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Two-dimensional, steady, laminar and incompressible natural convective flow of a nanofluid over
a connectively heated permeable upward facing radiating horizontal plate in porous medium
is studied numerically. The present model incorporates Brownian motion and thermophoresis
effects. The similarity transformations for the governing equations are developed by Lie group
analysis. The transformed equations are solved numerically by Runge-Kutta-Fehlberg fourth-fifth
order method with shooting technique. Effects of the governing parameters on the dimensionless
velocity, temperature and nanoparticle volume fraction as well as on the dimensionless rate of heat
and mass transfer are presented graphically and the results are compared with the published data
for special cases. Good agreement is found between numerical results of the present paper and
published results. It is found that Lewis number, Brownian motion and convective heat transfer
parameters increase the heat and mass transfer rates whilst thermophoresis decreases both heat
and mass transfer rates.

1. Introduction

Nanoparticles are made from various materials, such as oxide ceramics (Al2O3, CuO),
nitride ceramics (AlN, SiN), carbide ceramics (SiC, TiC), metals (Cu, Ag, Au), semi-
conductors, (TiO2, SiC), carbon nanotubes, and composite materials such as alloyed
nanoparticles Al70Cu30 or nanoparticle core-polymer shell composites. Nanofluids aim to
achieve the maximum possible thermal properties at the minimum possible concentrations
(preferably < 1% by volume) by uniform dispersion and stable suspension of nanoparticles
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(preferably < 10 nm) in host fluids [1]. Present heat transfer industries require high perfor-
mance heat transfer equipment. The idea of improving heat transfer performance of fluids
with the inclusion of solid particles was first introduced by Maxwell [2]. But, suspensions
involving milli or microsized particles create problems, such as fast sedimentation, clogging
of channels, high pressure drop, and severe erosion of system boundaries. To overcome these
difficulties Choi [3] used ultrafine nanoparticles with base fluid termed as nanofluid. Modern
material technologies facilitated the manufacturing of nanometer-sizes particles. Nanofluids
have superior thermophysical properties like high thermal conductivity, minimal clogging
in flow passages, long-term stability and homogeneity. Nanofluids have several industrial
applications such as in electronics, automotive, and nuclear applications where efficient heat
dissipation is necessary. According to Schaefer [4], nanobiotechnology is a fast growing field
of research and application in many domains such as in medicine, pharmacy, cosmetics, and
agroindustry. Advances in nanoelectronics, nanophotonics, and nanomagnetics have seen the
arrival of nanotechnology as a distinct discipline in its own right [5].

A good number of research papers have been published on nanofluids to understand
their performance so that they can be used to enhance the heat transfer in various industrial
applications. A review of convective transport in nanofluids was conducted by Buongiorno
[6]. Khan and Aziz [7] studied natural convection flow of nanofluid past a vertical plate with
uniform heat flux. The Cheng and Minkowycz [8] problem was investigated by Nield and
Kuznetsov [9] for nanofluid where the model incorporates the effect of Brownian motion
and thermophoresis. Kuznetsov and Nield [10] presented a similarity solution of natural
convective boundary-layer flow of a nanofluid past a vertical plate. An analytical study on
the onset of convection in a horizontal layer of a porous medium with the Brinkman model
and the Darcymodel filled with a nanofluid was presented by Kuznetsov and Nield [11, 12].
Godson et al. [13] presented the recent experimental and theoretical studies on convective
heat transfer in nanofluids, their thermophysical properties, and applications and clarifies
the challenges and opportunities for future research. Vajravelu et al. [14] studied convective
heat transfer in the flow of viscous Ag water and Cu water nanofluids over a stretching
surface. Noghrehabadi et al. [15] studied effect of partial slip boundary condition on the flow
and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature.
Very recently, Aziz and Khan [16] studied similarity analysis of natural convective flow of a
nanofluid over a convectively heated vertical plate.

According to previous researchers, for example, Aboeldahab and Azzam [17]
radiation must be considered in calculating thermal effects in many new engineering
processes occurring at high temperatures, such as the nuclear reactor cooling system, gas
turbines, the various propulsion devices for aircraft, missiles, satellites, and space vehicles
and various devices for space technology, underground nuclear wastes disposal, and so
forth. Due to diverse applications of radiation, many investigators investigate the effect
of radiation on the hydrodynamic or hydromagnetic or hydroelectric boundary layer flow
over different geometries under different boundary conditions. A few examples are the
papers by Cortell [18], Bataller [19], and Ishak et al. [20]. Gbadeyan et al. [21] present a
numerical analysis of boundary layer flow of a nanofluid due over a linearly stretching
sheet in the presence of thermal radiation. Very recently, Chamkha et al. [22] investigated
mixed convective boundary-layer flow over an isothermal radiating vertical wedge placed in
a porous medium filled with a nanofluid numerically using Keller box method.

Fluid flow and heat transfer in porous media have many engineering applications
such as postaccidental heat removal in nuclear reactors, solar collectors, drying processes,
storage of radioactive nuclear waste, heat exchangers, geothermal energy recovery and crude
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oil extraction, ground water pollution, thermal energy storage, building construction and

flow through filtering media, separation processes in chemical industries [23]. Reviews of the

fundamental theories and experiments of thermal convection in porous media with practical

applications are presented in the books by Nield and Bejan [24], Vadasz [25], Vafai [26].

The classical problem of free convective flow in a porous medium near a horizontal flat

plate was first investigated by Cheng and Chang [27]. After his pioneering works several

authors such as Chang and Cheng [28], Shiunlin and Gebhart [29], Merkin and Zhang

[30] and Chaudhary et al. [31] have extended the problem in various aspects. Gorla and

Chamkha [32] presented a boundary layer analysis for the free convection flow of nanofluid

over a horizontal upward facing plate in a porous medium numerically. Khan and Pop [23]

extended this problem for nanofluid. Above investigators considered isothermal or isoflux

thermal boundary conditions. However, the idea of using the thermal convective heating

boundary condition was introduced by Aziz [33] to analyze Blasius flow. Following him,

several authors, for example, Yao et al. [34], Uddin et al. [35], Magyari [36], and Yacob et al.

[37] among others, used this boundary condition to study convective phenomena.

Above investigators found similarity solutions via dimensional analysis which can

find only one particular type of similarity independent variable of the form η = cyxr , where

r is a numerical constant and c is a dimensional constant [38]. However, if one deals with the

governing partial differential equations by Lie group analysis, then one can obtain former

similarity transformation as well as some new forms [39, 40]. Sometime it is extremely

difficult to transform the PDEs to ODEs by using dimensional analysis. On the other hand,
reduction of PDEs with boundary conditions to ODEs is much easier by use of Lie group
analysis. The number of independent variables of PDEs can be reduced by one if the PDEs
remain invariant under Lie group of transformations and the new system contains one less
independent variable than the original one. This methodology can be applied (n − 1) times
to reduce a boundary value problem of PDEs having n number of independent variables
to a boundary value problem of ODEs. The solution of reduced equations is much easier
than the solutions of the original system of PDEs [41]. Hence, Lie group of transformations
may be considered as the generalization of dimensional analysis. It is successfully applied in
many areas such as in mathematical physics, applied and theoretical mechanics and applied
mathematics and in the transport phenomena [42, 43]. Avramenko et al. [44] presented that
the symmetrical properties of the turbulent boundary-layer flows and other turbulent flows
are studied utilizing the Lie group theory technique.

The aim of the present study is to investigate the effect of thermophoresis, the
Brownian motion, radiation and the thermal convective boundary condition on the boundary
layer flow of a nanofluid over an upward facing radiating permeable horizontal plate
numerically. A possible application of this problem is in the design of furnace where the
transfer of heat from surfaces occurs simultaneously by radiation and convection. Also, the
interaction of solar radiation with the earth’s surface fabricates complex free convection
patterns and hence complicates the studies associated with the weather forecasting and
marine environment for predicting free convection patterns in oceans and lakes. Using
similarity transformations developed by Lie group analysis, the governing partial differential
equations are reduced to a set of coupled nonlinear ordinary differential equations with

the corresponding boundary conditions. The effect of emerging flow controlling parameters

on the dimensionless axial velocity, the temperature, the nanoparticle volume fraction, the

rate of heat transfer, and the rate of nanoparticle volume fraction is investigated and shown

graphically and discussed.
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Figure 1: Coordinate system and flow model.

2. Formulation of the Problem

We consider a two-dimensional (x, y) laminar free convective boundary layer flow past a
permeable upward facing horizontal plate with radiation effects in a porous media filled
with a nanofluid (Figure 1). The temperature T and the nanoparticle volume fraction C take
constant values Tw and Cw at the boundary whilst T∞ and C∞ at free stream. Bottom of
the plate is heated by convection from a hot fluid at temperature Tf which gives a variable
heat transfer coefficient hf(x). It is assumed that Tf > Tw > T∞. The Oberbeck-Boussinesq
approximation is employed. The following four field equations represent the conservation of

mass, momentum, thermal energy, and nanoparticles, respectively. The field variables are �V :
Darcy velocity vector, T : the temperature, and C: the nanoparticle volume fraction [23]:

∇ · �V = 0, (2.1)

ρf

ε

∂ �V

∂t
= −∇P −

µ

K
�V +

[

CρP + (1 − C)
{

ρf
(

1 − β(T − T∞)
)}]

�g, (2.2)

(

ρCP

)

f

(

∂T

∂t
+ �V · ∇T

)

= km∇2T + ε
(

ρCP

)

P

[

DB∇C · ∇T +

(

DT

T∞

)

∇T · ∇T

]

+
16σ1T

3
∞

3κ1

∂2T

∂y2
,

(2.3)

∂C

∂t
+ �V · ∇C = DB∇2C +

(

DT

T∞

)

∇2T. (2.4)

We write �V = (u, v).
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Here ρf is the density of the base fluid, µ is the dynamic viscosity of the base fluid,
β is the volumetric expansion coefficient of nanofluid, ρp is the density of the nanoparticles,
(ρCP )f is the heat effective heat capacity of the fluid, (ρCP )P is the effective heat capacity
of the nanoparticle material, km is effective thermal conductivity of the porous medium, ε
is the porosity, K is permeability of the porous media, �g is the gravitational acceleration,
σ1 is the Sefan-Boltzman constant, and k1 is the Rosseland mean absorption coefficient.
Here DB stands for the Brownian diffusion coefficient and DT stands for the thermophoretic
diffusion coefficient. To ignore an advective term and a Forchheimer quadratic drag term in
the momentum equation, we assumed that the flow is slow.

Consider a steady state flow. In keeping with the Oberbeck-Boussinesq approximation
and an assumption that the nanoparticle concentration is dilute, and with a suitable choice
for the reference pressure, we can linearize the momentum equation and write (2.2) as

0 = −∇P −
µ

K
�V +

[(

ρP − ρf∞
)

(C − C∞) + (1 − C∞)ρf∞β(T − T∞)
]

�g. (2.5)

Making the standard boundary layer approximation based on an order of magnitude analysis
to neglect the small order terms, we have the governing equations

∂u

∂x
+
∂v

∂y
= 0, (2.6)

∂P

∂x
= −

µ

K
u, (2.7)

∂P

∂y
= −

µ

K
v +

[

(1 − C∞)ρf∞gβ(T − T∞) −
(

ρP − ρf∞
)

g(C − C∞)
]

, (2.8)

u
∂T

∂x
+ v

∂T

∂y
= αm

∂2T

∂y2
+ τ

[

DB
∂C

∂y

∂T

∂y
+

(

DT

T∞

)(

∂T

∂y

)2
]

+
16σ1T

3
∞

3
(

ρcp
)

f
κ1

∂2T

∂y2
, (2.9)

u
∂C

∂x
+ ν

∂C

∂y
= DB

∂2C

∂y2
+

(

DT

T∞

)

∂2T

∂y2
, (2.10)

where αm = km/(ρcP )f is the thermal diffusivity of the fluid and τ = ε(ρCP )p/(ρCP )f is a
parameter.

The boundary conditions are taken to be [35]

v = −vw(x), −k ∂T

∂y
= hf(x)

(

Tf − Tw
)

, C = Cw, at y = 0,

u −→ 0, T −→ T∞, C −→ C∞ as y −→ ∞.

(2.11)
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Here vw(x): mass transfer velocity. The following nondimensional variables are introduced
to make (2.6)–(2.11) dimensionless

x =
x

L
√
Ra

, y =
y

L
, u =

uL

αm

√
Ra

, v =
vL

αm
, θ =

T − T∞
ΔT

, φ =
C − C∞

ΔC
,

ΔT = Tf − T∞, ΔC = Cw − C∞,

(2.12)

where L is the plate characteristic length and Ra = gKβ(1 − C∞)ΔTL/(αmν) is the Rayleigh
number. A stream function ψ defined by

u =
∂ψ

∂y
, v = −

∂ψ

∂x
, (2.13)

is introduced into (2.6)–(2.11) to reduce number of dependent variables and equations. Note
that (2.6) is satisfied identically. We are then left with the following three dimensionless
equations:

∂2ψ

∂y2
+
∂θ

∂x
−Nr

∂φ

∂x
= 0,

∂ψ

∂y

∂θ

∂x
−
∂ψ

∂x

∂θ

∂y
− ∂2θ

∂y2
−Nb

∂θ

∂y

∂φ

∂y
−Nt

(

∂θ

∂y

)2

− R
∂2θ

∂y2
= 0,

Le

[

∂ψ

∂y

∂φ

∂x
−
∂ψ

∂x

∂φ

∂y

]

−
∂2φ

∂y2
− Nt

Nb

∂2θ

∂y2
= 0.

(2.14)

The boundary conditions in (2.11) become

∂ψ

∂x
= −Lvw(x)

αm
,

∂θ

∂y
= −

hfL

k
(1 − θ), φ = 1 at y = 0,

∂ψ

∂y
−→ 0, θ −→ 0, φ −→ 0 as y −→ ∞.

(2.15)

Five parameters in (2.14) areNt, Nb, Nr, R, and Le and they stand for the thermophoresis
parameter, the Brownian motion parameter, the buoyancy ratio parameter, radiation
parameter, and the Lewis number, respectively, which are defined by

Nt = τDTΔT/αmT∞, Nb = τDBΔC/αm, Le = αm/DB,

Nr =
(

ρP − ρf∞
)

ΔC/ρf∞ β(1 − C∞)ΔT, R =
16σ1T

3
∞

3
(

ρcp
)

f
k1αm

.
(2.16)
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3. Symmetries of the Problem

By applying Lie group method to (2.14), the infinitesimal generator for the problem can be
written as

X = ξ1
∂

∂x
+ ξ2

∂

∂y
+ τ1

∂

∂ψ
+ τ2

∂

∂θ
+ τ3

∂

∂φ
(3.1)

where the coordinates (x, y, ψ, θ, φ) transformed into the coordinates (x∗, y∗, ψ∗, θ∗, φ∗).
The infinitesimals ξ1, ξ2, τ1, τ2, and τ3 satisfies the following first order linear differential
equations

dx∗

dε
= ξ1

(

x∗, y∗, ψ∗, θ∗, φ∗),
dy∗

dε
= ξ2

(

x∗, y∗, ψ∗, θ∗, φ∗),

dψ∗

dε
= τ1

(

x∗, y∗, ψ∗, θ∗, φ∗),
dθ∗

dε
= τ2

(

x∗, y∗, ψ∗, θ∗, φ∗),

dθ∗

dε
= τ3

(

x∗, y∗, ψ∗, θ∗, φ∗).

(3.2)

Using commercial software Maple 13, it was found that the forms of the infinitesimals are

ξ1 = c1x + c2, ξ2 =
2

3
c1y + c3, τ1 =

1

3
c1ψ + c6, τ2 = c4θ, τ3 = c5φ, (3.3)

where ci (i = 1, 2, 3, 4, 5, 6) are arbitrary constants. Hence, the equations admit six
finite parameters Lie group transformations. It is apparent that the parameters c2, c3, and
c6 correspond to the translation in the variables x, y, and ψ, respectively. It is also observed
that the parameters c1, c4, and c5 correspond to the scaling in the variables x, y, ψ, θ, and φ,
respectively. The generators corresponding to the infinitesimal given by (3.3) are as follows:

X1 = x
∂

∂x
+
2

3
y

∂

∂y
+
1

3
ψ

∂

∂ψ
, X2 =

∂

∂x
, X3 = y

∂

∂y
, X4 = θ

∂

∂θ
, X5 =

∂

∂φ
.

(3.4)

We consider scaling transformations and hence set c2 = c3 = c6 = 0.
Thus the infinitesimals become

ξ1 = c1x2, ξ2 =
2

3
c1y, τ1 =

1

3
c1ψ, τ2 = c4θ, τ3 = c5φ. (3.5)

In terms of differentials, we have

dx

c1x
=

dy

(2/3)c1y
=

dψ

(1/3)c1ψ
=

dθ

c4θ
=

dφ

c5φ
. (3.6)

Here c1 /= 0.
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3.1. Similarity Transformations

From (3.6), dx/c1x = dy/(2/3)c1y, which on integration

y

x2/3
= constant = η

(

say
)

. (3.7a)

Similarly, dx/c1x = dψ/(1/3)c1ψ leads to

ψ

x1/3
= constant = f

(

η
)(

say
)

, that is, ψ = x1/3f
(

η
)

, (3.7b)

where f is arbitrary function of η.
Equations dx/c1x = dθ/c4θ and dx/c1x = dφ/c5φ lead to

θ = xc4/c1θ
(

η
)

, φ = xc5/c1φ
(

η
)

. (3.7c)

Thus from (3.7a)–(3.7c)we obtain the following similarity transformations:

η =
y

x2/3
, ψ = x1/3f

(

η
)

, θ = xc4/c1θ
(

η
)

, φ = xc5/c1φ
(

η
)

. (3.8)

Now, to make sure that θ → 0, φ → 0 as η → ∞, set c4 = c5 = 0.
Hence the similarity transformations are

η =
y

x2/3
, ψ = x1/3f

(

η
)

, θ = θ
(

η
)

, φ = φ
(

η
)

. (3.9)

Thus the velocity component u, v can be expressed as

u =
f ′

x1/3
, v = − 1

3x2/3

(

f − 2ηf ′), (3.10)

where primes indicate differentiation with respect to similarity independent variable η. It is
worth citing that the similarity transformations in (3.9) are consistent with the well-known
similarity transformations reported in the paper of Cheng and Chang [27] for λ = 0 in their
paper, which support the validity of our analysis.
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Table 1: Comparison of present results with Gorla and Chamkha [32] for different values of buoyancy and
nanofluid parameters.

Present results Gorla and Chamkha [32]

−θ′(0) −φ′(0) −θ′(0) −φ′(0)

Nr Nb = 0.3, Nt = 0.1, Le = 10, γ = 1000, fw = 0

0.1 0.32578 1.48242 3.26E − 01 1.484164

0.2 0.32385 1.46704 3.25E − 01 1.468161

0.3 0.32188 1.45125 3.22E − 01 1.452664

0.4 0.31985 1.43503 3.21E − 01 1.436392

0.5 0.31777 1.41833 3.19E − 01 1.419499

Nt Nb = 0.3, Nr = 0.5, Le = 10, γ = 1000, fw = 0

0.1 0.31777 1.41833 3.19E − 01 1.419499

0.2 0.30486 1.41491 3.05E − 01 1.416536

0.3 0.2927 1.41561 2.93E − 01 1.416866

0.4 0.28125 1.41991 2.82E − 01 1.421582

0.5 0.27046 1.42737 2.71E − 01 1.429226

Nb Nt = 0.1, Nr = 0.5, Le = 10, γ = 1000, fw = 0

0.1 0.3672 1.32611 3.68E − 01 1.327454

0.2 0.34271 1.39216 3.43E − 01 1.393615

0.3 0.31777 1.41833 3.19E − 01 1.419499

0.4 0.29399 1.43428 2.94E − 01 1.435464

0.5 0.27161 1.44598 2.72E − 01 1.44772
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Figure 2: Effect of (a) radiation parameter, (b) buoyancy ratio parameter on the dimensionless velocity for
different values of suction/injection parameter.



10 Journal of Applied Mathematics

0 3 6 9 12

0.1

1

Nb = 01

0.8

0.6

0.4

0.2

0

.1,Nt = 0.1

Le = 1,Nr = 0.1

f
′
(η

η

)

fw = −1, 0, 1

γ

(a)

0 3 6 9 12

Nb = 0

1

1.2

0.8

0.6

0.4

0.2

0

.1,Nt = 0.1

Nr = 0.1, = 1

f
′
(η

η

)

fw = −1, 0, 1

γ

1

5

Le

(b)

Figure 3: Effect of (a) Biot number, (b) Lewis number on the dimensionless velocity for different values of
suction/injection parameter.

3.2. Governing Similarity Equations

Substituting the transformations in (3.9) into the governing (2.14) leads to the following
nonlinear system of ordinary differential equations:

f ′′ − 2

3
η
(

θ′ −Nrφ′) = 0,

(1 + R)θ′′ +
1

3
fθ′ +Nbθ′φ′ +Ntθ′2 = 0,

φ′′ +
Le

3
fφ′ +

Nt

Nb
θ′′ = 0

(3.11)

subject to the boundary conditions

f(0) = fw, θ′(0) = −Bi [1 − θ(0)], φ (0) = 1, f ′(∞) = θ(∞) = φ(∞) = 0.
(3.12)

Here Nb = 0 means there is no thermal transport due to buoyancy effects created as a result
of nanoparticle concentration gradients and fw = Lvw/3αm, fw > 0 corresponds to suction
and fw < 0 corresponds to injection, Bi = Lhf/k is the Biot number. It is mentioned that, for
a true similarity solution, we must have

hf =
(

hf

)

0
x−2/3, vw = (vw)0x

−2/3, (3.13)

where (hf)0 and (vw)0 are constants.
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Figure 4: Effect of (a) radiation parameter, (b) Biot number on the dimensionless temperature for different
values of suction/injection parameter.

4. Comparisons with the Literature

It is worth citing that in case of impermeable nonradiating plate (fw = R = 0) and for
isothermal plate (Bi → ∞), the problem under consideration reduces to the problem which
has been recently investigated by Khan and Pop [23] and Gorla and Chamkha [32]. It is
also worth mentioning that in case of impermeable non-radiating plate (fw = R = 0) and
for constant wall temperature (Bi → ∞), in the absence of buoyancy force (Nr = 0),
thermophoresis (Nt = 0) and in the absence of Brownian motion (Nb = 0), the problem
under consideration reduces to the problem which was investigated by Cheng and Chang
[27] for λ = 0 in their paper. It is further noted that in case of non-radiating plate (R = 0),
the problem under consideration reduces to the problem which was recently investigated by
Uddin et al. [35].

5. Physical Quantities

The parameters of engineering interest are the local skin friction factor Cfx, the local Nusselt
number Nux, and the local Sherwood number Shx, respectively. Physically, Cfx indicates
wall shear stress, Nux indicates the rate of heat transfer whilst Shx indicates the rate of mass
transfer. These quantities can be calculated from following relations:

Cfx =
2µ

ρU2
r

(

∂u

∂y

)

y=0

, Nux =
−x

Tf − T∞

(

∂T

∂y

)

y=0

, Shx =
−x

Cw − C∞

(

∂C

∂y

)

y=0

. (5.1)
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Figure 5: Effect of (a) Brownian motion parameter, (b) thermophoresis parameter on the dimensionless
temperature for different values of suction/injection parameter.

By substituting from (2.12) and (3.9) into (5.1), it can be shown that physical quantities can
be put in the following dimensionless form:

Rax PrCfx = 2f ′′(0), Ra−1/3
x

Nux = −θ′(0), Ra−1/3
x

Shx = −φ′(0). (5.2)

Here Rax = gKβ(1 − C∞)ΔTx/(αmv) is the local Rayleigh number, Pr = v/αm is the
Prandt number for porous media, and Ur = (1 − C∞)gKβΔT/αm is reference velocity in
porous media. Note that the local skin friction factor, the local Nusselt number, and the
local Sherwood number are directly proportional to the numerical values of f ′′(0),−θ′(0) and
−φ′(0), respectively.

6. Results and Discussion

The set of coupled nonlinear similarity Equations (3.11) with boundary conditions in (3.12)
forms a two-point boundary value problem and has been solved numerically using an
efficient Runge-Kutta-Fehlberg fourth-fifth order numerical method under Maple 14. To
highlight the important features of the flow velocity, temperature, nanoparticle volume
fraction, the heat transfer rate, and the nanoparticle volume fraction transfer rate, the
obtained numerical results are displayed graphically. Numerical computations are done
for 0 ≤ R ≤ 5, −1 ≤ fw ≤ 1, 0.1 ≤ Nb ≤ 0.5, 0.1 ≤ Nt ≤ 0.5, 0 ≤ Nr ≤ 0.5,
0 ≤ Bi ≤ 5.0 and 1 ≤ Le ≤ 5. The results of the dimensionless heat transfer rates−θ′(0)
and the dimensionless nanoparticle volume fraction rate –φ′(0) are compared with the most
recent results reported by Gorla and Chamkha [32] for special case in Table 1 and found to
be in excellent agreement with each of values of Nr,Nb, and Nt. This supports the validity
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Figure 6: Effect of (a) radiation parameter, (b) Lewis number on the dimensionless nanoparticle volume
fraction for different values of suction/injection parameter.

of our other graphical results for dimensionless velocity, temperature, nanoparticle volume
fraction, heat transfer, and nanoparticle volume fraction transfer rates.

6.1. Velocity Profiles

Figures 2 and 3 exhibit the dimensionless axial velocity profiles for various values of the
emerging flow controlling parameters. Dimensionless velocity and corresponding velocity
boundary layer thickness are decreased with increasing values of the mass transfer velocity
both for radiating (R = 5) and nonradiating (R = 0) plate. In Figure 2(a), it is found that
dimensionless velocity increases with the increasing of the radiation parameter. It is apparent
from Figure 2(b) that the dimensionless velocity decreases with rising of the buoyancy ratio
parameter. The velocity is reduced with the suction; reverse phenomena are observed in case
of the injection, as expected. The dimensionless velocity is elevated with rising of the Biot
number and the Lewis number (Figure 3).

6.2. Temperature Profiles

Variation of the dimensionless temperature and corresponding thermal boundary layer thick-
ness with radiation parameter, suction/injection parameter, the Biot number, thermophoresis,
and Brownian motion parameters is shown in Figures 4 and 5, respectively.Temperature is
increased with the increasing of radiation and Boit number (Figure 4). Physically, higher Biot
number increases nanoparticle volume fraction as nanoparticle volume fraction distribution
is driven by temperature distribution. The fluid on the right surface of the plate is heated up
by the hot fluid on the left surface of the plate, making it lighter and flowing faster.
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Figure 7: Variation of local heat transfer rate with (a) Brownian motion, suction/injection, and radiation
parameters, (b) thermophoresis, buoyancy ratio, and Biot number.

Note that the temperature increases with the increasing of the Brownian motion and
thermophoresis parameters when the plate is permeable or not (Figure 5). From Figures 4 and
5, it is apparent that like regular fluid suction/injection parameter reduces the dimensionless
temperature as expected.

6.3. Nanoparticle Volume Fraction Profiles

Figure 6 illustrates the impact of the controlling parameters on the dimensionless nanopar-
ticle volume fraction inside the corresponding boundary layer. Dimensionless nanoparticle
volume fraction is reduced due the enhance of both the radiation and the Lewis number
when the plate is permeable or not (Figures 6(a) and 6(b)). Finally, from Figure 6, we found
that the suction/injection parameter reduces the dimensionless nanoparticle volume fraction
as in the case of regular fluid.

6.4. Heat Transfer Rate

The effect of various controlling parameters on the dimensionless heat transfer rate from a
permeable horizontal upward facing plate with the thermal convective boundary condition in
porous media is shown in Figure 7. From Figure 7(a), it is noticed that the dimensionless heat
transfer rate decreases with an increase in thermophoresis and radiation parameter whilst
it increases with the increasing of the suction velocity. It is further found from Figure 7(b)
that the dimensionless heat transfer rate decreases with an increase in thermophoresis and
buoyancy ratio parameter for permeable plate. We also noticed that heat transfer rate is
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Figure 8: Variation of local mass transfer rate with (a) Brownian motion, radiation, and suction/injection
parameters, (b) Lewis number, buoyancy ratio, and thermophoresis parameters.

a decreasing function of the radiation parameter (Figure 7(a))whilst it is increasing function
of the Boit number (Figure 7(b)).

6.5. Nanoparticle Volume Fraction Rate

Figure 8 shows the effect of the radiation, the suction, thermophoresis, buoyancy ratio,
and Lewis number parameters on the dimensionless nanoparticle volume fraction transfer
rate from a permeable horizontal upward facing radiating plate in porous media. From
Figure 8(a), we observed that the dimensionless nanoparticle volume fraction rate increases
with an increase in Brownian motion, suction, and the radiation parameter. It is also found
from Figure 8(b) that the dimensionless nanoparticle volume fraction rate decreases with an
increase in both the thermophoresis and buoyancy ratio parameter for a permeable plate.
It is further observed form Figure 8(b) that the Lewis number increases the dimensionless
nanoparticle volume fraction rate, as in regular fluid.

7. Conclusions

We studied numerically a 2-D steady laminar viscous incompressible boundary layer flow of
a nanofluid over an upward facing horizontal radiating permeable plate placed in the porous
media considering the thermal convective boundary condition. The governing boundary
layer equations are transformed into highly nonlinear coupled ordinary differential equations
using similarity transformations developed by Lie group analysis, before being solved
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numerically. Following conclusions are drawn:

(i) the dimensionless velocity, the temperature, and the concentration decrease in case
of the suction and increase in case of the injection; the phenomenon is reversed,

(ii) the Brownian motion, radiation, thermophoresis, and buoyancy ratio parameters
decrease the heat transfer rate whilst the suction parameter and the Biot number
enhance the heat transfer rate,

(iii) the radiation, Lewis number, Brownian motion, and the suction parameters cause
to enhance nanoparticle volume fraction rate whilst thermophoresis and buoyancy
ratio parameters lead to decreasing nanoparticle volume fraction rate.
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