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LIE DERIVATIVES ON HOMOGENEOUS
REAL HYPERSURFACES

OF TYPE A IN COMPLEX SPACE FORMS

JUNG-HwAN KWON AND YOUNG JIN SUH

ABSTRACT. The purpose of this paper is to give some characteriza.
tions of homogeneous real hypersurfaces of type A in complex space
forms Mn(c), <:#0, in terms of Lie derivatives.

1. Introduction

A complex n-dimensional Kaehler manifold of constant holomorphic
sectional curvature c is called a complex space form, which is denoted
by M n (c). The complete and simply connected complex space form
is isometric to a complex projective space Pn(C), a complex Euclidean
space en, or a complex hyperbolic space Hn (C) according as c > 0, c =
oor c < 0 respectively. The induced almost contact metric structure of
a real hypersurface M of Mn(c) is denoted by (if>,f.,TJ,g).

Now, there exist many studies about real hypersurfaces of Mn(c),
c¥=O. One of the first researches is the classification of homogeneous
real hypersurfaces of a complex projective space Pn(C) by Takagi [13],
who showed that these hypersurfaces of Pn(C) could be divided into
six types which are said to be of type Ab A2 , B, C, D and E, and in
[3] Cecil-Ryan and in [8] Kimura proved that they are realized as the
tubes of constant radius over Hermitian symmetric spaces of compact
type of rank 1 or rank 2. Also Berndt [1], [2] showed recently that
all real hypersurfaces with constant principal curvatures of a complex
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hyperbolic space Hn(C) are realized as the tubes of constant radius
over certain submanifolds when the structure vector field ~ is principal..

On the other hand, Okumura [12] and Montiel and Romero [11]
proved the followings respectively.

THEOREM A. Let M be a real hypersurface of Pn(C), n:2:2. Hit
satisfies

(1.1) A4> - 4>A = 0,

then M is locally congruent to a tube of radius r over one of the fol
lowing Ka.ehler submanifolds:

(AI) a hyperpla.ne Pn-I(C), where 0 < r < ~,

(A2 ) a totally geodesic Pk(C) (1 ~ k ~ n - 2), where 0 < r < ~.

THEOREM B. Let M be a real hypersurface of Hn(C), n:2:2. Hit
satisfies (1.1), then M is locally congruent to one of the fonowing hy
persurfaces:

(Ao) a horosphere in Hn(C), i.e., a Montiel tube,
(AI) a tube ofa totally geodesic hyperpla.ne Hk (C) (k = 0 or n -1),
(A2 ) a tube of a totally geodesic Hk{C) (1 ~ k ~ n - 2).

Now hereafter, unless otherwise stated, the above kind of real hyper
surfaces in Theorem A or in Theorem B are said to be of real hypersur
faces of type A.

From two decades ago there have been so many investigations for real
hypersurfaces of type A in Mn(c), c#O and several characterizations of
this type have been obtained by many differential geometers (See [1J,
[3], [7J, [11J and [12]). But until now in terms of Lie derivatives only
a few characterizations are known to us. From this point of view we
have paid our attention to the works of Okumura [12J and Montiel and
Romero [11J as in Theorem A and in Theorem B respectively. They
showed that a real hypersurface M in Pn(C) or in Hn(C) is locally
congruent to a real hypersurface of type A if and only if the structure
vector ~ is an infinetesimal isometry, that is Lt;.9 -: 0, which is equivalent
to (1.1), where Lt;. denotes the Lie derivative along the structure vector
~.
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Being motivated by these results Ki, Kim and Lee [4] proved that
the Lie derivatives £(.g = 0, £(.4> = 0 or £(.A = 0 are equivalent to each
other, where A denotes the second fundamental tensor of M in Mn(c).

In this paper we want to generalize these results and to investigate
further properties of real hypersurfaces of type A in terms of the ten
sorial formulas concerned with the Lie derivatives along the structure
vector field ~ as follows:

THEOREM. Let M be a real hypersurface of Mn(c), c -1= 0, n ~ 3.
Assume that the structure vector ~ of M satisfies one of the followings

(1) £(.g = fg for the induced Rimannian metric g,
(2) £(.4> = f4> for the structure tensor 4>,
(3) £(.4> = fA for the second fundamental tensor A,
(4) £(.4> = fA4> for the certain tensor A4> of type (1,1) or,
(5) £(.4> = f4>A for the certain tensor 4>A of type (1,1),

where f denotes any differentiable function defined on M. Then M is
locally congruent to a real hypersurface of type A.

In section 2 the theory of real hypersurfaces in complex space forms
is recalled and in section 3 we will prove the first part of the Theorem
when ~ becomes an infinitesimal conformal transformation. In section
4 we will give the complete proof of the latter parts of the Theorem in
above. Namely, some characterizations of real hypersurfaces in Mn(c)
will be given in terms of the tensorial formulas concerned with the Lie
derivatives £(.4>.

2. Preliminaries

Let M be a real hypersurface of a complex n-dimensional complex
space form Mn(c), c -1= 0, n ~ 3 and let C be a unit normal vector field
on a neighborhood of a point x in M. We denote by J an almost com
plex structure of Mn(c). For a local vector field X on a neighborhood
x in M, the transformation of X and C under J can be represented as

JX = 4>X +1J(X)C, JC = -~,
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where c/J defines a skew-symmertic transformation on the tangent bun
dle TM of M, while TJ and ~ denote a I-form and a vector field on
a neighborhood of x in M, respectively. Moreover it is seen that
g(~, X) ----: TJ(X), where 9 denotes the induced Riemannian metric on
M. By properties of the almost complex structure J, the set (c/J, ~, TJ, g)
of tensors satisfies

(2.1) c/J2 = -1 + TJ 0~, c/J~ = 0, TJ(c/JX) = 0, TJ(~) = 1,

where 1 denotes the identity transformation and X denotes any vector
field tangent to M. Accordingly, this set (c/J, ~, TJ, g) defines the almost
contact metric structure on M. Furthermore the covariant derivative of
the structure tensors are given by

(2.2) (Vxc/J)Y =1](Y):AX - g(AX, Y)~, Vx~ = c/JAX,

where V is the Riemannian connection of 9 and A denotes the shape
operator with respect to the unit normal C on M. Since the ambient
space is of constant holomorphic sectional curvature c, the equations of
Gauss and Codazzi are respectively given as follows :

(2.3)
c

R(X, Y)Z = 4{g(Y, Z)X - g(X, Z)Y + g(c/JY, Z)c/JX - g(c/JX, Z)c/JY

- 2g(c/JX, Y)c/JZ} +g(AY; Z)AX - g(AX, Z)AY,

c
(2.4) (VxA)Y - (VyA)X = 4{TJ(X)c/JY - TJ(Y)</JX - 2g(</JX, Y)O,

where R denotes the Riemannian curvature tensor of M and Vx A
denotes the covariant derivative of the shape operator A with respect
toX.

Now, in order to get our result, we introduce a lemma which was
proved by Ki and Sub [6] as follows:

LEMMA 2.1. Let M be a real hypersurface of a complex space
form Mn(c). H A</J + c/JA = 0, then c = 0.
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3. The infinitesimal conformal transformations

Before going to prove our assertion in Case (1), let us introduce a
slight weaker condition than an infinitesimal isometry.

A vector field X on a Riemannian manifold is said to be an infinitesi
mal conformal tmnsformation if the metric tensor 9 satisfies £x 9 = f g,
where £ x denotes the Lie derivative with respect to the vector field X
and f denotes a differentiable function defined on M.

Let M be a real hypersurface of Mn(c), c =f. 0, n ~ 3, whose struc
ture vector { is an infinitesimal conformal transformation. Then the
metric tensor 9 on M satisfies

(£{g)(X, Y) = g«</>A - A</»X, Y)

= fg(X,Y),

where X and Y are any vector fields tangent to M. It yields that

(</>A - A</»X = IX

for any differentiable function f on M. From this, putting X = {, we
have

(3.1) </>A{ = f~.

So, from applying the operator </> we have

(3.2) A~=a~,

where a denotes g(A~, ~). By virtue ofthe latter two formulas (3.1) and
(3.2) we know that f identically vanishes. This means the structure
vector ~ becomes an infinitesimal isometric transformation. Thus by
Theorems A and B in the introduction, we have completed the proof of
our Theorem in Case (1).

4. Some characterizations of real hypersurfaces in terms of
£{</>

In this section let us prove the latter part of our main Theorem.
Namely, we will give some characterizations of real hypersurfaces of
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type A in terms of the Lie derivatives of the structure tensor 4> along
the structure vector ~.

Let M be a real hypersurface of Mn(c), c t= 0, n ~ 3 whose structure
vector ~ on M satisfies

£'f,4> = fT,

where f is a differentiable function and T is a tensor field of type (1,1)
defined on M. By the definition of the Lie derivative and (2.2) we have

from which together with (2.1), it follows that

(4.2) A - A~ ® TJ + 4>A4> = -fT.

Operating the linear transformation (4.2) to the structure vector ~ and
taking account of (2.1), we have

(4.3) fT~=O.

Next, operating 4> to (4.2) to the left and using (2.1), we have

Operating 4> to (4.2) to the right and making use of (2.1), we have

(4.5)

Taking the inner product of (4.2) with the structure vector ~, we have
for any X in TM

(4.6) g(AX,~) - Q:TJ(X) + fg(TX,~) = o.

Then from (4.4) and (4.5) we have
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LEMMA 4.1. Let M be a real hypersurface ofMn(c), c # 0, n ~ 3.
Assume that the structure vector ~ satisfies LF,</> = IT, where I is a
differentiable function and T is a tensor field of type (1,1). If the
structure vector ~ is principal, then it satisfies

(4.7) I</>T + IT</> = 0, 2(A</> - </>A) = I(</>T - T</».

Case (2): T = </>

Assume that T = </>. In this Case (2) the formula (4.6) yields the
structure vector ~ is principal. Then, by Lemma 4.1 we have A</>-</>A =
O. So by virtue of Theorems A and B, we have our assertion under this
case.

Case (3): T = A.

We assume that T = A. By (4.4) and (4.5), we have

(4.8) A</> - (1 + f)</>A + <pA~ ® TJ - ~ ® TJ(A</» = 0,

(4.9) </>A - (1 + f)A</> - <pA~ ® TJ = O.

Acting the structure vector ~ to the linear transformation (4.8), we get

(4.10) I</>A~ = O.

Taking an inner product (4.9) with the structure vector ~, we have

(4.11) (1 + f)</>A~ = O.

From (4.10) and (4.11) we have

</>A~ = 0,

that is, ~ is the principal curvature vector with principal curvature Q.

Then by Lemma 4.1 we have

(4.12)

(4.13)

I(A</> + </>A) = 0,

(2 + f)(A</> - </>A) = O.
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Let us denote by M1 a subset of M consisting of points at which
f(x) =j:. O. Now let us assume M1 is not empty. Then, by (4.12), we
see that AcI> + c/>A = 0 on MI, and hence c = 0 on M1 by Lemma 2.1.
This makes a contradiction. So M1 is empty. Therefore the function f
vanishes identically on M. Then (4.13) together with Theorems A and
B we have our assertion in Case (3).

Case (4): T = AcI>

Next, we assume that T = AcI>. Then, by (4.6), we have

(4.14) Ae - a~ = - fcl>A~.

Applying cl> to (4.14) and using (2.1) and (4.14), we have (1+ j2)cI>A~=
0, tl~at ~, ~ is thepriJ,lcipal cllJ:Vature vector with principal curvature
a. From this and (4.5) we have

(4.15) lj>A - AcI> + I(A - a", ®~) = o.

Operating cl> to (4.15) to the right and using (2.1) and the fact ~ is
principal, we get

(4.16)

from which together with (4.15), it follows

(4.17)

Next, operating cl> to (4.16) to the left and using (2.1), we get

(4.18) cl>A - AcI> + f cl>AcI> = o.
From (4.15) and (4.18), we find

(4.19) fcl>AcI> - f(A - a", ®~) = o.

From this, operating cl> to the left and using (2.1) and the fact ~ is
principal, we have

(4.20) f(AcI> + cl>A) = o.
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Let M1 be an open set consisting of points x in M such that f(x) i= O.
If Ml is not empty, then, by (4.20), we see that Acf> + cf>A = 0 on Mt,
and hence c = 0 on M1 by Lemma 2.1. This makes a contradiction.
Hence M1 is empty. Therefore the function f vanishes identically on M.
From this, together with (4.15), we have cf>A = Acf>. So by Theorems A
and B, we have our assertion in this case.

Case (5): T = cf>A

Finally, we assume that T = cf>A. Then, by (4.6), the structure vector
~ is principal curvature vector with principal curvature a. From this
together with (4.5) we have

(4.21) cf>A - Acf> = fcf>Acf>.

From this, applying cf> to the left and using (2.1) and ~ is principal, we
get

(4.22) cf>Acf> + (A - aT! ®~) = f Acf>.

Next, operating cf> to (4.22) to the right and using (2.1), we find

(4.23) Acf> - cf>A + f(A - aT! ®~) = 0,

from which together with (4.21) and (4.22) it follows

(4.24) 2(Acf> - cf>A) + f2 Acf> = O.

Operating cf> to (4.23) to the left and using (2.1) and also the fact ~ is
principal, we have

cf>Acf> + fcf>A + (A - aT! ® {) = 0,

from which together with (4.23) it follows

(4.25) Acf> - cf>A = fcf>Acf> + f2cf>A.

From (4.21) and (4.25) we have

2(Acf> - cf>A) = f2cf>A,

from which together with (4.24) it follows

f2(Acf> + cf>A) = o.
Let us also denote by Ml an open set consisting of points x in M such
that f(x) i= O. Then by the same argument as in above, we know that
such an open subset M1 do not exist. So f vanishes identically on M.
Thus we also have our assertion in Case (5).
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