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Abstract: This article presents a detailed theoretical and computational analysis of alumina and 

titania-water nanofluid flow from a horizontal stretching sheet. At the boundary of the sheet (wall), 

velocity slip, thermal slip and Stefan blowing effects are considered. The Pak-Cho viscosity and 

thermal conductivity model is employed together with the non-homogeneous Buongiorno 

nanofluid model. The equations for mass, momentum, energy and nanoparticle species 

conservation are transformed via Lie-group transformations into a dimensionless system. The 

partial differential boundary value problem is therefore rendered into nonlinear ordinary 

differential form. With appropriate boundary conditions, the emerging normalized equations are 

solved with the semi-numerical homotopy analysis method (HAM). To consider entropy 

generation affects a second law thermodynamic analysis is also carried out. The impact of some 

physical parameters on the skin friction, Nusselt number, velocity, temperature and entropy 

generation number (EGM) are represented graphically. This analysis shows that diffusion 

parameter is a key factor to retards the friction and rate of heat transfer at the surface. Further, 

temperature of fluid decreases for the higher value of thermal slip parameter. In addition, entropy 
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generation number enhances with nanoparticles ambient concentration and Reynolds number. A 

numerical validation of HAM results is also included. The computations are relevant to 

thermodynamic optimization of nano-material processing operations. 

Keywords: Nanofluid; HAM; Entropy generation analysis; Stefan blowing effect; Slip flow. 

 Nomenclature   

C Nanoparticles Concentration (--) Pr Prandtl number (--) 

BD  Brownian Diffusion (m2 /s) q Embedding Parameter (--) 

TD  Thermophoresis Diffusion (m2 /s) R Gas Constant (J/(molK)) 

D Ratio of Thermophoresis and 

Brownian Motion Parameter  

Re Reynolds Number (--) 

Ec Eckert Number (--)   Dimensionless Concentration(--) 

F Dimensionless Stream function (--) Sg Volumetric rate of entropy generation 

(J/(Km3s)) 

H Enthalpy (J) 
cS  

Characteristic entropy (J/(Km3s)) 

K Thermal Conductivity (W/(mK)) Sc Schmidt Number (--) 

Nur Nusselt Number(--) T Temperature (K) 

1N  Velocity Slip Parameter (--) u  Velocity (m/s) along x -axis 

2N  Thermal Slip Parameter (--) v  Velocity (m/s) along y -axis 

 Greek Symbol   

  Density (kg/m3) ( )c  Heat Capacity (J/(Km3)) 
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  Dynamic Viscosity (Ns/m2)   Dimensionless Temperature (--) 

  Concentration(--)    Diffusive Constant (--) 

  Stream Function (m2/s) 
1  Dimensionless Velocity slip parameter  

  Kinematic Viscosity (m2/s) 
2  Dimensionless Thermal slip parameter  

  Thermal Slip Parameter (--)   Similarity Variable (--) 

 Subscript   

  Ambient condition nf  Nanofluid 

w  Condition on surface f Fluid 

P Nanoparticles   

 

1. INTRODUCTION 

Heat and mass transfer from a stretching sheet features in a wide area of applications including 

crystal growth process, paper drying, aerodynamic extrusion of plastic sheets, glass fiber 

stretching, enrobing, packaging, hot rolling processes, thermal coating flows. Crane[1] initiated 

theoretical investigations of the boundary layer flow induced by a linearly stretching sheet for the 

case of a Newtonian viscous fluid. Subsequent investigations have extended this original 

formulation to consider a multiplicity of effects motivated by achieving a more realistic 

representation of industrial stretching (polymeric) flows. These include stretching sheet flows for 

viscoelastic fluids with slip and heat transfer effects [2], new families of Newtonian solutions with 

wall transpiration [3], multi-mode heat transfer with electrically-conducting and buoyancy effects 
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[4], uniform-shear free stream effects [5], magnetic rheological behavior [6] , combined free and 

forced convection for exponential stretching rates [7].  

In recent years nanofluids have emerged as a significant area of development in thermal 

engineering systems. Comprising either metallic or non-metallic nanoscale particles suspended in 

a conventional working fluid (air, water etc.), nanofluids achieve significant enhancement in 

thermal conductivities and other properties. Choi and Eastman [2] pioneered this field, describing 

successful methods for doping base fluids with nano-sized particles which increase the cooling 

efficiency and thermal conductivity of fluid. The particles of carbon, metal, metal oxides are 

generally used as nanoparticles. Extensive experimental and theoretical studies have been 

conducted to evaluate the effect of nanoparticles volume fraction on thermal conductivity of 

different nanofluids for different applications. Eastman et al.[3] observed a 60% enhancement in 

thermal conductivity by utilizing5% volume fraction of Cu, 2 3Al O  and CuO nanoparticles. Aybar 

et al. [4] have highlighted that temperature, volume fraction of nanoparticles, size of particles and 

nano-layer are the important parameters contributing to the increase in thermal conductivity of 

nanofluids. Rana et al. [5] have captured the dual solutions in Jeffery-Hamel nanofluid flow using 

KKL model. A number of articles are published based on the convective transport study of 

nanofluid due to its vast industrial applications [6]–[9].  

Mathematical models for nanofluid transport can be delineated into two types: homogeneous and 

non-homogeneous flow model. In the homogeneous model, the thermo-physical properties of base 

fluid are increased due to the supplementary nanoparticle thermal conductivity. In the  non- 

homogeneous model proposed by Buongiorno[10] in 2006, although seven mechanisms are 

identified that may possibly contribute to the heat transfer enhancement, only thermophoresis and 
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Brownian motion are considered to be substantial. In the past decade a tremendous degree of 

research activity has been mobilized in nanofluid simulations using these two approaches, for 

numerous geometries and with multiple body forces, and the reader is referred to [11]–[16]. Yang 

et al.[17] have modified the Buongiorno model to investigate the impact of nanoparticle volume 

fraction distribution on the conservation equations of mass, momentum and energy which are 

formulated for the specific case of forced convection flow of nanofluid in a concentric annuals. 

Malvandi et al. [18] have also employed a modified Buongiorno model to investigate the mixed 

convection nanofluid flow through an annular pipe with buoyancy and hydrodynamic  slip effects. 

Recently, Rana et al.[19]  have applied the modified Buongiorno model to study the influence of 

magnetic field, nanoparticles concentration, velocity and thermal slip on electrically-conducting 

nanofluid flow in external boundary layer flow from a horizontal shrinking cylinder, identifying 

two branches of solutions. Slip effects are known to arise in various polymeric and other chemical 

engineering flow systems. An important study of slip conditions at the wall was presented by 

Yoshimura and Prudhomme [20] in 1988. They observed that the fluid has a velocity relative to 

the boundary which is known as slip velocity. 

In many process, it has been observed that there exist mass transfer of species at the surface which 

can generate a blowing effect. The concept of the blowing effect originates in the Stefan 

problem[21]. This blowing effect can arise at an impermeable surface and is therefore 

fundamentally different to the wall transpiration effect associated with injection at permeable 

surfaces. The Stefan blowing effect provides a relation between the velocity field and the species 

(concentration) field which states that flow field is directly proportional to the rate of concentration 

of species. Fang and Jing[22] have considered the Stefan blowing effect on a viscous fluid flow 

induced by a stretching sheet and observed an improvement in velocity and concentration profiles 
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due to this effect. Uddin et al.[23] analyzed the  blowing effect on bioconvection nanofluid flow 

over a sheet with slip conditions at the wall. They observed a significant modification in velocity, 

temperature and nanoparticles concentration with blowing parameter. Further, Latiff et al. [24] 

have extended this work to unsteady forced convection nanofluid  flow containing microorganism 

over a rotating stretchable disk. Recently, Rana et al.[25] have examined the blowing effect on an 

electromagnetic time dependent flow of nanofluid induced by a stretching sheet with first order 

chemical reaction effect.   

A flow system can lose its working efficiency due to the presence of thermodynamic irreversibility 

which can be generated via heat transfer, viscous dissipation and diffusion of species. Entropy 

generation analysis is a modern tool based on the second law of thermodynamics which provides 

information about the quantification of this irreversibility. Bejan [26] originated the method of 

entropy minimization in thermal systems. A diverse spectrum of studies have subsequently been 

communicated on entropy generation analysis of boundary layer flows external to various different 

geometries including stretching sheets, cylinders, wedges, spheres etc.[27]–[31]. Moreover, Bhatti 

et al.[30], [32] have examined the study of entropy generation on nanofluid flow induced  via a 

permeable stretching surface.                                                                                                                                                                                                          

The major objective of the current article is to determine semi-numerical solutions for 2 3Al O -water 

nanofluid slip flow from a stretching sheet with Stefan blowing effect using a modified 

Buongiorno model. The homotopy analysis method [32]–[34] which demonstrates exceptional 

accuracy for nonlinear coupled ordinary and partial differential equation boundary value problem 

systems is applied to solve the dimensionless system of flow, energy and concentration equations.  

Comprehensive evaluation is included for the influence of dominant physical parameters on 
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velocity, temperature, concentration, skin friction coefficient, Nusselt number and entropy 

generation number. The study is relevant to thermodynamic optimization of nanomaterial 

fabrication systems. 

2. MATHEMATICAL MODEL 

Incompressible steady-state boundary layer flow of 2 3Al O - water nanofluid is considered along a 

stretching sheet under the influence of Stefan blowing, velocity slip and thermal slip at the 

boundary. The x axis−  is located along the sheet whereas the y axis− is considered normal to the 

sheet. It is assumed that sheet is stretched with velocity wu ax= . The physical configuration is 

illustrated in Fig 1. 

The concentration of nanoparticles is controlled by no flux condition at the boundary. Table-1 

represents the thermo-physical properties of 2 3Al O  particles and water. A schematic diagram of 

problem is shown in Fig.1. Under these assumptions, four conservation equations can be written 

following [18] as: 

Mass Conservation Equation 

( ) ( ) 0,
nf nf

u v
x y
  

+ =
                  

(1) 

Momentum Conservation Equation 

( )1
,nf

nf

u u u
u v

x y y y
 


    

+ =                                 

(2) 

Energy Conservation Equation 
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( ) ( )
2

1
nf nf B Tp

T T T T C T
u v k c D D

x y y y y y T y
  



            
 + = + +                                                   

(3) 

Nanoparticles Mass Conservation Equation 

.T
B

DC C C T
u v D

x y y y T y

     
+ = +      

                                                                                           (4) 

Boundary Conditions[36] 

At  0,y = 1 ,
w

u
u u N

y


= +


,

B

C
v D

y


= −

 2 ,
w

T
T T N

y


= +


0,T

B

DC T
D

y T y

 
+ =

 
 

as ,y → 0,u = ,T T= .C C=                                                                                                  (5) 

where u (m/s)and v(m/s) are the velocities along the x and y-axis respectively, nf (kg/m3) is 

density of nanofluid, nf (N-s/m2) is dynamic viscosity of nanofluid, H(J) is enthalpy, nfk (W/m-

K) is thermal conductivity of nanofluid, T and T (K) are temperature of nanofluid and ambient 

temperature respectively, ( )
p

c (J/K-m3)is heat capacity of nanoparticles, BD and TD (m2/s) are 

Brownian and thermophoresis diffusion respectively, C andC are the nanoparticles concentration 

and ambient concentration respectively, 1N  and 2N (m) are the velocity and thermal slip parameter,

wT  (K) is the temperature at the wall which is assumed to be greater in comparison of ambient 

temperature ( )wT T . 

2.1 The Thermo-physical Properties 
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The density and heat capacity of nanofluid are defined as: 

(1 ) ,nf p f   = + −                                                                                                                    (6) 

( ) ( ) (1 )( ) .nf p fc c c    = + −                                                                                                     (7) 

Here the suffix nf stands for nanofluid whereas f represents the base fluid. The symbol  represents 

the concentration of nanoparticles. Pak and Cho[37] have measured the viscosity and thermal 

conductivity of nanofluid at room temperature deriving the following relations: 

2.1.1. Alumina Particles 

2(1 39.11 533.9 ),nf f   = + +
                          

(8) 

(1 7.47 ).nf fk k = +                                                                                                                        (9)  

2.1.2 Titania Nanoparticles 

2(1 5.45 108.2 ),nf f   = + +
               

(10)     

2(1 2.92 11.99 ).nf fk k  = + −                                                                                                      (11) 

2.2 Normalization of governing equations 

To normalize the transport equations, we introduce following dimensionless variables: 

*

f

a
x x


= , *

f

a
y y


= , *

f

u
u

a
= , *

f

v
v

a
= , 

w

T T

T T
 



−
=

−
, .C =                                (12) 
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The stream function can be defined as 
*

*
u

y


=


, *

*
v

x


= −


. Applying eqn. (12) on eqs.(1)-(5), 

yields: 

3 2 2 2

*3 * *2 * *2 * * *

1
0,

nf nf nf

f f fy y y x y y x y

        
   

        
+ + − =          

                                                (13) 

( )
( )2

22

* * * * **

1 Prnf nf p

f f f

ck k
D

k k y y c Sc y y yy

     
 

        
 + + +           

( )
( ) * * * *

Pr 0,
nf

f

c

c x y y x

    


    
+ − =     

    

(14) 

2 2

2 2

* * ** *
0,Sc D

x y xy y

         
+ − + =                  

(15) 

The following boundary conditions enforced at the wall and in the free stream are: 

At
* 0,y =

2
*

1* *2

f

a
ax N

y y

 


 
= +

 
,  * *

1

x Sc y

  
=

 
, 

2 *
1

f

a
N

y





= +


, * *

0,D
y y

  
+ =

 
 

As
*

y →
*

0,
y


=


0, = C = .                                                                                              (16) 

2.3 Lie group analysis of normalized equations 

To convert the partial differential equations (13)-(16) into ordinary differential equations, we 

deploy the following scaling group of transformations: 

1* k
x e x

−= ,  
2* ,

k
y e y

−= 3* k
e

 −= , 4* k
e

 −= , 
5* k

e
 −= , 6

1 1

k
N e N

−=
 
and 7*

2 2

k
N e N

−= .                                                                                             

(17) 
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Here all ik ,
s are constants and the symbol s used to indicate the scaling group parameter. Apply 

the transformations (17) on eqns. (13)-(16) then we obtain: 

3 2 3 2 5 3 1 2

3 2 2 2
( 3 ) ( 3 ) (2 2 )

3 2 2

1
0,

nf nf nfk k k k k k k k

f f f

e e e
y y y x y y x y

          
   

− − − − + − − −        
+ + − =          

 

                                                                                                                                (18) 

( )
( )

4 2 5 4 5 24 2 4 2

2
2

( 2 ) ( 2 )( 2 ) 2( )1 Prnf nf pk k k k k kk k k k

f f f

ck k
e e e D e

k y k y y c Sc y y y

  
     

 
− − + − + −− − − −

         + + +           

( )
( )

3 4 1 2( )
Pr 0,

nf k k k k

f

c
e

c x y y x


    


− + − −    
+ − =     

           

(19) 

5 2 3 5 1 2 5 1 4 2

2 2
( 2 ) ( ) ( ) ( 2 )

2 2
0,

k k k k k k k k k k
e Sc e e D e

y x y x y

       − − − + − − − − − −     
+ − + =      

                         (20) 

The corresponding boundary conditions are: 

at 0,y = 3 2 6 3 21

2
( ) ( 2 )

1 2

k k k k kk

f

a
e axe N e e

y y

   


− − − − −− 
= +

 
,  3 1 5 2( ) ( )1k k k k

e e
x Sc y

  − − − − 
=

 
,  

74 4 2( )

21
kk k k

f

a
e N e e

y

 


−− − −
= +


, 5 2 4 2( ) ( )

0
k k k k

e D e
y y

  − − − − 
+ =

 
 

as y → 3 2( )
0,

k k
e

y

 − −
=


4 0,

k
e

 − = 5k
e C

 −
= .                                                                    (21) 

To maintain non-variance of the above system of differential equations under the group of 

transformations, we obtain following relations: 
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3 1 2 3 2 3 2 5 3 2 52 2 3 3 3 2k k k k k k k k k k k− − = − = − + = − +
                                

(22) 

3 4 1 2 4 2 4 2 5 4 22 2 2( )k k k k k k k k k k k+ − − = − = − + = −
         

(23) 

5 1 3 5 1 2 5 2 4 22 2k k k k k k k k k k− = + − − = − = −
            

(24) 

3 2 1 3 2 62k k k k k k− = = − +
              

(25) 

3 1 5 2k k k k− = −
               

(26) 

4 4 2 70k k k k= = − +
               

(27) 

5 2 4 2k k k k− = −
               

(28) 

The above eqns. (22)-(28) provide the solutions: 

1 3,k k= 2 0,k = 4 0,k = 5 4 ,k k= 6 0,k = 7 2.k k=                                                                             (29) 

Substitute the values of all ik ,
s into the transformations (17) leads to: 

1* k
x e x

−= ,  
* ,y y= 1* k

e
 −= , * = , 

* = , 1 1N N= and 
*

2 2N N= .                               (30)   

Next, we employ Taylor series to expand the above terms up to order  , leading to: 

0 0 0

dx dy d d d

x

  


= = = =
              

(31) 

which provides the following transformations 
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,y = ( )xf = , ( )  =  and ( )  = .                                                                                 (32)                                                                                                          

Now apply non-dimensional parameters (32) on eqs. (1)-(5), then we obtain: 

( )21
0,

nf nf nf

f f f

f f ff f
  


   


    + + − =


                                           (33) 

( )
( ) ( ) ( )

( )
21 Pr

Pr 0,
nf nf p nf

f f f f

c ck k
D f

k k c Sc c

 
      

  


      + + + + =


                                    (34) 

0,Scf D    + + =                           (35) 

The boundary conditions emerge as: 

at 0, = 1
(0) (0),f

Sc
= (0) 1 (0),f f = + (0) 1 (0),  = + (0) (0) 0,D  + =  

as ,→ ( ) 0,f  = ( ) 0,  = ( ) ,C  =                                                    (36) 

Here prime/ designates differentiation with respect to  and the leading parameters can be defined 

as: 

Pr ,
f f

f

c

k


= ,

f

B

Sc
D


=

( )
,

T w

B

D T T
D

T D





−
=

1 ,
f

a
N


= 2 .

f

a
N


=                                          (37)  

Where Pr is Prandtl number, Sc is Schmidt number, D is diffusivity ratio,  is first order 

hydrodynamic slip parameter and  is thermal slip (jump) parameter. 

2.4 The Significant Engineering Quantities of Interest 
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Of relevance to materials processing operation design are the gradients of variables at the wall 

(sheet surface). These are defined for the momentum, temperature and nanoparticle concentration 

fields below: 

2.4.1 Skin Friction Coefficient 

2
,w

f

f w

C
u




= where the shear stress w is defined as   

0

.w nf

y

u

y
 

=


=


 

Now, apply the transformations (32) on the expression of fC , then we obtain 

Re (0),
nf

fr f

f

C C f



= =                             (38) 

where the local Reynolds number 
2

Re .
f

ax


=  

2.4.2 Local Nusselt Number 

,
( )

w

f w

x
Nu q

k T T

=
−

where the heat flux at the wall wq is defined as 

,
w nf p

T
q k Hj

y


= − +


where the mass flux pj is defined as 

0

T
p p B

y

DC T
j D

y T y


=

  
= − +   

.  

Use eq. (32) on the expression of Nu, then we obtain 

(0).
Re

nf

f

kNu
Nur

k
 = = −                                      (39) 
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2.2.3 Sherwood Number 

,m

B

xq
Sh

D
= where the mass flux mq is defined as 

.
p

m

p

j
q


=  

Since pj  is zero at the boundary thus Sherwood number is zero. 

3. Second Law Thermodynamic Analysis (Entropy Generation Minimization) 

The second law of thermodynamics provides a mechanism for computing the entropy generation 

in the system. For the present problem, the volumetric rate of entropy generation is defined as 

[31]: 

2 2 2

2
,

nf nf B
g B

k RDT u C C T
S RD

T y T y y T y y



  

            
= + + +                              

(40) 

1 2 3 4 ,S S S S= + + +  

where 1S  is the entropy generation due to temperature difference,  2S  is the entropy generation 

due to viscous dissipation and the combination of the last two terms 3 4&S S
 
represents the entropy 

generation due to diffusion of species. Here R represents the gas constant (J mol-1K-1). 

The characteristic entropy generation is given by: 

( )2

2 2
.

f w

c

k T T
S

x T





−
=               (41) 
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Using similarity transformations (32) on the ratio of gS and cS , yields a non-dimensional entropy 

generation number: 

2 2 21
Re Pr ,

g nf nf

t v d

c f f

S k
Ns Ecf Ns Ns Ns

S k

    


      = = + + + = + +              

(42) 

where ,B

f

RD

k
 =

2

( )

w

f w

u
Ec

c T T

=
−

 and .wT T

T





−
 =  These denote respectively the 

thermodynamic parameter, Eckert (viscous heating) parameter and wall-free stream temperature 

difference parameter. The relative entropy generation number of temperature (Bejan number, rtNs

) can be calculated as the ratio of Nst and total entropy. Similarly, other relative entropy generation 

numbers rvNs and rdNs may be defined. Bejan number [26], [28] represents the relative entropy 

generation number of temperature difference which is the ratio of tNs  to Ns. In a similar fashion 

it is possible to determine the other relative entropy generation numbers.  

4. Semi-Numerical Solution of BVP with Homotopy Analytical Technique 

To solve the eqns. (33)-(35)under boundary conditions (36), we employ Liao’s homotopy analysis  

method (HAM)for which the initial guesses, linear operators and auxiliary functions are assumed 

as follows [38]: 

(i)Initial guesses ( )0

1
( ) 1 ,

(1 ) 1

D
f e

Sc


 

−= + −
+ + 0

1
( ) e ,

1

 


−=
+ 0 ( ) e ,

1

D
C

 


−
= −

+
 

which satisfy the boundary conditions (36). 
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(ii)The linear operators  ,fL f f = + ,L   = + ,L   = +  which satisfy the conditions 

1 2 3( ) 0fL C C C e
 −+ + =  , 4 5( ) 0L C C e




−+ = , 6 7( ) 0.L C C e



−+ = Here iC are constants. 

(iii)The auxiliary functions ( ) 1,fH  = ( ) 1,H  = ( ) 1.H  =  

We construct the following mth order deformation equations  

1 1( ( ) ( )) ( ),f

f m m m f f mL f f h H R   − −− =                              (43)  

1 1( ( ) ( )) ( )m m m mL h H R


       − −− = ,                                                                 (44)        

1 1( ( ) ( )) ( )m m m mL h H R


       − −− = ,                                                     (45) 

at 0, = 1
(0) '(0),mf

Sc
= (0) (0) 0m mf f − = ,   (0) (0) 0,m m  − = '(0)+ '(0) 0,D  =  

as ,→ ( ) 0,mf  = ( ) 0,m  = ( ) 0.m  =                                (46) 

In above eqs. ,fh h  and h  are the auxiliary parameters which can be calculated by plotting the 

h-curves with higher order derivatives of ( ),f  ( )  and ( ).  The functions ,f

mR mR

and mR


are 

defined as 

1

1

0

( , )1
( ) ,

1!

m

ff

m m

q

N q
R

m q




−

−

=


=

− 

1

1

0

( , )1
( )

1!

m

m m

q

N q
R

m q

  
−

−
=


=

− 
and 

1

1

0

( , )1
( )

1!

m

m m

q

N q
R

m q

 


−

−

=


=

− 
.         (47) 
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Here ( , )fN q , ( , )N q   and ( , )N q  are non-linear operators which are obtained from eqns. 

(33)-(35) and q is an embedding parameter which lies between 0 and 1. The value of the function 

m is 0 for 1m  otherwise 1. 

4.1 Convergence of HAM 

Liao [38] emphasized the crucial role played by the auxiliary parameters in ensuring convergence 

of HAM series solutions. In present problem, we have sketched the h-curves with (0)f  , (0) 

and (0) for different order of approximations which are shown in Fig.2. This figure represents a 

horizontal line in the ranges [ 0.014  0.003]fh = − − , [ 0.015  0.0005]h = − −
 

and 

[ 0.018  0].h = −  Thus, we have selected 0.011,fh = −
 

0.0013,h = − 0.002h = − and checked the 

order of convergence upto twenty five order of approximations which is shown in Table-2. This 

table ensures that the convergence of solution series is achieved at twenty two order of 

approximations.  

 

5. RESULTS AND DISCUSSION 

To provide an insight into the momentum, thermal, nano-particle species and entropy generation 

characteristics for the current regime i.e. 2 3Al O -water nanofluid flow induced by stretching sheet, 

extensive computations have been performed with HAM in the symbolic software MAPLE. The 

values of the featured parameters are prescribed as follows (unless otherwise indicated): 0.1, =  

0.1, =  0.05C = , 10Sc = , Re 10,=  Pr 6.2,= 0.001,D = 0.01Ec = , 
930.1142 10 −=   and 

0.03= . Table-3 provides the comparison of HAM results with shooting (numerical quadrature) 
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and evidently very good correlation is attained. Confidence in the present HAM results is therefore 

high. The effect of several key parameters on velocity, temperature, concentration, skin friction, 

Nusselt number and entropy generation number are visualized graphically. 

Fig. 3 (a) represents the velocity profile for different values of velocity slip parameter  which 

indicates that velocity is depleted slightly with increasing  . A similar result is obtained from 

Fig. 3(b) which demonstrates a reduction in temperature with increasing thermal slip parameter. 

Therefore greater wall hydrodynamic slip increases momentum boundary layer thickness whereas 

increasing thermal slip reduces thermal boundary layer thickness. Fig. 3(c) reveals the impact of 

diffusion parameter D on the distribution of nano-particle concentration. Clearly there is a 

significant decrease in concentrations with a rise in the value of diffusion parameter again 

manifesting in a decrease in species boundary layer thickness. Fig.4 shows the influence of 

different metallic nanoparticles on velocity and temperature distributions. Both velocity and 

temperature are greater for 2 3Al O -water nanofluid as compared with 2TiO -water nanofluid. Better 

flow acceleration is therefore achieved with the former as compared to the latter. Furthermore 

2 3Al O -water nanofluid achieves greater thermal enhancement or heating efficiency as compare to 

2TiO -water nanofluid since thermal conductivity of alumina particles exceeds that of titania 

particles. 

The combined effects of nanoparticle concentration C  and diffusion parameter D on skin friction 

coefficient and Nusselt number are depicted in Fig.5. Surface (skin) friction is markedly reduced 

with an increment in either C  or D i.e. flow deceleration is induced. Thus a modification in the 

value of nanoparticles concentration effectively increases momentum boundary layer thickness 
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since momentum diffusion is impeded. Fig. 5(b) illustrates that Nusselt number is an increasing 

function of C  whereas it is a decreasing function of D. The implication is that a greater 

nanoparticle concentration enhances heat transfer rate to the wall and therefore depletes thermal 

energy from the boundary layer resulting in a decrease in thermal boundary layer thickness.  

The influence of several physical parameters on entropy generation number is presented in Fig. 6. 

A high value of local Reynolds number can increase the randomness in the system. Thus, entropy 

increases with an increase in the value of Reynolds number (greater inertial force relative to 

viscous hydrodynamic force) as depicted in Fig. 6(a). The influence of thermal slip parameter 

on Ns is depicted in Fig. 6 (b) which indicates that entropy generation number is suppressed with 

an increase the value of  . Fig. 6(c) shows that Ns increases with nanoparticle concentration C

. Hence, a large amount of nanoparticles can enhance the entropy generation in the system. Fig. 

6(d) illustrates the contribution of different sources of entropy generation (relative entropy 

generation function). Apparently entropy generation due to thermal diffusion (Bejan number, Nsrt) 

is a major source in the vicinity of the sheet surface (wall) whereas it is insignificant far away from 

the surface. The second source of entropy generation, Nsrv is due to viscous dissipation which 

approaches zero near the surface of the sheet whereas it is a dominant source at a large distance 

from the sheet. Furthermore entropy generation, Nsrd due to the diffusion of nanoparticles exerts a 

trivial impact at the sheet surface. 

Fig.7 depicts the combined influence of physical parameters ( ,  )C Ec .and ( ,  Re)D on entropy 

generation number Ns. Entropy generation increases with an increase in nanoparticle concentration 

C (in concurrence with Fig. 6(c)), Eckert number Ec and Reynolds number Re(again in agreement 

with Fig.6(a)) whereas it decreases with diffusion parameter D.  



21 

 

6. CONCLUSIONS 

An analytical study of 2 3Al O -water nanofluid flow induced by a stretching sheethas been 

presented. The modified two-component Buongiorno model has been deployed. At the surface of 

the sheet, both velocity slip and thermal slip conditions are imposed. Entropy generation analysis 

has also been conducted to provide a thermodynamic optimization aspect to the work. The 

homotopy analysis method has been implemented to solve the dimensionless, transformed system 

of ordinary differential boundary layer conservation equations which have been derived with the 

aid of Lie algebraic group methods. The influence of physical parameters velocity (hydrodynamic) 

slip, thermal slip, nano-particle concentration and species diffusivity ( , ,C , D) on velocity, 

temperature, skin friction coefficient, Nusselt number and entropy generation number has been 

computed and illustrated graphically. The computations have been validated with a shooting 

numerical quadrature method available in MATLAB. The important deductions from the present 

investigation can be summarized as follows: 

• Velocity of the nanofluid is observed to be a decreasing function of velocity slip parameter. 

• The temperature of nanofluid increases with doping of high thermal conductivity 

nanoparticles. 

• Temperature and entropy generation number are decreased as the value of thermal slip 

parameter is increased. 

• The diffusion parameter reduces the skin friction, Nusselt number and concentration of 

nanoparticles.  

• Entropy generation number and Nusselt number are increased with nanoparticle 

concentration C  whereas skin friction at the surface of the sheet is decreased. 
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• Greater local Reynolds number results in an elevation in entropy generation in the system. 

• Based on a relative entropy generation analysis, entropy generation is observed to be 

enhanced with nanoparticle concentration and Eckert number whereas it is depleted with 

diffusion parameter. 
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Table 1 Thermo-physical properties of water, 2 3Al O and 2TiO  particles[19] 

 k ( )1 1
Wm K

− −
 ( )3

kgm −
 ( )1 1

pC Jkg K
− −

 
BD ( )2 1

m s
−

 TD ( )2 1
m s

−
 

2 3Al O  
40 3970 765 114 10−  116 10−  

2TiO  
8.9538 4250 686.2 114 10−  116 10−  

Pure water 0.613 997.1 4179 _ _ 
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Table-2 Rate of Convergence of HAM Solution 

Order of approximation 

(terms) 

 '(0)f   (0)
 

(0)  

10 0.9824 0.9188 0.4930 

15 0.9841 0.9213 0.4937 

18 0.9846 0.9223 0.4940 

20 0.9849 0.9228 0.4942 

22 0.9851 0.9233 0.4944 

25 0.9853 0.9236 0.4945 

 

Table-3 Code validation of HAM results with shooting results 

   ''(0)f−    (0) −    (0)  

D Sc HAM       Shooting  HAM       Shooting  HAM          Shooting 

 10 0.1466        0.1455  0.7545         0.7525  0.4945            0.4978 

0.01 15 0.1498        0.1453       0.7513        0.7521   0.4950            0.4981    

 20 0.1494        0.1452  0.7507        0.7518    0.4954            0.4983  

0.003 10 0.1429        0.1498  0.7493        0.7494  0.4983            0.4993 

0.005  0.1443        0.1449        0.7519      0.7512  0.4971            0.4989 

 

 

FIGURES 
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Fig. 1: Coordinate system and flow model. 

 

 

 

 

Fig.1 Geometry of Problem. 

 

 

 

 

 

 

Fig. 2 h-curves of ''(0),f '(0) and '(0) for different order of approximations. 
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Fig. 3 Effect of  on velocity,  on temperature and D on concentration of nanoparticles. 
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Fig.4 Velocity and temperature profiles for 2 3Al O and 2TiO water nanofluid. 

 

 

 

 

 

 

 

Fig. 5 Combined effect of D and C  on skin friction coefficient and Nusselt number. 
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Fig.6 Effect of physical parameters Re ,  and C  on entropy generation number and relative 

entropy generation number. 
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Fig.7 Combined effect of ( ,  )Ec C  and (Re,  D) on entropy generation number. 

 

 


