifold, those functions whose Poisson brackets
with all functions vanish are called Casimir functions.

Proposition. In the dual of the Lie algebra of a connected Lie group G, the
Casimir functions are the Ad∗-invariant functions.

Proof. In fact, if f, g ∈ C∞(g∗) and ξ ∈ g∗, then

{f, g}(ξ) = 〈ξ, [dξf, dξg]〉 = −〈ad∗dξf ξ, dξg〉 .

This quantity vanishes for all g ∈ C∞(g∗) if and only if ad∗dξf ξ = 0, and therefore

this proposition is a consequence of (3.21).

The symplectic leaves of a Poisson manifold are contained in the connected
components of the level sets of the Casimir functions. (On a symplectic leaf,
each Casimir function is constant.)
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3.6 Double Lie algebras and Lax equations

Let (g, R) be a double Lie algebra in the sense of Sect. 2.4. Then g has two Lie
algebra structures, [ , ] and [ , ]R defined by (2.11). We denote the corresponding
adjoint (resp., coadjoint) actions by ad and adR (resp., ad∗ and adR∗). Thus g∗

has two linear Poisson structures, P and PR. By definition, for x, y ∈ g, ξ ∈ g∗,

〈PR
ξ (x), y〉 = −〈adR∗

x ξ, y〉 = 〈ξ, [x, y]R〉

= 〈ξ, [Rx, y] + [x,Ry]〉 ,

whence

(3.22) 〈PR
ξ (x), y〉 = −〈ad∗Rxξ, y〉 − 〈ad∗xξ, Ry〉 .

We denote the Poisson bracket defined by PR by { , }R. For f1, f2 ∈ C∞(g∗),

{f1, f2}R(ξ) = −〈ad∗R(dξf1)ξ, dξf2〉 − 〈ad∗dξf1
ξ, R(dξf2)〉

= 〈ad∗dξf2
ξ, R(dξf1)〉 − 〈ad∗dξf1

ξ, R(dξf2)〉 .

From this formula and from the proof of the last proposition of Sect. 3.5, we
obtain

Theorem. Let g∗ be the dual of a double Lie algebra, with Poisson brackets
{ , } and { , }R. If f1 and f2 are Casimir functions on (g∗, { , }), they are in
involution with respect to { , }R.

Now, let f be a Casimir function on (g∗, { , }). Its Hamiltonian vector field
Xf clearly vanishes. Let us denote the Hamiltonian vector field with Hamilto-
nian f with respect to { , }R by XR

f . Then

XR
f (ξ) = PR

ξ (dξf) .

If f is a Casimir function on (g∗, { , }), it follows from (3.22) and (3.21) that

(3.23) XR
f (ξ) = −ad∗R(dξf)ξ .

The corresponding Hamiltonian equation is ξ̇ = −ad∗
R(dξf)ξ. In addition, let us

assume that g∗ is identified with g by an ad-invariant, nondegenerate, symmetric
s ∈ g ⊗ g. Then, denoting a generic element in g by L, the element −ad∗

R(dξf)ξ

in g∗ is identified with −adR(dLf)L = [L,R(dLf)] in g. Thus the Hamiltonian
vector field satisfies

XR
f (L) = [L,R(dLf)] ,

and the corresponding Hamiltonian equation is

(3.24) L̇ = [L,R(dLf)]
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which is in fact an equation of Lax type, L̇ = [L,B] .

The theorem and these formulæ constitute Semenov-Tian-Shansky’s theo-
rem.

If, in particular, g = g+ ⊕ g−, where g+ and g− are Lie subalgebras, and
R = 1

2 (p+ − p−), where p+ (resp., p−) is the projection onto g+ (resp., g−)
parallel to g− (resp., g+) (see the example in Sect. 2.4), then for a Casimir
function f on (g∗, { , }), from (3.23) and (3.21), we obtain

XR
f (ξ) = −

1

2
ad∗(dξf)+−(dξf)−

ξ = −ad∗(dξf)+
ξ = ad∗(dξf)−

ξ ,

where x± = p±(x), or, in the Lax form,

(3.25) L̇ = [L, (dLf)+] ,

or, equivalently,
L̇ = −[L, (dLf)−] .

Example. Let g = sl(n,R), and let g+ = so(n), g− the subalgebra of upper
triangular matrices (see the example of Sect 2.4), where g∗ and g are identified
by the trace functional tr(xy), and let us choose f(L) = 1

2 trL
2.

Then (3.25) becomes

(3.26) L̇ = [L,L+] ,

where L = L+ + L− and L± ∈ g± .

The various results of this section are of importance in the theory of inte-
grable systems because they furnish conserved quantities in involution. If h is
a Casimir function of (g, [ , ]), the Hamiltonian vector field XR

h is tangent to
the coadjoint orbits of (g, [ , ]R). In restriction to an orbit, which is a symplec-
tic manifold, we obtain a Hamiltonian system, for which the restrictions of the
Casimir functions of (g∗, { , }) are conserved quantities in involution.

For example, by restricting the Hamiltonian system of the preceding example
to the adjoint orbit of the matrix















0 1 0 · · · 0
1 0 0 · · · 0
...

...
...

...
...

0 0 · · · 0 1
0 0 · · · 1 0















in sl(n,R), we obtain the Toda system, for which 1
k
tr(Lk) are conserved quan-

tities in involution.
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Let us show that Semenov-Tian-Shansky’s theorem implies the Adler-Kostant-
Symes theorem.

Let us denote the orthogonal of g+ (resp., g−) in g∗ by g⊥+ (resp., g⊥−). Then
g∗+ can be identified with g⊥−, while g∗− can be identified with g⊥+, and g∗ splits
as

g∗ = g⊥− ⊕ g⊥+ ≈ g∗+ ⊕ g∗− .

If f is a function on g∗ , then

(3.27) dξ(f |g∗

+
) = (dξf)+ .

It follows that, for functions f1 and f2 on g∗ ,

(3.28) {f1|g∗

+
, f2|g∗

+
}g∗

+
= {f1, f2}R|g∗

+
,

where { , }g∗

+
denotes the Lie-Poisson bracket on the dual of the Lie algebra

g+. In fact, by formula (2.19), both sides evaluated at ξ ∈ g∗
+ are equal to

〈ξ, [(dξf1)+, (dξf2)+]〉 . By the preceding theorem, if f1 and f2 are Casimir
functions on g∗, they satisfy {f1, f2}R = 0, and therefore, by (3.28),

{f1|g∗

+
, f2|g∗

+
}g∗

+
= 0 .

Thus we obtain the Adler-Kostant-Symes theorem, namely,

Theorem. Let g = g+ ⊕ g−, where g+ and g− are Lie subalgebras of g, and
let f1 and f2 be Casimir functions on g∗. Then the restrictions of f1 and f2 to
g⊥− ≈ g∗+ commute in the Lie-Poisson bracket of g∗

+.

3.7 Solution by factorization

We shall show that, when the R-matrix is defined by the decomposition of a Lie
algebra into a sum of complementary Lie subalgebras, the problem of integrat-
ing dynamical system (3.23) can be reduced to a factorization problem in the
associated Lie group. Thus in this case, the Lax equation (3.24) can be solved
“by factorization”. Actually this scheme is valid in the more general situation
where R is a factorizable R-matrix, and this fact explains the terminology.

Let G be a Lie group with Lie algebra g = g+ ⊕ g−, where g+ and g− are
Lie subalgebras of g , and let G+ (resp., G−) be the connected Lie subgroup of
G with Lie algebra g+ (resp., g−). The solution by factorization of the initial
value problem,

{

ξ̇ = −ad∗(dξf)+
ξ ,

ξ(0) = ξ0 ,

where f is a Casimir function on g∗, and ξ0 is an element of g∗, is the following.
Let x0 = dξ0

f ∈ g, and assume that etx0 ∈ G has been factorized as

(3.29) etx0 = g+(t)−1g−(t) ,
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where g±(t) ∈ G±, g±(0) = e , which is possible for |t| small enough. We shall
prove that

(3.30) ξ(t) = Ad∗g+(t)ξ0

solves the preceding initial-value problem.
In fact, because f is Ad∗-invariant, for g ∈ G, η ∈ g∗,

(dAd∗

gξ0
f)(η) =

d

ds
f(Ad∗gξ0 + sη)|s=0

=
d

ds
f(ξ0 + sAd∗g−1η)|s=0 = (dξ0

f)(Ad∗g−1η),

so that

(3.31) dAd∗

gξ0
f = Adg(dξ0

f) .

Now, from g+(t)etx0 = g−(t), we obtain, by differentiating,

ġ+(t)g+(t)−1 +Adg+(t)x0 = ġ−(t)g−(t)−1 .

Using the definition of x0, and formulæ (3.30) (3.31), we obtain

dξ(t)f = −ġ+(t)g+(t)−1 + ġ−(t)g−(t)−1 ,

so that
(dξ(t)f)+ = −ġ+(t)g+(t)−1 ,

while it follows from (3.30) that

ξ̇(t) = ad∗ġ+(t)g+(t)−1ξ(t).

Therefore ξ(t) given by (3.30) solves the given initial-value problem.

3.8 Bibliographical note

For Poisson manifolds and coadjoint orbits, see Cartier [21], Vaisman [30] or
Marsden and Ratiu [12]. For Sect. 3.3, see Faddeev and Takhtajan [23], Babelon
and Viallet [20]. Double Lie algebras were introduced by Semenov-Tian-Shansky
[18] [28], where the theorem of Sect. 3.6 is proved, and the factorization method
is explained. For the Toda system, see Kostant [9], Reyman and Semenov-
Tian-Shansky [27], Semenov-Tian-Shansky [28], Babelon and Viallet [20]. For
the Adler-Kostant-Symes theorem, see Kostant [9], Guillemin and Sternberg
[7]. The books by Faddeev and Takhtajan [23] and by Perelomov [25] contain
surveys of the Lie-algebraic approach to integrable equations.
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4 Poisson Lie groups

When a Lie group is also a Poisson manifold, it is natural to require that the
Poisson structure and the multiplication defining the group structure be com-
patible in some sense. This idea, when made precise, leads to the notion of a
Poisson Lie group. In fact, the introduction of Poisson Lie groups was motivated
by the properties of the monodromy matrices of difference equations describing
lattice integrable systems. We shall give the definition of Poisson Lie groups and
show that the infinitesimal object corresponding to a Poisson Lie group is a Lie
bialgebra. The emphasis will be on Poisson Lie groups defined by r-matrices,
and we shall study examples on matrix groups.

It has gradually emerged from the physics literature that the group of dress-
ing transformations should be considered as the action of a Poisson Lie group
on a Poisson manifold. This action is a Poisson action in a sense that we shall
define in Sect. 4.7, and which generalizes the Hamiltonian actions. For such
actions one can define a momentum mapping (also known as a non-Abelian
Hamiltonian). If G and G∗ are dual Poisson Lie groups, the dressing action of
G∗ on G, and that of G∗ on G will be defined and characterized in various ways
in Sect. 4.9.

4.1 Multiplicative tensor fields on Lie groups

First recall that in a Lie group G, the left- and right-translations by an element
g ∈ G, denoted by λg and ρg respectively, are defined by

λg(h) = gh , ρg(h) = hg ,

for h ∈ G. Taking the tangent linear map to λg (resp., ρg) at point h ∈ G, we
obtain a linear map from ThG, the tangent space to G at h, into the tangent
space to G at λg(h) = gh (resp., at ρg(h) = hg). For any positive integer k,
using the k-th tensor power of the tangent map to λg (resp., ρg), we can map
k-tensors at h to k-tensors at gh (resp., hg). If Qh is a tensor at h, we simply
denote its image under this map by g.Qh (resp., Qh.g). Here and below, we
write tensor for smooth contravariant tensor field.

Definition. A tensor Q on a Lie group G is called multiplicative if

(4.1) Qgh = g.Qh +Qg.h ,

for all g, h ∈ G.

Note that this relation implies that

(4.2) Qe = 0 ,

where e is the unit element of the group G. In fact, setting h = g = e in (4.1),
we obtain Qe = 2Qe.
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Let us denote the Lie algebra of G, which is the tangent space TeG to G at
e, by g. We can associate to any k-tensor Q on the Lie group G a mapping ρ(Q)
from G to the k-th tensor power of g defined by

(4.3) ρ(Q)(g) = Qg.g
−1 ,

for g ∈ G. When Q is multiplicative, the mapping ρ(Q) has the following
property. For all g, h ∈ G,

(4.4) ρ(Q)(gh) = Adg(ρ(Q)(h)) + ρ(Q)(g) .

In fact, by (4.3) and (4.1),

ρ(Q)(gh) = Qgh.(gh)
−1 = (g.Qh +Qg.h).h

−1.g−1

= g.ρ(Q)(h).g−1 + ρ(Q)(g) .

Taking into account the definition of the adjoint action of the group on tensor
powers of g, Adga = g.a.g−1, for a ∈ ⊗kg, we obtain (4.4). Observe that if
a = a1 ⊗ · · · ⊗ ak, then g.a = g.a1 ⊗ · · · ⊗ g.ak.

Definition. A mapping U from G to a representation space (V,R) of G satis-
fying

(4.5) U(gh) = R(g)(U(h)) + U(g)

is called a 1-cocycle of G with values in V , with respect to the representation R.

Thus we have proved

Proposition. If Q is a multiplicative k-tensor on a Lie group G, then ρ(Q) is
a 1-cocycle of G with values in the k-th tensor power of g, with respect to the
adjoint action of G.

As the names suggest, there is a relationship between Lie-group cocycles and
Lie-algebra cocycles. The following is a well-known result.

Proposition. If U : G→ V is a 1-cocycle of G with values in V , with respect
to the representation R, then TeU : g → V defined by

TeU(x) =
d

dt
U(exp tx)|t=0 ,

for x ∈ g, is a 1-cocycle of g with values in V , with respect to the representation
deR defined by

deR(x) =
d

dt
R(exp tx)|t=0 .

Conversely, if u is a 1-cocyle of g with values in V , with respect to a represen-
tation σ of g, and if G is connected and simply connected, there exists a unique
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1-cocyle U of G with values in V , with respect to the representation R such that
deR = σ, satisfying TeU = u.

To any multiplicative k-tensorQ, we associate the 1-cocycle on g with respect
to the adjoint action of g on the k-th tensor power of g,

(4.6) DQ = Te(ρ(Q)) .

This linear map from g to
k
⊗ g coincides with the linearization of Q at e, namely

it satisfies, for x ∈ g,
(DQ)(x) = (LXQ)(e) ,

where X is any vector field on G defined in a neighborhood of e such that
Xe = x, and L is the Lie derivation.

Example. Let q ∈
k
⊗ g. Set Q = qλ − qρ, where

(4.7) qλ(g) = g.q , qρ(g) = q.g ,

for g ∈ G. Then Q is a multiplicative k-tensor. Such a multiplicative tensor is

called exact because its associated 1-cocycle ρ(Q) : G→
k
⊗ g is exact, namely

(4.8) ρ(Q)(g) = Adgq − q .

(If an element q ∈
k
⊗ g is considered as a 0-cochain on G, its group coboundary is

g 7→ Adgq− q.) In this case, (DQ)(x) = adxq, so that DQ = δq, the Lie-algebra
coboundary of the 0-cochain q, with respect to the adjoint representation.

4.2 Poisson Lie groups and Lie bialgebras

Definition. A Lie group G, with Poisson bivector P , is called a Poisson Lie
group if P is multiplicative.

By (4.2), Pe = 0, so (G,P ) is not a symplectic manifold.

Examples. Obviously, G with the trivial Poisson structure (P = 0) is a Poisson
Lie group.

The dual g∗ of a Lie algebra, considered as an Abelian group, with the linear
Poisson structure is a Poisson Lie group. In fact, in this case (4.1) reads

Pξ+η = Pξ + Pη ,

for ξ, η ∈ g∗, and this relation holds since ξ 7→ Pξ is linear.

Remark. The condition that the Poisson bivector P be multiplicative is equiv-
alent to the following condition:

{ϕ ◦ λg , ψ ◦ λg}(h) + {ϕ ◦ ρh, ψ ◦ ρh}(g) = {ϕ, ψ}(gh) ,
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for all functions ϕ, ψ on G, and for all g, h in G, which means that the mul-
tiplication map from G × G to G maps Poisson brackets on G × G to Poisson
brackets on G. In other words, the multiplication is a Poisson map from G×G

to G, where G ×G is endowed with the product Poisson structure. (We recall
the definition of the product of Poisson manifolds and that of Poisson maps
below, in Sect. 4.7.)

Let r ∈
∧2

g. Then the bivector defined by

(4.9) P = rλ − rρ

is multiplicative. Below we shall derive conditions on r for P to be a Poisson
bivector.

When P is a multiplicative bivector, let us set

(4.10) γ = DP = Te(ρ(P )) .

By the two propositions of Sect. 4.1, we know that γ is a 1-cocycle of g with
values in

∧2
g, with respect to the adjoint representation.

Proofs of the following two propositions will be given in Appendix 1.

Proposition. If P is a multiplicative Poisson bivector on G, let γ be defined
by (4.10). Then tγ :

∧2
g∗ → g∗ is a Lie bracket on g∗.

Then (g, γ) is a Lie bialgebra, which is called the tangent Lie bialgebra of
(G,P ).

Proposition. Conversely, if (g, γ) is a Lie bialgebra, there exists a unique (up
to isomorphism) connected and simply connected Poisson Lie group (G,P ) with
tangent Lie bialgebra (g, γ).

Here we shall be concerned only with the case where P is defined by r ∈
∧2

g

by means of (4.9).

Proposition. The multiplicative bivector P defined by (4.9) is a Poisson bivec-
tor if and only [[r, r]] is Ad-invariant.

Proof. Recall that [[r, r]] was defined in (2.4). The proof rests on the formulæ

[[rλ, rλ]] = [[r, r]]
λ
, [[rρ, rρ]] = −[[r, r]]

ρ
, and [[rλ, rρ]] = 0, whence ρ([[P, P ]])(g) =

Adg([[r, r]]) − [[r, r]].

If G is connected, the Ad-invariance under the action of G is equivalent to
the ad-invariance under the action of its Lie algebra g. (See Sect. 1.2 and 3.5
for the definitions of ad- and Ad-actions.) Thus, in this case, P = rλ − rρ is
a Poisson bivector if and only if r is a solution of the generalized Yang-Baxter
equation. In particular, if r is a triangular r-matrix, then P is a Poisson bivector.
(See Remark 1, below.) More generally, if r is a quasi-triangular r-matrix with
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ad-invariant symmetric part s and skew-symmetric part a ∈
∧2

g, such that
〈a, a〉 + 〈s, s〉 = 0, then

P = rλ − rρ = aλ − aρ ,

and P is a Poisson bivector since

−
1

2
[[a, a]] = 〈a, a〉 = −〈s, s〉 ,

which is an ad-invariant element of
∧3

g. Then (G,P ) is called a quasi-triangular
Poisson Lie group. If moreover s is invertible, then the Poisson Lie group (G,P )
is called factorizable.

Thus any quasi-triangular r-matrix, in particular a triangular or a factoriz-
able r-matrix, gives rise to a Poisson-Lie structure on G. The Poisson bracket
of functions on G thus defined is called the Sklyanin bracket or the quadratic
bracket. The reason for this latter name will appear in the next section.

Remark 1. It is clear from the proof of the preceding proposition that, when r is
a triangular r-matrix, both rλ and rρ are also Poisson structures. Moreover, they
are compatible, i.e., any linear combination of rλ and rρ is a Poisson structure.
However, rλ − rρ is the only Poisson-Lie structure in this family.

Remark 2. When r is quasi-triangular, 〈a, a〉 = −〈s, s〉 and therefore both
aλ − aρ and aλ + aρ are Poisson structures. While aλ − aρ is a Poisson-Lie
structure, aλ + aρ is not. In fact, its rank at the unit, e, is the rank of a, and
therefore not 0, unless we are in the trivial case, a = 0. If a is invertible, aλ +aρ

is symplectic in a neighborhood of e.

4.3 The second Russian formula (quadratic brackets)

Let us assume that G is a Lie group of p× p matrices. Then g is a Lie algebra
of p× p matrices and r is a p2 × p2 matrix. If L is a point in G, the entries of
the left (resp., right) translate of r by L are those of the product of matrices
(L⊗L)r (resp., r(L⊗L)). As in Sect. 3.3, we shall consider each entry aj

i of L
as the restriction to G of the corresponding linear function on the space of p×p
matrices, and we shall denote the table of their pairwise Poisson brackets, in the
Poisson-Lie structure on G defined by r, by {L⊗, L}. The differential of such a
linear function is constant and coincides with the linear function itself. Therefore

the
j `

i k
coefficient of {L⊗, L} is the

j `

i k
coefficient of (L⊗L)r− r(L⊗L).

Whence, for L ∈ G,

(4.11) {L⊗, L} = [L⊗ L, r] .

Formula (4.11) is what I call the second Russian formula. (It is close to, but
different from (3.11) in Sect. 3.3.) It is clear from formula (4.11) that the
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Poisson brackets of any two entries of matrix L are quadratic functions of the
entries of L, which justifies the name “quadratic bracket”. (Note that in formula
(3.11) in Sect. 3.3, the Poisson bracket is linear.) Formula (4.11) is the basis of
the r-matrix method for classical lattice integrable systems.

4.4 Examples

4.4.1 Quasi-triangular structure of SL(2,R).

Let G = SL(2,R) be the group of real 2 × 2 matrices with determinant 1.
We consider r = 1

8 (H ⊗ H + 4X ⊗ Y ), the factorizable r-matrix of Example
2 in Sect. 2.3, an element of sl(2,R) ⊗ sl(2,R), with skew-symmetric part
r0 = 1

4 (X ⊗ Y − Y ⊗X).

Let L =

(

a b

c d

)

be a generic element of G. Then ad− bc = 1. By (4.11),

we obtain








{a, a} {a, b} {b, a} {b, b}
{a, c} {a, d} {b, c} {b, d}
{c, a} {c, b} {d, a} {d, b}
{c, c} {c, d} {d, c} {d, d}









= [L⊗ L, r0] ,

where

L⊗ L =









a2 ab ba b2

ac ad bc bd

ca cb da db

c2 cd dc d2









and r0 =
1

4









0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0









.

Therefore we find the quadratic Poisson brackets,

{a, b} =
1

4
ab , {a, c} =

1

4
ac , {a, d} =

1

2
bc ,

{b, c} = 0 , {b, d} =
1

4
bd , {c, d} =

1

4
cd .

Using the Leibniz rule for Poisson brackets, we find

{a, ad− bc} = {b, ad− bc} = {c, ad− bc} = {d, ad− bc} = 0.

Thus ad − bc is a Casimir function for this Poisson structure, which is indeed
defined on SL(2,R).
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4.4.2 Triangular structure of SL(2,R).

Another Poisson Lie strucutre on SL(2,R) is defined by the triangular r-matrix,
considered in Example 3 of Sect. 2.3,

r = X ⊗H −H ⊗X =









0 −1 1 0
0 0 0 −1
0 0 0 1
0 0 0 0









.

Taking into account the constraint ad− bc = 1, we find

{a, b} = 1 − a2 , {a, c} = c2 , {a, d} = c(−a+ d)

{b, c} = c(a+ d) , {b, d} = d2 − 1 , {c, d} = −c2 .

Here also we can show that ad− bc is a Casimir function.

4.4.3 Quasi-triangular structure of SU(2).

Let G = SU(2), and g = su(2), with basis

X =
1

2

(

0 1
−1 0

)

, Y =
1

2

(

0 i

i 0

)

, Z =
1

2

(

i 0
0 −i

)

,

and commutation relations

[X,Y ] = Z , [Y, Z] = X , [Z,X ] = Y.

Then r = Y ⊗X −X ⊗ Y is a skew-symmetric r-matrix. In fact

〈r, r〉 = [r12, r13] + [r12, r23] + [r13, r23]

= [X ⊗ Y ⊗ 1 − Y ⊗X ⊗ 1, X ⊗ 1 ⊗ Y − Y ⊗ 1 ⊗X ]

+[X ⊗ Y ⊗ 1 − Y ⊗X ⊗ 1, 1 ⊗X ⊗ Y − 1 ⊗ Y ⊗X ]

+[X ⊗ 1 ⊗ Y − Y ⊗ 1 ⊗X, 1 ⊗X ⊗ Y − 1 ⊗ Y ⊗X ]

= −Z⊗Y ⊗X+Z⊗X⊗Y −X⊗Z⊗Y +Y ⊗Z⊗X+X⊗Y ⊗Z−Y ⊗X⊗Z .

Now,

[X ⊗ 1 ⊗ 1, 〈r, r〉] = Y ⊗ Y ⊗X − Y ⊗X ⊗ Y + Z ⊗ Z ⊗X − Z ⊗X ⊗ Z

[1 ⊗X ⊗ 1, 〈r, r〉] = −Z ⊗ Z ⊗X +X ⊗X ⊗ Y −X ⊗ Y ⊗X +X ⊗ Z ⊗ Z

[1 ⊗ 1 ⊗X, 〈r, r〉] = Z ⊗X ⊗ Z −X ⊗ Z ⊗ Z −X ⊗ Y ⊗ Y + Y ⊗X ⊗ Y .

Thus ad
(3)
X 〈r, r〉 = 0, and, similarly, ad

(3)
Y 〈r, r〉 = 0, ad

(3)
Z 〈r, r〉 = 0. Thus r

satisfies the generalized Yang-Baxter equation. (This r-matrix is not triangular.)
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The Poisson brackets on SU(2) defined by r, setting L =

(

a b

c d

)

∈

SU(2), are
{a, b} = iab , {a, c} = iac , {a, d} = 2ibc ,

{b, c} = 0 , {b, d} = ibd , {c, d} = icd .

The Lie bracket defined by r on (su(2))∗, the dual of the Lie algebra su(2), is
given by

[Z∗, X∗] = X∗ , [Z∗, Y ∗] = Y ∗ , [X∗, Y ∗] = 0 .

These examples can be generalized to yield Poisson-Lie structures on each
simple Lie group (Drinfeld [16]) and on each compact Lie group (Lu and We-
instein [45]). Very interesting examples arise on loop groups (Drinfeld [16],
Reyman and Semenov-Tian-Shansky [27]).

4.5 The dual of a Poisson Lie group

Since every Lie bialgebra has a dual Lie bialgebra and a double, we shall study
the corresponding constructions at the Lie group level.

If (G,P ) is a Poisson Lie group, we consider its Lie bialgebra g whose 1-
cocycle is γ = DP (Sect. 4.2). We denote the dual Lie bialgebra by (g∗, γ). By
the last proposition of Sect. 4.2, we know that there exists a unique connected
and simply connected Poisson Lie group with Lie bialgebra (g∗, γ). We denote
it by G∗ and we call it the dual of (G,P ). More generally, any Poisson-Lie group
with Lie bialgebra (g∗, γ) is called a dual of (G,P ).

If G itself is connected and simply connected, then the dual of G∗ is G (since
the dual of g∗ is g, because g is finite-dimensional).

Example 1. If P is the trivial Poisson structure on G (P = 0), then the Lie-
algebra structure of g∗ is Abelian and the dual group of G is the Abelian group
g∗ with its linear Poisson structure.

Example 2. Let G = SL(2,R) with the Poisson structure defined by the quasi-
triangular r-matrix, with skew-symmetric part 1

4 (X ⊗ Y − Y ⊗ X). We have
seen in Sect. 1.7 that the dual g∗ of sl(2,R) can be identified with

{(x, y) ∈ b− ⊕ b+ | h−components of x and y are opposite}.

This result extends to sl(n,R) equipped with the standard r-matrix. Thus, if
G = SL(n,R), then

G∗ = {(L−, L+) ∈ B− ×B+ | diagonal elements of L− and L+ are inverse}.

Here B+ (resp., B−) is the connected component of the group of upper (resp.,
lower) triangular matrices with determinant 1.
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For example, for n = 2,

B+ =

{(

a b

0 1
a

)

| a > 0, b ∈ R

}

and

B− =

{(

a 0
c 1

a

)

| a > 0, c ∈ R

}

,

so that

G∗ =

{((

a b

0 1
a

)

,

(

1
a

0
c a

))

| a > 0, b, c ∈ R

}

.

This 3-dimensional Lie group can be identified with

SB(2,C) =

{(

α β + iγ

0 α−1

)

| α > 0, β, γ ∈ R

}

.

Example 3. The dual of the Lie bialgebra su(2) (see Sect. 1.7) can be inte-

grated to a Poisson Lie group. The real Lie group SB(2,C) defined above has

the Lie algebra with basis H =

(

1 0
0 −1

)

, X =

(

0 1
0 0

)

, X ′ = iX , and

commutation relations [H,X ] = 2X, [H,X ′] = 2X ′, [X,X ′] = 0, and thus is
isomorphic to su(2)∗. Thus the dual of the Poisson Lie group SU(2) is also the
group SB(2,C).

However, (sl(2,R))∗ and (su(2))∗ are not isomorphic as Lie bialgebras, so
(SL(2,R))∗ and (SU(2))∗, which are both isomorphic as Lie groups to SB(2,C),
do not have the same Poisson structure.

More generally (see Sect. 1.7), the dual of the compact form k of a complex
simple Lie algebra g is a Lie algebra b such that

gR = k ⊕ b .

If K is a compact Lie group, with Lie algebra k, then K is a Poisson Lie group
whose dual, K∗, is the connected and simply connected Lie group with Lie
algebra b. Thus, in the Iwasawa decomposition, G = KAN , both K and AN

are Poisson Lie groups in duality. (See Lu and Weinstein [45].)

4.6 The double of a Poisson Lie group

When (G,P ) is a Poisson Lie group, its tangent Lie bialgebra (g, γ) has a double
d, which is a factorizable Lie bialgebra. (See Sect. 2.5.)

The connected and simply connected Lie group D with Lie algebra d is called
the double of (G,P ). Since d is a factorizable Lie bialgebra with r-matrix rd, D
is a factorizable Poisson Lie group, with Poisson structure PD = rλ

d − r
ρ
d , where
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λ and ρ refer to left and right translations in the Lie group D. More precisely,
the double of (G,P ) is the Poisson Lie group (D, PD). Since g and g∗ are Lie
subalgebras of d, G and G∗ are Lie subgroups of D.

More generally, any Poisson Lie group with Lie algebra d is called a double
of (G,P ).

Example. When G is a Lie group with trivial Poisson structure, we know that
its dual is the Abelian Lie group g∗. A Lie group whose Lie algebra is the double
of g, i.e., the semi-direct product of g and g∗ with the coadjoint representation,
is the Lie group T ∗G, the cotangent bundle of G.

By Remark 2 of Sect. 4.2, rλ
d + r

ρ
d is also a Poisson structure on D (but not

a Poisson-Lie structure). The Lie group D equipped with the Poisson structure
rλ
d + r

ρ
d is called the Heisenberg double of (G,P ). This Poisson structure is

actually symplectic in a neighborhood of the unit.

If the Poisson Lie group (G,P ) itself is defined by a factorizable r-matrix
r ∈ g ⊗ g, then we can describe its double in a simple way.

In fact, integrating the Lie-algebra morphisms described in Sect. 2.4 and
2.5, we obtain morphisms of Lie groups. In particular, let GR be the connected
and simply connected Lie group with Lie algebra gR. Then the Lie-algebra
morphisms R+ and R− can be integrated to Lie-group morphisms R+ and R−

from GR to G, and the pair J = (R+,R−) defines an embedding of GR into the
direct product G×G. Locally, near the unit, the double of G can be identified
with the product of the manifolds G and GR, which are Lie subgroups of G×G.

4.7 Poisson actions

Whereas a Hamiltonian action of a Lie group G on a Poisson manifold M is
defined as a group action which preserves the Poisson structure, a Poisson action
is an action of a Poisson Lie group on a Poisson manifold satisfying a different
property expressed in terms of the Poisson bivectors of both the manifold and
the group. When the Poisson structure of the group is trivial, i.e., vanishes, we
recover the Hamiltonian actions.

Definition. Let (G,PG) be a Poisson Lie group and (M,PM ) a Poisson man-
ifold. An action α of G on M is called a Poisson action if α : G ×M → M ,
(g,m) 7→ g.m, is a Poisson map.

Recall that, setting α(g,m) = g.m, α is an action of G on M if, for g, h ∈
G,m ∈ M ,

g.(h.m) = (gh).m ,

e.m = m .

Recall also that the Poisson bracket on G×M is defined by

{Φ,Ψ}G×M(g,m) = {Φ(.,m),Ψ(.,m)}G(g) + {Φ(g, .),Ψ(g, .)}M (m) ,
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for Φ,Ψ ∈ C∞(G×M).
Finally, recall that a Poisson map α from a Poisson manifold (N,PN ) to a

Poisson manifold (M,PM ) is a map such that

{ϕ ◦ α, ψ ◦ α}N = {ϕ, ψ}M ◦ α, for ϕ, ψ ∈ C∞(M) .

Thus α is a Poisson action if, for g, h ∈ G,m ∈ M ,

(4.12) {ϕ, ψ}M (g.m) = {ϕm, ψm}G(g) + {ϕg, ψg}M (m) ,

where we have set ϕm(g) = ϕ(g.m) and (ϕg)(m) = ϕ(g.m). As expected, if
{ , }G = 0, (4.12) reduces to the condition that, for each g ∈ G, the mapping
m ∈M 7→ g.m ∈M be a Poisson map.

If (G,P ) is a Poisson Lie group, the left and right actions of G on itself are
Poisson actions. We shall give more examples of Poisson actions in Sect. 4.9.

We shall now give an infinitesimal criterion for Poisson actions. We know
that an action α of G on M defines an action α′ of g on M , α′ : x ∈ g 7→ xM ,
where xM is the vector field on M defined by

xM (m) =
d

dt
(exp(−tx).m)|t=0.

In fact, α′ maps x ∈ g to a vector field xM on M in such a way that

[x, y]M = [xM , yM ], for x, y ∈ g .

Moreover we can extend α′ to a map from
∧2

g to the bivectors on M by
setting

(x ∧ y)M (m) = xM (m) ∧ yM (m) ,

and, more generally still, we can extend α′ to a morphism of associative algebras
from

∧

g to the algebra of fields of multivectors on M .
Let us still denote by .m the exterior powers of the differential at g of the

map αm : g 7→ g.m from G to M , and by g. those of the map αg : m 7→ g.m

from M to M . With these notations, which we shall use in the proof of the
following proposition, we can write

α′(w)(m) = wM (m) = (−1)|w|w.m,

for any w ∈
∧

g, where |w| is the degree of w.

Proposition. Let (G,PG) be a connected Poisson Lie group, with associated
1-cocyle of g,

γ = DPG = Te(ρ(PG)) : g → ∧2g,

and let (M,PM ) be a Poisson manifold. The action α : G × M → M is a
Poisson action if and only if

(4.13) LxM
(PM ) = −(γ(x))M ,
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for all x ∈ g, where L denotes the Lie derivation.

Proof. In fact, condition (4.12) is equivalent to

(4.14) (PM )g.m = (PG)g .m+ g.(PM )m ,

where we have used the notations introduced above. We shall now show that
(4.13) is the infinitesimal form of (4.14). From (4.14), we find

LxM
(PM )(m) =

d

dt
(exp tx.(PM )exp(−tx).m)|t=0

=
d

dt

(

exp tx.((PG)exp(−tx).m+ exp(−tx).(PM )m)
)

|t=0

=
d

dt
(exp tx.((PG)exp(−tx).m))|t=0.

Because α is an action, αg ◦ αm = αm ◦ λg , where λg is the left tanslation by g
in G. Thus,

exp tx.((PG)exp(−tx).m) = (exp tx.(PG)exp(−tx)).m .

On the other hand, by definition,

γ(x) = Lxρ(PG)(e) =
d

dt
(exp(−tx).(PG)exp tx)|t=0 ,

since the flow of a right-invariant vector field acts by left translations. Therefore,
we obtain

LxM
(PM )(m) = −(γ(x)).m = −(γ(x))M (m) .

This computation also shows that, conversely, (4.13) implies (4.14) when G is
connected.

Definition. A Lie-algebra action x 7→ xM is called an infinitesimal Poisson
action of the Lie bialgebra (g, γ) on (M,PM ) if it satisfies (4.13).

4.8 Momentum mapping

Generalizing the momentum mapping for Hamiltonian actions, we adopt the
following definition. Here G∗ is again the Poisson Lie group dual to G.

Definition. A map J : M → G∗ is said to be a momentum mapping for the
Poisson action α : G×M → M if, for all x ∈ g,

(4.15) xM = PM (J∗(xλ)) ,

where xλ is the left-invariant differential 1-form on G∗ defined by the element
x ∈ g = (TeG

∗)∗, and J∗(xλ) is the inverse image of xλ under J .
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If, in particular, G is a Lie group with trivial Poisson structure, thenG∗ = g∗,
the differential 1-form xλ is the constant 1-form x on g∗, and

J∗(xλ) = d(J(x)), where J(x)(m) = 〈J(m), x〉 .

Thus, in this case, we recover the usual definition of a momentum mapping for
a Hamiltonian action, J : M → g∗, that is

xM = PM (d(J(x))) ,

i.e., xM is the Hamiltonian vector field with Hamiltonian J(x) ∈ C∞(M).
Whence the name “non-Abelian Hamiltonian” also given to the momentum
mapping in the case of a Poisson action.

4.9 Dressing transformations

We consider a Poisson Lie group (G,PG), its dual (G∗, PG∗) and its double D.
Their respective Lie algebras are g, g∗ and d.

For each x ∈ g, we consider the vector field on G∗,

(4.16) `(x) = PG∗(xλ) ,

where xλ is the left-invariant 1-form on G∗ defined by x ∈ g = (TeG
∗)∗. Then

Theorem. (i) The map x 7→ `(x) = PG∗(xλ) is an action of g on G∗, whose
linearization at e is the coadjoint action of g on g∗.

(ii) The action x 7→ `(x) is an infinitesimal Poisson action of the Lie bial-
gebra g on the Poisson Lie group G∗.

A concise proof of this theorem will be given in Appendix 2.

This action is called the left infinitesimal dressing action of g on G∗. In
particular, when G is a trivial Poisson Lie group, its dual group G∗ is the
Abelian group g∗, and the left infinitesimal dressing action of g on g∗ is given
by the linear vector fields `(x) : ξ ∈ g∗ 7→ −ad∗xξ ∈ g∗, for each x ∈ g. We
can prove directly that x 7→ `(x) is a Lie-algebra morphism from g to the Lie
algebra of linear vector fields on g∗. In fact, applying `([x, y]) to the linear
function z ∈ (g∗)∗, we find `([x, y]) · z = `(x) · `(y) · z − `(y) · `(x) · z.

Similarly, the right infinitesimal dressing action of g on G∗ is defined by

x 7→ r(x) = −PG∗(xρ),

where xρ is the right-invariant 1-form on G∗ defined by x ∈ g, and its lineariza-
tion is the opposite of the coadjoint action of g on g∗.

The dressing vector fields `(x) = PG∗(xλ) have the following property, called
twisted multiplicativity,

(4.17) `uv(x) = u.`v(x) + `u(Ad∗v−1x).v ,
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for u, v ∈ G∗, and an analogous property holds for the right dressing vector
fields,

(4.18) ruv(x) = ru(x).v + u.rv(Ad∗ux) .

Dually, we can define the left and right infinitesimal dressing actions of g∗

on G by
ξ 7→ PG(ξλ) and ξ 7→ −PG(ξρ).

Integrating these infinitesimal Poisson actions, when these vector fields are
complete, we obtain Poisson actions of G on G∗, and of G∗ on G, called the left
and right dressing actions.

In the rest of this section, we derive the main properties of the dressing
transformations.

Proposition. The symplectic leaves of G (resp., G∗) are the connected com-
ponents of the orbits of the right or left dressing action of G∗ (resp., G).

Proof. This is clear from the definitions, since either the vector fields PG∗(xρ)
or the vector fields PG∗(xλ) span the tangent space to the symplectic leaves of
G∗, and similarly for G.

Proposition. The momentum mapping for the left (resp., right) dressing action
of G on G∗ is the opposite of the identity map (resp., is the identity map) from
G∗ to G∗.

The proof follows from the definitions, and there is a similar statement for
the actions of G∗ on G.

If the dual G∗ is identified with a subset of the quotient of D under the right
(resp., left) action of G, the left (resp., right) dressing action of G on G∗ is
identified with left- (resp., right-) multiplication by elements of G, and similarly
for the actions of G on G∗.

There is an alternate way of defining the dressing actions, which shows their
relationship to the factorization problem encountered in Sect. 3.7.

Let g be in G and u in G∗. We consider their product ug in D. Because
d = g ⊕ g∗, elements in D sufficiently near the unit can be decomposed in a
unique way as a product of an element in G and an element in G∗ (in this
order). Applying this fact to ug ∈ D, we see that there exist elements ug ∈ G

and ug ∈ G∗ such that

(4.19) ug = ug ug .

We thus define locally a left action of G∗ on G and a right action of G on G∗.
In other words, the action of u ∈ G∗ on g ∈ G (resp., the action of g ∈ G on
u ∈ G∗) is given by

(u, g) 7→ (ug)G (resp., (u, g) 7→ (ug)G∗) ,
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where (ug)G (resp., (ug)G∗) denotes the G-factor (resp., G∗-factor) of ug ∈ D
as g′u′, with g′ ∈ G, u′ ∈ G∗.

In the same way, the product gu ∈ D can be uniquely decomposed (if it
is sufficiently near the unit) into gu gu, where gu ∈ G∗ and gu ∈ G. So, by
definition,

(4.20) gu = gu gu.

In this way, we obtain (locally) a left action of G on G∗ and a right action of
G∗ on G.

Let us show that the left action of G on G∗ is indeed a group action. By
definition, for g, h ∈ G, u ∈ G∗,

(gh)u = ghu (gh)u

and
g(hu) = g (hu hu) = (g hu) hu = g(hu) g(hu) hu.

These two equations imply

(4.21) ghu = g(hu) ,

which is what was to be proved. They also imply the relation

(4.22) (gh)u = g(hu) hu,

which expresses the twisted multiplicativity property of the dressing transfor-
mations of the left action of G on G∗. Analogous results hold for the three other
actions which we have defined.

Proposition. The left and right actions of G on G∗ and of G∗ on G defined
by (4.19) and (4.20) coincide with the dressing actions.

Proof. To prove that these actions coincide with the dressing actions defined
above, it is enough to show that the associated infinitesimal actions coincide.

Recall that the Lie bracket on the double d = g ⊕ g∗ satisfies

[x, ξ]d = −ad∗ξx+ ad∗xξ,

for x ∈ g, ξ ∈ g∗ (see Sect. 1.6). In the linearization of the left (resp., right)
action of G on G∗, the image of (x, ξ) ∈ g ⊕ g∗ is the projection onto g∗ of
[x, ξ]d (resp., [ξ, x]d), i.e., the linearized action is the coadjoint action (resp.,
the opposite of the coadjoint action) of g on g∗.

Similarily the linearized action of the left (resp., right) action of G∗ on G is
the coadjoint (resp., the opposite of the coadjoint action) of g∗ on g.

From relation (4.22) we deduce that the vector fields of the left infinitesimal
action of g on G∗ satisfy the twisted multiplicativity property (4.17). This fact
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and the fact that the linearized action is the coadjoint action of g on g∗ permit
identifying this infinitesimal action with the left infinitesimal dressing action of
g on G∗ (see Lu and Weinstein [45]).

The proofs for the right action of G on G∗, and for the left and right actions
of G∗ on G are similar.

To conclude, we wish to relate the dressing transformations defined above
with the formulæ expressing the dressing of G-valued fields satisfying a zero-
curvature equation. (See Faddeev and Takhtajan [29], Babelon and Bernard
[34].) The field equation expresses a compatibility condition for a linear system,
the Lax representation, equivalent to a nonlinear soliton equation. This nonlin-
ear equation admits a Hamiltonian formulation such that the Poisson brackets
of the g-valued Lax matrix are expressed in terms of a factorizable r-matrix.
The dressing transformations act on the G-valued fields and preserve the solu-
tions of the field equation. This action is in fact a Poisson action of the dual
group, G∗.

If the Poisson Lie structure of G is defined by a factorizable r-matrix, the
double, D, is isomorphic to G ×G, with, as subgroups, the diagonal subgroup
{(g, g)|g ∈ G} ≈ G, and {(g+, g−)|g± = R±h, h ∈ G} ≈ G∗, with Lie algebras
g and {(r+x, r−x)|x ∈ g} ≈ g∗, respectively (see Sect. 2.5 and 4.6).

In this case, the factorization problems consist in finding group elements
g′ ∈ G and g′± = R±h

′, h′ ∈ G, satisfying

(4.23) (g+, g−)(g, g) = (g′, g′)(g′+, g
′
−) ,

or g′ ∈ G and g′± = R±h
′, h′ ∈ G, satisfying

(4.24) (g, g)(g+, g−) = (g′+, g
′
−)(g′, g′) .

Let us write the left action of G∗ on G in this case. From ug = ug ug, we
obtain from (4.23),

g+g = g′g′+, g−g = g′g′−.

Eliminating g′, we find that g′+
−1
g′− is obtained from g−1

+ g− by conjugation by
g−1, and that g′+, g

′
− solve the factorization equation

(4.25) g′+
−1
g′− = g−1(g+

−1g−)g .

It follows that the action of the element (g+, g−) ∈ G∗ on g ∈ G is given by

(4.26) g′ = g+gg
′
+
−1

= g−gg
′
−
−1

,

where the group elements g′+ and g′− solve the factorization equation (4.25).
Similarly for the right action ofG∗ onG, we obtain the factorization equation

(4.27) g′+g
′
−
−1

= g(g+g−
−1)g−1 ,
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and the action of (g+, g−) ∈ G∗ on g ∈ G is given by

(4.28) g′ = g′+
−1
gg+ = g′−

−1
gg− ,

where the group elements g′+ and g′− solve the factorization equation (4.27).
Thus we recover the formula of the dressing transformation in Faddeev and

Takhtajan [29] and in Babelon and Bernard [34]. (In the convention of [29],
the g′− considered here is replaced by its inverse, while in [34], the factorization

equation is g′−
−1
g′+ = g(g−

−1g+)g−1.)

4.10 Bibliographical note

Multiplicative fields of tensors, were introduced by Lu and Weinstein [45]. See
Kosmann-Schwarzbach [39], Vaisman [30], Dazord and Sondaz [37]. The results
of Sect. 4.2 are due to Drinfeld [15], and are further developed in Kosmann-
Schwarzbach [38] [39], Verdier [31], and Lu and Weinstein [45]. For formula
(4.11), see e.g., Takhtajan [29]. For the examples of Sect. 4.5, see [45] and
Majid [46][24]. Poisson actions were introduced by Semenov-Tian-Shansky [19],
who showed that they were needed to explain the properties of the dressing
transformations in field theory. Their infinitesimal characterization is due to
Lu and Weinstein [45]. The generalization of the momentum mapping to the
case of Poisson actions is due to Lu [44], while Babelon and Bernard [34], who
call it the “non-Abelian Hamiltonian”, have shown that in the case of the dress-
ing transformations of G-valued fields the momentum mapping is given by the
monodromy matrix of the associated linear equation. For the properties of the
dressing transformations, see Semenov-Tian-Shansky [19], Lu and Weinstein
[45], Vaisman [30], Alekseev and Malkin [32] (also, Kosmann-Schwarzbach and
Magri [40] for the infinitesimal dressing transformations). A comprehensive sur-
vey of results, including examples and further topics, such as affine Poisson Lie
groups, is given by Reyman [26].

60



Appendix 1

The ‘Big Bracket’ and its Applications

Let F be a finite-dimensional (complex or real) vector space, and let F ∗ be
its dual vector space. We consider the exterior algebra of the direct sum of F

and F ∗,
∧

(F ⊕ F ∗) =
∞
⊕

n=−2

(

⊕
p+q=n

(
∧q+1

F ∗ ⊗
∧p+1

F )

)

.

We say that an element of
∧

(F ⊕ F ∗) is of bidegree (p, q) and of degree

n = p+q if it belongs to
∧q+1

F ∗⊕
∧p+1

F . Thus elements of the base field are
of bidegree (−1,−1), elements of F (resp., F ∗) are of bidegree (0,−1) (resp.,

(−1, 0)), and a linear map µ :
∧2

F → F (resp., γ : F →
∧2

F ) can be

considered to be an element of
∧2

F ∗⊗F (resp., F ∗⊗
∧2

F ) which is of bidegree
(0,1) (resp., (1,0)).

Proposition. On the graded vector space
∧

(F ⊕ F ∗) there exists a unique
graded Lie bracket, called the big bracket, such that

• if x, y ∈ F , [x, y] = 0,

• if ξ, η ∈ F ∗ , [ξ, η] = 0,

• if x ∈ F, ξ ∈ F ∗, [x, ξ] = 〈ξ, x〉.

• if u, v, w ∈
∧

(F ⊕ F ∗) are of degrees |u|, |v| and |w|, then

[u, v ∧ w] = [u, v] ∧ w + (−1)|u||v|v ∧ [u,w] .

This last formula is called the graded Leibniz rule. The following proposition
lists important properties of the big bracket.

Proposition. Let [ , ] denote the big bracket. Then

(i) µ :
∧2

F → F is a Lie bracket if and only if [µ, µ] = 0.

(ii) tγ :
∧2

F ∗ → F ∗ is a Lie bracket if and only if [γ, γ] = 0.

(iii) Let g = (F, µ) be a Lie algebra. Then γ is a 1-cocycle of g with values in
∧2

g, where g acts on
∧2

g by the adjoint action, if and only if [µ, γ] = 0.

The dual and the double of a Lie bialgebra. By the graded commutativity
of the big bracket,

[γ, µ] = [µ, γ].

This equality proves the proposition of Sect. 1.5 without any computation.
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To prove the theorem of Sect. 1.6, we write, by the bilinearity and graded
skew-symmetry of the big bracket,

[µ+ γ, µ+ γ] = [µ, µ] + 2[µ, γ] + [γ, γ].

Using the bigrading of
∧

(F ⊕ F ∗), we see that conditions

[µ+ γ, µ+ γ] = 0

and
[µ, µ] = 0, [µ, γ] = 0, [γ, γ] = 0

are equivalent. The first is equivalent to the fact that µ+γ defines a Lie-algebra
structure on F ⊕ F ∗ which leaves the canonical scalar product invariant and is
such that F and F ∗ are Lie subalgebras, and the second is equivalent to the
defining relations for the Lie bialgebra (g, γ), where g = (F, µ). Therefore in
the finite-dimensional case, Lie bialgebras are in 1-1 correspondence with Manin
triples. Q.E.D.

The following lemma is basic.

Lemma. Let g = (F, µ) be a Lie algebra. Then
a) dµ : a 7→ [µ, a] is a derivation of degree 1 and of square 0 of the graded Lie
algebra

∧

(F ⊕ F ∗),
b) if a ∈

∧

F , then dµa = −δa, where δ is the Lie algebra cohomology operator,
c) for a, b ∈

∧

F , let us set

[[a, b]] = [[a, µ], b].

Then [[ , ]] is a graded Lie bracket of degree 1 on
∧

F extending the Lie bracket

of g. If a = b and a ∈
∧2

F , this bracket coincides with the quantity introduced
in (2.4).

The bracket [[ , ]] is called the algebraic Schouten bracket of the exterior
algebra of g.

Coboundary Lie bialgebras. We can now prove the second proposition in
Sect. 2.1. Let γ = δa = −dµa = −[µ, a], where a ∈

∧2
g. By the graded Jacobi

identity,

[γ, γ] = [dµa, dµa] = [[µ, a], [µ, a]] = [µ, [a, [µ, a]]] − [[µ, [µ, a]], a].

The second term vanishes because [µ, µ] = 0, and therefore [µ, [µ, a]] = 0. Now,
by part c) of the lemma, we obtain

[γ, γ] = dµ[[a, a]] ,
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and therefore, by (ii) above, γ = δa is a Lie algebra structure on g∗ if and only
if [[a, a]] is ad-invariant.

The tangent Lie bialgebra of a Poisson Lie group and the integration

theorem. We now prove the propositions of Sect. 4.2. Let (G,P ) be a Poisson
Lie group, and let γ = DP = Te(ρ(P )). We can show that, because P is
multiplicative,

[DP,DP ] = −D[[P, P ]].

To prove this equality we decompose P as a sum of decomposable bivectors and
we use the biderivation property of the Schouten bracket.

It follows from this relation that, if [[P, P ]] = 0, then [γ, γ] = 0. Conversely,
let (g, γ) be a Lie bialgebra. Then γ is a Lie algebra 1-cocycle and it can be
integrated into a Lie group 1-cocycle, Γ, on the connected and simply connected
Lie group G with Lie algebra g. For g ∈ G, let Pg = Γ(g).g. We thus define a
multiplicative bivector, P , on G . Moreover, P is a Poisson bivector. In fact,
[[P, P ]] is multiplicative (as the Schouten bracket of a multiplicative bivector)
and, by the above relation, [γ, γ] = 0 implies that D[[P, P ]] = 0. This is enough
(see Lu and Weinstein [45]) to prove that [[P, P ]] = 0.

Manin pairs. If p is a finite-dimensional Lie algebra with an invariant, nonde-
generate scalar product, and if a is an isotropic Lie subalgebra of p of maximal
dimension, then (p, a) is called a Manin pair. (The dimension of p is necessarily
even, and dim a = 1

2 dim p). If b is only an isotropic subspace (not necessarily a
Lie subalgebra) complementary to a, the corresponding structure on a is called a
Lie quasi-bialgebra or a Jacobian quasi-bialgebra. Lie quasi-bialgebras are gen-
eralizations of Lie bialgebras, which were defined by Drinfeld as the classical
limit of quasi-Hopf algebras. The double of a Lie quasi-bialgebra is again a Lie
quasi-bialgebra.

Twilled Lie algebras. A twilled Lie algebra (also called a double Lie algebra,
but this is a definition different from that in Sect. 3.6, or a matched pair
of Lie algebras) is just a Lie algebra that splits as the direct sum of two Lie
subalgebras. In a twilled Lie algebra, each summand acts on the other by
‘twisted derivations’. The double of a Lie bialgebra is a twilled Lie algebra in
which the two summands are in duality, and the actions by twisted derivations
are the coadjoint actions. There is a corresponding notion of a twilled Lie group
(or double group or matched pair of Lie groups), in which each factor acts on the
other. These actions have the property of twisted multiplicativity as in (4.22),
and the vector fields of the associated infinitesimal action have a property of
twisted multiplicativity as in (4.17). The double of a Poisson Lie group, G, is a
twilled Lie group, with factors G and G∗, and the dressing actions described in
Sect. 4.9 are the action of one factor on the other.
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Bibliographical note. For the definition of the ‘big bracket’, see Kostant and
Sternberg [10]. For its use in the theory of Lie bialgebras, see Lecomte et Roger
[42], and see Kosmann-Schwarzbach [39] on which this Appendix is based. See
[39] and Bangoura and Kosmann-Schwarzbach [36] for applications of the big
bracket to the case of Lie quasi-bialgebras. For twilled Lie algebras and Lie
groups, see Kosmann-Schwarzbach and Magri [40], Majid [46][24] and Lu and
Weinstein [45].

Appendix 2

The Poisson Calculus and its Applications

We recall some basic facts from Poisson calculus, and we prove that the
dressing vector fields define infinitesimal Poisson actions of g on G∗ and of g∗

on G. The notations are those of Sections 3 and 4. If (M,P ) is a Poisson
manifold, we denote the space of smooth functions on M by C∞(M). We
further denote by { , } the Poisson bracket defined by P , and we set

(Pξ)(η) = P (ξ, η).

For any Poisson manifold (M,P ) there is a Lie bracket [ , ]P defined on the
vector space of differential 1-forms,

(A.1) [[ξ, η]]P = LPξη −LP ηξ − d(P (ξ, η)).

This bracket is R-linear, and it satisfies

(A.2) [[ξ, fη]]P = f [[ξ, η]]P + (LP ξf)η ,

for f ∈ C∞(M). In fact, this Lie bracket is characterized by (A.2) together
with the property,

(A.3) [[df, dg]]P = d({f, g}),

for f, g ∈ C∞(M).

The linear mapping P from differential 1-forms to vector fields is a Lie-
algebra morphism, i.e., it satisfies

(A.4) [[Pξ, Pη]] = P ([[ξ, η]]P ).

Mapping P can be extended to a C∞(M)-linear mapping
∧

P from differen-
tial forms of all degrees to fields of multivectors (skew-symmetric contravariant
tensor fields), setting

(A.5) (∧P )(ξ1 ∧ . . . ∧ ξq) = Pξ1 ∧ . . . ∧ Pξq .
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The Schouten bracket [[ , ]] is a graded Lie bracket on the vector space of
fields of multivectors, with its grading shifted by 1, extending the Lie bracket
of vector fields and satisfying a graded version of the Leibniz rule, (A.8) below.
More precisely, for Q,Q′, Q′′ multivectors of degrees q, q′, q′′, respectively,

(A.6) [[Q,Q′]] = −(−1)(q−1)(q′−1)[[Q′, Q]],

(A.7) [[Q, [[Q′, Q′′]]]] = [[[[Q,Q′]], Q′′]] + (−1)(q−1)(q′−1)[[Q′, [[Q,Q′′]]]] ,

(A.8) [[Q,Q′ ∧Q′′]] = [[Q,Q′]] ∧Q′′ + (−1)(q−1)q′

Q′ ∧ [[Q,Q′′]].

The following properties are satisfied:

(A.9) [[X, f ]] = X · f = 〈df,X〉 ,

for any vector field X , and

(A.10) [[P, f ]] = −P (df) .

When P is a bivector, the bracket [[P, P ]] coincides with the quantity intro-
duced in (3.4).

Moreover, if P is a Poisson bivector, the mapping Q 7→ [[P,Q]] is a derivation
of degree 1 and of square 0 of the associative, graded commutative algebra of
multivectors, which we denote by dP and which we call the Lichnerowicz-Poisson
differential.

Proposition. The linear map
∧

(−P ) intertwines the Lichnerowicz-Poisson
differential and the de Rham differential of forms, d.

Proof. We have to show that, for any q-form ξ,

(A.11) dP ((∧qP )(ξ)) = −(∧q+1P )(dξ).

For q = 0, this is just (A.10). When q = 1 and ξ = df , where f ∈ C∞(M), then
both sides vanish, since the Hamiltonian vector field P (df) leaves P invariant.

If f ∈ C∞(M), then

dP ((∧qP )(fξ)) + (∧q+1P )d(fξ)

= [[P, f ]] ∧ (∧qP )(ξ) + f [[P, (∧qP )(ξ)]] + (∧q+1P )(df ∧ ξ) + f(∧q+1P )(dξ)

= f
(

[[P, (∧qP )(ξ)]] + (∧q+1P )(dξ)
)

.

Therefore, (A.11) holds for all 1-forms. Since d (resp., dP ) is a derivation of the
associative, graded commutative algebra of differential forms (resp., multivec-
tors), formula (A.11) holds for each integer q ≥ 0.

65



We also recall the following fact from Lie-group theory.

Lemma. Let G be a Lie group with Lie algebra g. Then, for ξ ∈ g∗, d(ξλ) =
(δξ)λ and d(ξρ) = −(δξ)ρ, where δξ is the Lie algebra coboundary of the 1-
cochain ξ on g with values in R.

Explicitly,
δξ(x1, x2) = −〈ξ, [x1, x2]〉

so that
δξ = − tµ(ξ) ,

where µ :
∧2

g → g is the Lie bracket on g.

If µ is considered as an element in
∧2

g∗⊗g, then the linear mapping defined
in terms of the big bracket (see Appendix 1), dµ : α 7→ [µ, α] is a derivation of
degree 1 and square 0 of the exterior algebra

∧

(F ⊕ F ∗) and

dµξ = [µ, ξ] = tµ(ξ) = −δξ.

On a Poisson Lie group, the left-invariant 1-forms and the right-invariant
1-forms are Lie subalgebras of the space of differential 1-forms equipped with
Lie bracket (A.1). More precisely

Proposition. Let (G,P ) be a Poisson Lie group with tangent Lie bialgebra
(g, γ) and set [ξ, η]g∗ = tγ(ξ ⊗ η). Then, for all ξ, η ∈ g∗,

(A.12) [[ξλ, ηλ]]P = ([ξ, η]g∗)λ and [[ξρ, ηρ]]P = ([ξ, η]g∗)ρ.

In other words, mappings ξ 7→ ξλ and ξ 7→ ξρ are Lie-algebra morphisms
from (g∗, γ) to the Lie algebra of differential 1-forms on (G,P ).

Properties of the dressing actions. We are now able to give the proof of
the theorem of Section 4.9.
1. We prove that ` : x 7→ PG∗(xλ) is a Lie-algebra morphism from g to the
vector fields on G∗ with the usual Lie bracket of vector fields. In fact, by (A.12)
applied to (G∗, PG∗) and (A.4),

`[x,y] = PG∗([x, y]λ) = PG∗([[xλ, yλ]]PG∗
) = [[PG∗(xλ), PG∗(yλ)]] = [`x, `y].

Similarly, r[x,y] = −[rx, ry].

2. We show that the linearization of the dressing action of G on G∗ is the
coadjoint action of g on g∗.

By definition, the linearization at a fixed point m0 of the action α of Lie
group G on a manifold M is the map x ∈ g 7→ α̇(x) ∈ End(Tm0

M) which is the
differential of the linearized action of G on Tm0

M . Therefore,

α̇(x)(v) = (LxM
V )(m0),
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where V is a vector field on M with value v at m0. (Thus the endomorphism
α̇(x) of Tm0

M associated with x ∈ g is the linearization of the vector field −xM ,
and the assignment x ∈ g 7→ α̇(x) ∈ End(Tm0

M) is a morphism of Lie algebras,
being the composition of two antimorphisms.)

Applying this fact to M = G∗, with α the dressing action of G on G∗, and
xG∗ = `x = PG∗(xλ), we find, for ξ ∈ TeG

∗ = g∗,

x · ξ = L`x
(Ξ)(e),

where Ξ is a vector field on G∗ with value ξ at e ∈ G∗. We choose Ξ = ξρ, and
for y ∈ g, we compute,

〈L`x
ξρ, yλ〉(e) = −〈Lξρ(PG∗(xλ)), yλ〉(e)

= −Lξρ〈PG∗(xλ), yλ〉(e) + 〈PG∗(xλ),Lξρ(yλ)〉(e) = −Lξρ(PG∗(xλ, yλ))(e)

= −〈ξ, µ(x, y)〉 = 〈ad∗xξ, y〉.

Therefore, x · ξ = ad∗xξ.

A similar proof shows that the linearization of the right dressing action of
G on G∗ is (x, ξ) ∈ g × g∗ 7→ −ad∗xξ ∈ g∗ , and the proofs in the dual situation
are identical.

3. To prove that x 7→ `x = PG∗(xλ) is an infinitesimal Poisson action we use
(4.13). Thus we have to show that

L`x
(PG∗) = −(γ(x))G∗ ,

where γ is the linearization of PG∗ at e defining the Lie bracket of g∗, and

(γ(x))G∗ = ∧2PG∗((γ(x))λ).

Now by relation (A.11) and the Lemma,

L`x
(PG∗) = [[PG∗xλ, PG∗ ]] = −dPG∗

(PG∗xλ) = ∧2PG∗d(xλ) = −∧2PG∗(γ(x)λ).

Q.E.D.

The proofs for the right dressing action and in the dual case are similar.
Thus, using the basic general properties of the Poisson calculus, we have ob-
tained in the above formula a one-line proof of the Poisson property of the
dressing actions.

Bibliographical note. For the Poisson calculus see Vaisman [30], or the earlier
articles and book, Weinstein [50], K. H. Bhaskara and K. Viswanath, Calculus
on Poisson Manifolds, Bull. London Math. Soc., 20, 68-72 (1988) and Poisson
Algebras and Poisson Manifolds, Pitman Research Notes in Math., Longman
1988, and Kosmann-Schwarzbach and Magri [41]. (In [50], mapping π is the
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opposite of P defined here, while the bracket { , } coincides with [[ , ]]P . In [41],
mapping P and the bracket of 1-forms are opposite to the ones defined in this
Appendix). See also Lu and Weinstein [45].
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D. Bibliographical note added

in the second edition

The theory of Lie bialgebras, r-matrices and Poisson Lie groups has con-
tinued to expand in the interval between the first and second editions of this
book. Especially noteworthy is the expansion of the theory into the study of Lie
bialgebroids and Poisson groupoids. More than fifty papers have appeared on
Lie bialgebras and bialgebroids, while some thirty other papers deal primarily
with Poisson Lie groups and Poisson groupoids. We mention only four useful
references, where many more references can be found.

• Chapter I of the book Algebras of functions on quantum groups. Part
I, by L. I. Korogodski and Y. S. Soibelman (Mathematical Surveys and
Monographs, 56, American Mathematical Society, Providence, RI, 1998)
covers much of the material presented here.

• The article Loop groups, R-matrices and separation of variables by J. Har-
nad, in Integrable Systems: from classical to quantum, CRM Proc. Lec-
ture Notes, 26, Amer. Math. Soc., Providence, RI, 2000 p. 21-54, reviews
the basics of the theory of classical R-matrices and presents important
applications to the study of integrable systems.

• In the same volume, p. 165-188, Characteristic systems on Poisson Lie
groups and their quantization, by N. Reshetikhin, includes a review of
important results in the theory of Lie bialgebras, of Poisson Lie groups
and their symplectic leaves, and presents applications to the theory of
some dynamical systems generalizing the Toda system.

• The paper Symplectic leaves of complex reductive Poisson-Lie groups, by
M. Yakimov, Duke Math. J. 112, 453-509 (2002), is an in-depth study of
the geometry of some Poisson Lie groups using Lie theory .

The first and third references will also be useful for leads to the vast literature
concering the quantization of Lie bialgebras.
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