# Lie Derivatives and Ricci Tensor on Real Hypersurfaces in Complex Two-plane Grassmannians 

Imsoon Jeong, Juan de Dios Pérez, Young Jin Suh, and Changhwa Woo


#### Abstract

On a real hypersurface $M$ in a complex two-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right)$ we have the Lie derivation $\mathcal{L}$ and a differential operator of order one associated with the generalized TanakaWebster connection $\widehat{\mathcal{L}}^{(k)}$. We give a classification of real hypersurfaces $M$ on $G_{2}\left(\mathbb{C}^{m+2}\right)$ satisfying $\widehat{\mathcal{L}}_{\xi}^{(k)} S=\mathcal{L}_{\xi} S$, where $\xi$ is the Reeb vector field on $M$ and $S$ the Ricci tensor of $M$.


## 1 Introduction

It is one of the most classical and interesting parts in differential geometry to find geometric properties of submanifolds on a symmetric space equipped with a Kähler structure $J$, i.e., a Hermitian symmetric space. Among Hermitian symmetric spaces as a higher rank space of complex projective space $P_{n}(\mathbb{C})$, the authors have investigated the complex two-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right)$, which consists of the set of all complex two-dimensional linear subspaces in $\mathbb{C}^{m+2}$. The space $G_{2}\left(\mathbb{C}^{m+2}\right)$ is diffeomorphic to the homogeneous space $S U_{m+2} / S\left(U_{2} \cdot U_{m}\right)$, the special unitary group $S U_{m+2}$ acts transitively on $\mathbb{C}^{m+2}$, and $S\left(U_{2} \cdot U_{m}\right)$ means the isotropic subgroup of $S U_{m+2}$. Cartan decomposition of the Lie algebra of $S\left(U_{2} \cdot U_{m}\right)$ is expressed by $\mathfrak{k}=$ $\mathfrak{s u}_{2} \oplus \mathfrak{s u}_{m} \oplus \mathfrak{u}_{1}$. We have a Kähler structure $J$ from $\mathfrak{u}_{1}$, the one-dimensional center of $\mathfrak{k}$. Remarkably, we also have a quaternionic Kähler structure $\mathfrak{J}$ from $\mathfrak{s u}_{2}$ satisfying $J J_{v}=J_{v} J(v=1,2,3)$, where $\left\{J_{v}\right\}_{v=1,2,3}$ is an orthonormal basis of $\mathfrak{J}$. When $m=1$, $G_{2}\left(\mathbb{C}^{3}\right)$ is isometric to the two-dimensional complex projective space $\mathbb{C} P^{2}$ with constant holomorphic sectional curvature eight. When $m=2$, we note that the isomorphism $\operatorname{Spin}(6) \simeq \operatorname{SU}(4)$ yields an isometry between $G_{2}\left(\mathbb{C}^{4}\right)$ and the real Grassmann manifold $G_{2}^{+}\left(\mathbb{R}^{6}\right)$ of oriented two-dimensional linear subspaces in $\mathbb{R}^{6}$. In this paper we assume $m \geq 3$.

To classify real hypersurfaces with certain geometric conditions, let us give a explanation of the geometry of real hypersurfaces on $G_{2}\left(\mathbb{C}^{m+2}\right)$. Let us consider a real hypersurface $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ and let $N$ denote a local unit normal vector field on $M$

[^0]in $G_{2}\left(\mathbb{C}^{m+2}\right)$. The Reeb vector field $\xi=-J N \in T_{p} M$ at $p \in M$ is induced from the Kähler structure $J$. Let $\mathcal{C}$ be the distribution given by the orthogonal complement of [ $\xi]$ in $T_{p} M$ at $p \in M$. If $\xi$ is invariant under the shape operator $A$, it is said to be Hopf. The 1-dimensional foliation of $M$ by the integral manifolds of the Reeb vector field $\xi$ is said to be a Hopffoliation of $M$. We say that $M$ is a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ if and only if the Hopf foliation of $M$ is totally geodesic. It is the complex maximal subbundle of $T_{p} M=\mathcal{C} \oplus \mathcal{C}^{\perp}$. The real hypersurface $M$ is said to be Hopf if $A \mathcal{C} \subset \mathcal{C}$, or equivalently, the Reeb vector field $\xi$ is principal, where $A$ is the shape operator of the real hypersurface $M$. If $X$ is a tangent vector on $M$, we can put
$$
J X=\phi X+\eta(X) N \quad \text { and } \quad J_{v} X=\phi_{v} X+\eta_{v}(X) N
$$
where $\phi X$ (resp. $\phi_{v} X$ ) is the tangential part of $J X$ (resp. $J_{v} X$ ) and $\eta(X)=g(X, \xi)$ (resp. $\left.\eta_{v}(X)=g\left(X, \xi_{v}\right)\right)$ is the coefficient of normal part of $J X$ (resp. $\left.J_{v} X\right)$. In this case, we call $\phi$ the structure tensor field of $M$. Using the Gauss and Weingarten formulas in [6, Section 1 and 2], the Kähler condition $\bar{\nabla} J=0$ gives $\nabla_{X} \xi=\phi A X$ for any tangent vector field $X$ on $M$, where $\nabla$ (resp. $\bar{\nabla}$ ) denotes the covariant derivative on $M$ (resp. $G_{2}\left(\mathbb{C}^{m+2}\right)$ ). From this, it can be easily checked that $M$ is Hopf if and only if the Reeb vector field $\xi$ is Hopf.

In this case, the principal curvature $\alpha=g(A \xi, \xi)$ is said to be a Reeb curvature of $M$.

From the quaternionic Kähler structure $\mathfrak{J}$ of $G_{2}\left(\mathbb{C}^{m+2}\right)$, there naturally exist almost contact 3-structure vector fields $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ defined by $\xi_{v}=-J_{v} N, v=1,2,3$. Now let us denote by $\mathbb{Q}^{\perp}=\operatorname{Span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ a 3-dimensional distribution in the tangent space $T_{p} M$ at $p \in M$. In addition, $\mathcal{Q}$ stands for the orthogonal complement of $Q^{\perp}$ in $T_{p} M$. Then it becomes a quaternionic maximal subbundle of $T_{p} M$. Thus, the tangent space of $M$ consists of the direct sum of $\mathcal{Q}$ and $\mathbb{Q}^{\perp}$ as follows: $T_{p} M=\mathcal{Q} \oplus \mathbb{Q}^{\perp}$.

For two distributions $\mathcal{C}^{\perp}$ and $Q^{\perp}$ defined above, we can consider two natural invariant geometric properties under the shape operator $A$ of $M$, that is, $A \mathcal{C}^{\perp} \subset \mathcal{C}^{\perp}$ and $A Q^{\perp} \subset Q^{\perp}$. The following theorem is from a paper due to Suh [13, Theorem 1.1].

Theorem $A \quad$ Let $M$ be a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. Then both $[\xi]$ and $Q^{\perp}$ are invariant under the shape operator of $M$ if and only if
(A) $M$ is an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$, or
(B) $m$ is even, say $m=2 n$, and $M$ is an open part of a tube around a totally geodesic $\mathbb{H} P^{n}$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

In the case of (A), we want to say $M$ is of Type (A). Similarly, in the case of (B), we say $M$ is of Type ( $B$ ).

Until now, many geometers have investigated some characterizations of Hopf hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ that satisfy commuting conditions involving geometric quantities like shape operator, structure (or normal) Jacobi operator, Ricci tensor, and so on. For a tangent vector $X, \phi X$ is the tangential part of $J X$; then $\phi$ is said to be the structure tensor field. Commuting Ricci tensor means that the Ricci tensor $S$ and the structure tensor field $\phi$ commute with each other, that is, $S \phi=\phi S$. From such a point
of view, Suh [12] has given a characterization of real hypersurfaces of Type $(A)$ with commuting Ricci tensor.

On the other hand, a Jacobi field along geodesics of a given Riemannian manifold $(\bar{M}, \bar{g})$ is an important tool in the study of differential geometry. It satisfies a well-known differential equation that inspires Jacobi operators. It is defined by $\left(\bar{R}_{X}(Y)\right)(p)=(\bar{R}(Y, X) X)(p)$, where $\bar{R}$ denotes the curvature tensor of $\bar{M}$ and $X, Y$ denote any vector fields on $\bar{M}$. It is known to be a self-adjoint endomorphism on the tangent space $T_{p} \bar{M}, p \in \bar{M}$. Clearly, each tangent vector field $X$ to $\bar{M}$ provides a Jacobi operator with respect to $X$. Thus, the Jacobi operator on a real hypersurface $M$ of $G_{2}\left(\mathbb{C}^{m+2}\right)$ with respect to $\xi$ (resp. $\left.N\right)$ is said to be a structure Jacobi operator (resp. normal Jacobi operator) and will be denoted by $R_{\xi}\left(\right.$ resp. $\left.\bar{R}_{N}\right)$.

Among many geometric conditions, in this paper we focus on commuting conditions that have a strong relationship with hypersurfaces of tube type when the Reeb vector field $\xi$ belongs to $Q^{\perp}$, that is to say, the commuting conditions between $(1,1)$ type tensor fields on real hypersurfaces in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right)$ are used to give same results to isometric Reeb flow.

For a commuting problem concerned with structure Jacobi operator $R_{\xi}$ and structure tensor $\phi$ of $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$, that is, $R_{\xi} \phi=\phi R_{\xi}$, Suh and Yang [16] gave a characterization of a real hypersurface of Type $(A)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$. Also, concerned with a commuting problem for the normal Jacobi operator $\bar{R}_{N}$, Pérez, Jeong, and Suh [9] gave a characterization of a real hypersurface of Type $(A)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

Related to the Levi-Civita connection $\nabla$, Tanno [18] introduced the generalized Tanaka-Webster connection (GTW connection) for contact metric manifolds as a generalization of the Tanaka-Webster connection. It is defined as a canonical affine connection on a non-degenerate, pseudo-Hermitian CR-manifold (see [17,19]). Then the GTW connection coincides with Tanaka-Webster connection if the associated CR-structure is integrable. Cho defined the GTW connection for a real hypersurface in a Kähler manifold in such a way that

$$
\widehat{\nabla}_{X}^{(k)} Y=\nabla_{X} Y+\widehat{F}_{X}^{(k)} Y,
$$

where $k(\in \mathbb{R} \backslash\{0\})$ denotes a non-zero constant and $\widehat{F}_{X}^{(k)} Y$ is defined by

$$
\widehat{F}_{X}^{(k)} Y=g(\phi A X, Y) \xi-\eta(Y) \phi A X-k \eta(X) \phi Y
$$

The skew-symmetric (1,1) type tensor $\widehat{F}_{X}^{(k)}$ is said to be a Tanaka-Webster (or $k$-th-Cho) operator with respect to $X$. In particular, if the real hypersurface satisfies $A \phi+\phi A=2 k \phi$, then the GTW connection $\widehat{\nabla}^{(k)}$ coincides with the Tanaka-Webster connection (see [1,2]).

On the other hand, we have considered real hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ satisfying $\left(\widehat{\mathcal{L}}_{X}^{(k)} T\right) Y=0$ for any vector fields $X$ and $Y$ on $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$, where $\widehat{\mathcal{L}}^{(k)}$ is the differential operator of order one given by

$$
\widehat{\mathcal{L}}_{X}^{(k)} Y=\widehat{\nabla}_{X}^{(k)} Y-\widehat{\nabla}_{Y}^{(k)} X
$$

for any vector fields $X$ and $Y$ on $M$, where $T$ denotes a tensor field of type (1,1).

The torsion of the GTW connection is given by

$$
\widehat{\mathcal{T}}^{(k)}(X, Y)=\widehat{F}_{X}^{(k)}(Y)-\widehat{F}_{Y}^{(k)}(X)
$$

The operator defined by $\widehat{\mathcal{T}}_{X}^{(k)}(Y)=\widehat{\mathcal{T}}^{(k)}(X, Y)$ is called the torsion operator associated with $X$.

Let $S$ be the Ricci tensor of $M$. We will consider real hypersurfaces $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ satisfying

$$
\begin{equation*}
\widehat{\mathcal{L}}_{X}^{(k)} S=\mathcal{L}_{X} S \tag{C-1}
\end{equation*}
$$

for any vector field $X$ on $M$. This is equivalent to the fact $\widehat{\mathcal{T}}_{X}^{(k)} S=S \widehat{\mathcal{T}}_{X}^{(k)}$, for any $X$ tangent to $M$.

On the other hand, Hopf hypersurfaces $M$ are those whose Reeb vector field $\xi=$ $-J N$ is Killing or, equivalently, a principal vector field, verifying $A \xi=\alpha \xi$, where the smooth function $\alpha=g(A \xi, \xi)$ is said to be the Reeb curvature of the Reeb vector field $\xi$. Then we can give a classification for $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ satisfying (C-1) in the particular case $X=\xi$ as follows.

Theorem 1.1 Let $M$ be a Hopf hypersurface in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. The Ricci tensor $S$ on $M$ satisfies $\widehat{\mathcal{L}}_{\xi}^{(k)} S=\mathcal{L}_{\xi} S$ if and only if $M$ is locally congruent to an open part of a tube of some radius $r \in\left(0, \frac{\pi}{2 \sqrt{2}}\right)$ around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

In this case, there are two kinds of focal sets in $G_{2}\left(\mathbb{C}^{m+2}\right)$, and the distance between them is $\frac{\pi}{2 \sqrt{2}}$. By virtue of this Theorem, we give another non-existence property as follows.

Corollary 1.2 There does not exist any Hopf hypersurface $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$, satisfying the condition $\widehat{\mathcal{L}}_{X}^{(k)} S=\mathcal{L}_{X} S$ for any vector field $X$ on $M$.

In this paper, we refer to $[6,7,11,12,14,15]$ for Riemannian geometric structures of a complex two-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$.

## 2 Proof of Theorem

Let us introduce the Ricci tensor $S$, briefly. The curvature tensor $R(X, Y) Z$ of $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ can be derived from the curvature tensor $\bar{R}(X, Y) Z$ of $G_{2}\left(\mathbb{C}^{m+2}\right)$. Then by contracting and using the geometric structure $J J_{v}=J_{v} J(v=1,2,3)$, we can see the Ricci tensor $S$ given by

$$
g(S X, Y)=\sum_{i=1}^{4 m-1} g\left(R\left(e_{i}, X\right) Y, e_{i}\right)
$$

where $\left\{e_{1}, \ldots, e_{4 m-1}\right\}$ denotes a basis of the tangent space $T_{p} M$ of $M, p \in M$, in $G_{2}\left(\mathbb{C}^{m+2}\right)$ (see [12]). From the definition of the Ricci tensor $S$ and fundamental for-
mulas in [12, section 2], we have

$$
\begin{align*}
S X= & \sum_{i=1}^{4 m-1} R\left(X, e_{i}\right) e_{i}  \tag{2.1}\\
= & (4 m+7) X-3 \eta(X) \xi+h A X-A^{2} X \\
& +\sum_{v=1}^{3}\left\{-3 \eta_{v}(X) \xi_{v}+\eta_{v}(\xi) \phi_{v} \phi X-\eta_{v}(\phi X) \phi_{v} \xi-\eta(X) \eta_{v}(\xi) \xi_{v}\right\},
\end{align*}
$$

where $h$ denotes the trace of $A$, that is, $h=\operatorname{Tr} A$ (see [10, (1.4)]).
Using equation (2.1), we will prove that the Reeb vector field $\xi$ of $M$ belongs either to $Q$ or $Q^{\perp}$. Under the condition of being Hopf, we get

$$
\begin{equation*}
\widehat{F}_{\xi}^{(k)} X=-k \phi X \tag{2.2}
\end{equation*}
$$

For $X=\xi$ into (C-1), we have

$$
\begin{equation*}
\widehat{F}_{\xi}^{(k)}(S Y)+\phi A S Y-S \widehat{F}_{\xi}^{(k)}(Y)-S \phi A Y=0 \tag{2.3}
\end{equation*}
$$

for any $Y$ tangent to $M$. Taking the inner product of (2.3) with $Z$, where $Z$ denotes a vector field tangent to $M$, we get

$$
g\left(\widehat{F}_{\xi}^{(k)}(S Y), Z\right)+g(\phi A S Y, Z)-g\left(S \widehat{F}_{\xi}^{(k)}(Y), Z\right)-g(S \phi A Y, Z)=0
$$

Bearing in mind that $\widehat{F}_{\xi}^{(k)}$ is skew-symmetric and $S$ is symmetric, we have

$$
g\left(Y,-S \widehat{F}_{\xi}^{(k)}(Z)-S A \phi Z+\widehat{F}_{\xi}^{(k)}(S Z)+A \phi S Z\right)=0
$$

Thus, we have $-S \widehat{F}_{\xi}^{(k)}(Z) S A \phi Z+\widehat{F}_{\xi}^{(k)}(S Z)+A \phi S Z=0$, and, replacing $Y$ by $Z$, we obtain

$$
\begin{equation*}
-S \widehat{F}_{\xi}^{(k)}(Y)-S A \phi Y+\widehat{F}_{\xi}^{(k)}(S Y)+A \phi S Y=0 \tag{2.4}
\end{equation*}
$$

Using (2.2), (2.3), and (2.4) gives us

$$
\begin{align*}
-k \phi S Y+\phi A S Y+k S \phi Y-S \phi A Y & =0  \tag{2.5}\\
k S \phi Y-S A \phi Y-k \phi S Y+A \phi S Y & =0
\end{align*}
$$

respectively.
By combining these equations, we have

$$
\begin{equation*}
S(\phi A-A \phi) Y=(\phi A-A \phi) S Y \tag{2.6}
\end{equation*}
$$

for any $Y$ tangent to $M$.
Lemma 2.1 Let M be a Hopfhypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$, $m \geq 3$. If $M$ satisfies $\widehat{\mathcal{L}}_{\xi}^{(k)} S=$ $\mathcal{L}_{\xi} S$, then $\xi$ belongs to either the distribution $Q$ or the distribution $Q^{\perp}$.

Proof To show this fact, we consider that the Reeb vector field $\xi$ satisfies

$$
\begin{equation*}
\xi=\eta\left(X_{0}\right) X_{0}+\eta\left(\xi_{1}\right) \xi_{1} \tag{2.7}
\end{equation*}
$$

for some unit vectors $X_{0} \in \mathcal{Q}, \xi_{1} \in \mathbb{Q}^{\perp}$ and $\eta\left(X_{0}\right) \eta\left(\xi_{1}\right) \neq 0$.

Putting $Y=\xi$ in (2.5) and (2.6), by (2.7) and using basic formulas in [5, Section 2], it follows that

$$
\begin{align*}
& \phi A X_{0}=k \phi X_{0}  \tag{2.8}\\
& A \phi X_{0}=k \phi X_{0}
\end{align*}
$$

On the other hand, to prove the lemma, we need the following equation:

$$
\begin{align*}
\alpha A \phi X+\alpha \phi A X-2 A \phi A X & +2 \phi X=2 \sum_{v=1}^{3}\left\{-\eta_{v}(X) \phi \xi_{v}-\eta_{v}(\phi X) \xi_{v}\right.  \tag{2.9}\\
& \left.-\eta_{v}(\xi) \phi_{v} X+2 \eta(X) \eta_{v}(\xi) \phi \xi_{v}+2 \eta_{v}(\phi X) \eta_{v}(\xi) \xi\right\}
\end{align*}
$$

([5, Lemma A]).
Putting $X=X_{0}$ into (2.9), we have $\alpha k-k^{2}=\eta^{2}\left(X_{0}\right)$.
Since k is non-zero constant, differentiating this with respect to $\xi$, we have

$$
\begin{aligned}
\xi \alpha & =-\frac{4}{k} \eta\left(X_{0}\right)\left\{g\left(\nabla_{\xi} X_{0}, \xi\right)+g\left(X_{0}, \nabla_{\xi} \xi\right)\right\}=-\frac{4}{k} \eta\left(X_{0}\right) g\left(\nabla_{\xi} X_{0}, \xi_{1}\right) \\
& =-\frac{4}{k} \eta\left(X_{0}\right) g\left(X_{0}, \phi_{1} A \xi\right)=\frac{4}{k} \eta\left(X_{0}\right) \alpha g\left(X_{0}, \phi_{1} \xi\right)=0
\end{aligned}
$$

where we have used $\nabla_{X} \xi_{v}=q_{v+2}(X) \xi_{v+1}-q_{v+1}(X) \xi_{v+2}+\phi_{v} A X$.
This gives $\xi \alpha=0$.
Due to [4, Equation (2.10)], $A \xi_{1}=\alpha \xi_{1}$ is derived from $\xi \alpha=0$. Equation (2.8) becomes

$$
(\alpha-k) \phi \xi_{1}=0
$$

As $k$ is nonzero constant and $\phi X_{0}$ never vanishes, we have $\alpha=k$. Then by the equation $Y \alpha=(\xi \alpha) \eta(Y)-4 \sum_{v=1}^{3} \eta_{v}(\xi) \eta_{v}(\phi Y)$ in [5, Lemma $A$ ], we easily obtain that $\xi$ belongs either to $\mathcal{Q}$ or to $\mathbb{Q}^{\perp}$ (see [10]).

Then by Lemma 2.1, we can divide our consideration into two cases being that $\xi$ belongs to either $Q^{\perp}$ or $Q$, respectively. Then first we consider the case $\xi \in Q^{\perp}$. We can put $\xi=\xi_{1} \in \mathbb{Q}^{\perp}$ for our convenience sake.

Then [8, lemma 1.2] tells us Hopf hypersurface $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ and $\xi \in \mathbb{Q}^{\perp}$ gives $A S=S A$. Thus, (2.6) is changed into

$$
\begin{aligned}
0 & =S(\phi A-A \phi) Y-(\phi A-A \phi) S Y=S \phi A Y-S A \phi Y-\phi A S Y+A \phi S Y \\
& =S \phi A Y-A S \phi Y-\phi S A Y+A \phi S Y=(S \phi-\phi S) A Y-A(S \phi-\phi S) Y
\end{aligned}
$$

By virtue of Lemma 2.1 and the above equations, we assert the following:
Lemma 2.2 Let $M$ be a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$. If $M$ satisfies $A(\phi S-S \phi)=$ $(\phi S-S \phi) A$ and $\xi \in Q^{\perp}$, then we obtain $S \phi=\phi S$.

Proof Since the shape operator $A$ and the tensor $\phi S-S \phi$ are both symmetric operators and commute with each other, by using the method due to Horn and Johnson [3], there exists a common basis $\left\{E_{i}\right\}_{i=1, \ldots, 4 m-1}$ that gives a simultaneous diagonalization. Since $A \xi=\alpha \xi$ and $(\phi S-S \phi) \xi=0, \xi$ is principal for $A$ and $\phi S-S \phi$. We write
$A E_{i}=\lambda_{i} E_{i}$ and $(\phi S-S \phi) E_{i}=\beta_{i} E_{i}$, where eigenvalues $\lambda_{i}$ and $\beta_{i}$ are real valued functions for all $i \in\{1,2, \ldots 4 m-1\}$.

Bearing in mind that $\xi=\xi_{1} \in \mathbb{Q}^{\perp}$, (2.1) is simplified:
$S X=(4 m+7) X-7 \eta(X) \xi-2 \eta_{2}(X) \xi_{2}-2 \eta_{3}(X) \xi_{3}+\phi_{1} \phi X+h A X-A^{2} X$.
As $\xi$ is principal for both $A$ and $\phi S-S \phi$, we get
Case 1. We can restrict $X \in[\xi]^{\perp}$. Here replacing $X$ by $\phi X$ in (2.10) (resp. applying $\phi$ to (2.10)), we have

$$
\begin{align*}
& S \phi X=(4 m+7) \phi X-\phi_{1} X+2 \eta_{2}(X) \xi_{3}-2 \eta_{3}(X) \xi_{2}+h A \phi X-A^{2} \phi X,  \tag{2.11}\\
& \phi S X=(4 m+7) \phi X-\phi_{1} X+2 \eta_{2}(X) \xi_{3}-2 \eta_{3}(X) \xi_{2}+h \phi A X-\phi A^{2} X .
\end{align*}
$$

Combining equations in (2.11), we get

$$
\begin{equation*}
S \phi X-\phi S X=h A \phi X-A^{2} \phi X-h \phi A X+\phi A^{2} X \tag{2.12}
\end{equation*}
$$

Putting $X=E_{i}$ into (2.12) and using $A E_{i}=\lambda_{i} E_{i}$, we obtain

$$
\begin{equation*}
(S \phi-\phi S) E_{i}=h A \phi E_{i}-A^{2} \phi E_{i}-h \lambda_{i} \phi E_{i}+\lambda_{i}^{2} \phi E_{i} . \tag{2.13}
\end{equation*}
$$

Taking the inner product with $E_{i}$ into (2.13), we have

$$
\beta_{i} g\left(E_{i}, E_{i}\right)=h \lambda_{i} g\left(\phi E_{i}, E_{i}\right)-\lambda_{i}^{2} g\left(\phi E_{i}, E_{i}\right)=0
$$

Since $g\left(E_{i}, E_{i}\right) \neq 0, \beta_{i}=0$ for all $i \in 1,2, \ldots, 4 m-2$. This is equivalent to $(S \phi-\phi S) E_{i}=0$ for all $i \in 1,2, \ldots, 4 m-2$.

Case 2. For $X \in[\xi]$. This gives $(S \phi-\phi S) \xi=0$. It follows that $S \phi X=\phi S X$ for any tangent vector field $X$ on $M$.

Summing up Lemmas 2.1, 2.2 and [12, Theorem], we conclude that if $M$ is a Hopf hypersurface in complex two-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right)$ satisfying (C-1) for $X=$ $\xi$ and $\xi \alpha=0$, then $M$ satisfies the condition of type $(A)$ real hypersurfaces. Hereafter, let us check whether the Ricci tensor of a model space of type $(A)$ satisfies the given condition (C-1) for $X=\xi$.

First let us consider $X=\xi$; then (C-1) becomes

$$
\begin{equation*}
\left(\widehat{\mathcal{L}}_{\xi}^{(k)} S\right) Y=\left(\mathcal{L}_{\xi} S\right) Y \tag{2.14}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
-k \phi S Y-\phi A S Y+k S \phi Y-S \phi A Y=0 \tag{2.15}
\end{equation*}
$$

When $\xi$ is Hopf vector field and $\xi \in \mathbb{Q}^{\perp}$, the Ricci tensor $S$ commutes with the structure tensor $\phi$ and by [8, lemma 1.2], $M_{A}$ satisfies (2.15).

If the Reeb vector field $\xi$ belongs to the maximal quaternionic subbunble $\mathcal{Q}$, then a Hopf hypersurface $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ is locally congruent to one of type $(B)$ by virtue of [6, Main Theorem].

For $M_{B}$, (2.14) is also equivalent to (2.15). So we assume $M_{B}$ satisfies (2.15). For each eigenspace, we have

$$
S X= \begin{cases}\left(4 m+4+h \alpha-\alpha^{2}\right) \xi & \text { if } X=\xi \in T_{\alpha} \\ \left(4 m+4+h \beta-\beta^{2}\right) \xi_{\ell} & \text { if } X=\xi_{\ell} \in T_{\beta} \\ (4 m+8) \phi \xi_{\ell} & \text { if } X=\phi \xi_{\ell} \in T_{\gamma} \\ \left(4 m+7+h \lambda-\lambda^{2}\right) X & \text { if } X \in T_{\lambda} \\ \left(4 m+7+h \mu-\mu^{2}\right) X & \text { if } X \in T_{\mu}\end{cases}
$$

From [13], we obtain the following equations:

$$
\begin{gather*}
\alpha=-2 \tan (2 r), \quad \beta=2 \cot (2 r), \quad \gamma=0, \quad \lambda=\cot (r), \quad \mu=-\tan (r), \\
\lambda+\mu=\beta \quad \text { and } \quad h=\alpha+3 \beta+(4 n-4)(\lambda+\mu)=\alpha+(4 n-1) \beta \tag{2.16}
\end{gather*}
$$

Thus, we get

$$
\left(\widehat{\mathcal{L}}_{\xi}^{(k)} S\right) Y-\left(\mathcal{L}_{\xi} S\right) Y= \begin{cases}0 & \text { if } Y=\xi \in T_{\alpha} \\ \left(4-h \beta+\beta^{2}\right)(\beta-k) \xi_{\ell} & \text { if } Y=\xi_{v} \in T_{\beta} \\ \left(4-h \beta+\beta^{2}\right) \phi \xi_{\ell} & \text { if } Y=\phi \xi_{v} \in T_{\gamma} \\ (-k+\lambda)(\lambda-\mu)(h-\lambda-\mu) \phi Y & \text { if } Y \in T_{\lambda} \\ (-k+\mu)(\mu-\lambda)(h-\mu-\lambda) \phi Y & \text { if } Y \in T_{\mu}\end{cases}
$$

From the fourth equation of above (resp., fifth), since $\mu \neq \lambda$, due to (2.16), we have $k=\mu$ or $h=\beta$ (resp., $k=\lambda$ or $h=\beta$ ). However, if $h=\beta$, the third one cannot happen. So we have $k=\mu=\lambda$. This gives a contradiction.

Remark 2.3 Let $M$ be a real hypersurface in complex two-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$; then $M_{B}$ does not satisfy the given condition $\left(\widehat{\mathcal{L}}_{\xi}^{(k)} S\right) Y=\left(\mathcal{L}_{\xi} S\right) Y$, for any $Y$ tangent to $M$.

Thus, we have asserted Theorem 1.1 in the introduction.
Secondly, we assume that $M_{A}$ satisfies (C-1). Putting $Y=\xi$ into (C-1), we obtain

$$
-\sigma \phi A X+k \sigma \phi X+S \phi A X-k S \phi X=0
$$

where $S \xi=\sigma \xi=\left(4 m+h \alpha-\alpha^{2}\right) \xi$.
From [13], we obtain the following equation:

$$
S X= \begin{cases}\left(4 m+h \alpha-\alpha^{2}\right) \xi & \text { if } X=\xi \in T_{\alpha} \\ \left(4 m+6+h \beta-\beta^{2}\right) \xi_{v} & \text { if } X=\xi_{v} \in T_{\beta} \\ \left(4 m+6+h \lambda-\lambda^{2}\right) X & \text { if } X \in T_{\lambda} \\ (4 m+8) X & \text { if } X \in T_{\mu}\end{cases}
$$

For $Y=\xi \in T_{\alpha}$, we get

$$
\left(\widehat{\mathcal{L}}_{X}^{(k)} S\right) \xi-\left(\mathcal{L}_{X} S\right) \xi= \begin{cases}0 & \text { if } X=\xi \in T_{\alpha}  \tag{2.17}\\ (k-\beta)\left(-h \alpha+\alpha^{2}+6+h \beta-\beta^{2}\right) \xi_{3} & \text { if } X=\xi_{2} \in T_{\beta} \\ (k-\beta)\left(-h \alpha+\alpha^{2}+6+h \beta-\beta^{2}\right) \xi_{2} & \text { if } X=\xi_{3} \in T_{\beta} \\ (k-\lambda)\left(h \alpha-\alpha^{2}-6-h \lambda+\lambda^{2}\right) \phi X & \text { if } X \in T_{\lambda} \\ \left(h \alpha-\alpha^{2}-8\right) \phi X & \text { if } X \in T_{\mu}\end{cases}
$$

From the fifth equation in (2.17), we obtain

$$
\begin{equation*}
h \alpha-\alpha^{2}-8=0, \tag{2.18}
\end{equation*}
$$

and from the definition of $h$, we obtain $h=\alpha+2 \beta+(2 m-2)(\lambda+\mu)$.
Summing these up, by [13] we have

$$
\begin{equation*}
(m-1) t^{2}-(m+2) t+4=0 \tag{2.19}
\end{equation*}
$$

where $t=\tan ^{2}(\sqrt{2} r)$.
From the second equation of (2.17) and (2.18), we obtain

$$
\begin{equation*}
(k-\beta)\left(h \beta-\beta^{2}-2\right)=0 \tag{2.20}
\end{equation*}
$$

If we assume that $h \beta-\beta^{2}-2=0$, then by summing up (2.19) with (2.20), we have $m=-1$, which gives us a contradiction. Thus, $k=\beta$, so from the fourth equation of (2.17) and (2.18), we get

$$
h \lambda-\lambda^{2}-2=0
$$

which becomes

$$
\begin{equation*}
(2 m-3) t^{2}-4 t+1=0 \tag{2.21}
\end{equation*}
$$

Combining (2.19) and (2.21) implies

$$
t=\frac{-7 m+11}{(m-2)(2 m+1)} .
$$

Since $m \geq 3$ and $t \geq 0$, this gives us a contradiction.
By virtue of Remark 2.3, we also get the fact that $M_{B}$ does not satisfy the given condition $\left(\widehat{\mathcal{L}}_{X}^{(k)} S\right) Y=\left(\mathcal{L}_{X} S\right) Y$. Thus, we assert Corollary 1.2.

Acknowledgment The authors would like to express their deep gratitude to Dr. Lee working at RIRCM for giving us nice comments for this paper.

## References

[1] J. T. Cho, CR structures on real hypersurfaces of a complex space form. Publ. Math. Debrecen 54(1999), no. 3-4, 473-487.
[2] ——, Levi parallel hypersurfaces in a complex space form. Tsukuba J. Math. 30(2006), no. 2, 329-343. http://dx.doi.org/10.21099/tkbjm/1496165066
[3] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge University Press, Cambridge, 1985. http://dx.doi.org/10.1017/CBO9780511810817
[4] I. Jeong, C. Machado, J. D. Pérez, and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with $\mathcal{D}^{\perp}$-parallel structure Jacobi operator. Internat. J. Math. 22(2011), no. 5, 655-673. http://dx.doi.org/10.1142/S0129167X11006957
[5] H. Lee, Y. S. Choi, and C. Woo, Hopf hypersurfaces in complex two-plane Grassmannians with Reeb parallel shape operator. Bull. Malays. Math. Sci. Soc. 38(2015), no. 2, 617-634. http://dx.doi.org/10.1007/s40840-014-0039-3
[6] H. Lee and Y. J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians related to the Reeb vector. Bull. Korean Math. Soc. 47(2010), no. 3, 551-561. http://dx.doi.org/10.4134/BKMS.2010.47.3.551
[7] T. H. Loo, Semi-parallel real hypersurfaces in complex two-plane Grassmannians. Differential Geom. Appl. 34(2014), 87-102. http://dx.doi.org/10.1016/j.difgeo.2014.03.011
[8] E. Pak, Y. J. Suh, and C. Woo, Restricted Ricci conditions for real hypersurfaces in complex two-plane Grassmannians. Houston J. Math. 41(2015), no. 3, 767-783.
[9] J. D. Pérez, I. Jeong, and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with commuting normal Jacobi operator. Acta Math. Hungar. 117(2007), 201-217. http://dx.doi.org/10.1007/s10474-007-6091-9
[10] J. D. Pérez and Y. J. Suh, The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians. J. Korean Math. Soc. 44(2007), 211-235. http://dx.doi.org/10.4134/JKMS.2007.44.1.211
[11] J. D. Pérez, Y. J. Suh, and Y. Watanabe, Generalized Einstein real hypersurfaces in complex two-plane Grassmannians. J. Geom. Phys. 60(2010), 1806-1818. http://dx.doi.org/10.1016/j.geomphys.2010.06.017
[12] Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with commuting Ricci tensor. J. Geom. Phys. 60(2010), 1792-1805. http://dx.doi.org/10.1016/j.geomphys.2010.06.007
[13] , Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor. Proc. Roy. Soc. Edinburgh Sect. A. 142(2012), 1309-1324. http://dx.doi.org/10.1017/S0308210510001472
[14] $\qquad$ , Real hypersurfaces in the complex quadric with parallel Ricci tensor. Adv. Math. 281(2015), 886-905. http://dx.doi.org/10.1016/j.aim.2015.05.012
[15] , Real hypersurfaces in the complex quadric with harmonic curvature. J. Math. Pures Appl. 106(2016), 393-410. http://dx.doi.org/10.1016/j.matpur.2016.02.015
[16] Y. J. Suh and H. Y. Yang, Real hypersurfaces in complex two-plane Grassmannians with commuting structure Jacobi operator. Bull. Korean Math. Soc. 45(2008), no. 3, 495-507. http://dx.doi.org/10.4134/BKMS.2008.45.3.495
[17] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan. J. Math. (N.S.) 2(1976), 131-190.
[18] S. Tanno, Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. 314(1989), 349-379. http://dx.doi.org/10.1090/S0002-9947-1989-1000553-9
[19] S. M. Webster, Peudo-Hermitian structures on a real hypersurface. J. Differential Geom. 13(1978), 25-41. http://dx.doi.org/10.4310/jdg/1214434345

Division of Future Capability Education, Ju Si-Gyeong College, Pai Chai University, 155-40 Baejae-ro, Seo-gu, Daejeon, 35345, Republic of Korea
e-mail: imsoon.jeong@gmail.com
Departamento de Geometria y Topologia, Universidad de Granada, 18071-Granada, Spain
e-mail: jdperez@ugr.es
Department of Mathematics and Research Institute of Real and Complex Manifold, Kyungpook National University, Daegu 41566, Republic of Korea
e-mail: yjsuh@knu.ac.kr
Department of Mathematics Education, Woosuk University, 565-701 Wanju, Jeonbuk, Republic Of Korea
e-mail: legalgwch@naver.com


[^0]:    Received by the editors March 18, 2017; revised July 31, 2017.
    Published electronically June 8, 2018.
    This work was supported by Grant Proj. No. NRF-2015-R1A2A1A-01002459 and Proj. No. NRF-2018-R1D1A1B-05040381. Author I. J. is supported by NRF Grant funded by the Korean Government Grant Proj. No. 2017R1A2B4005317. Author J. D. P. is partially supported by MINECO-FEDER Grant MTM2013-47828-C2-1-P. Author C. W. is supported by NRF Grant funded by the Korean Government Grant Proj. No. 2017R1C1B1010265.

    AMS subject classification: 53C40, 53C15.
    Keywords: real hypersurface, complex two-plane Grassmannian, Hopf hypersurface, shape operator, Ricci tensor, Lie derivation.

