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Abstract

A group classification of invariant difference models, i.e. difference equations and meshes, is presented.
In the continuous limit the results go over into Lie’s classification of second order ordinary differential
equations. The discrete model is a three point one and we show that it can be invariant under Lie groups
of dimension 0 ≤ n ≤ 6.

Résumé

Une classification de schémas aux différences finies est présentées, c.-à-d. une classification des équations
aux différences finies et des réseaux correspondants. Dans la limite continue les résultats cöıncident avec
la classification des équations différentielles ordinaires de second ordre due à S. Lie. Les modèles discrets
considérés sont des modèles à 3 points sur le réseau et nous montrons que leur groupe de symétrie est de
dimension n avec 0 ≤ n ≤ 6.





1 Introduction

Lie group theory started out as a theory of transformations of solutions of sets of differential equations [1, 2, 3, 4].
Over the years it has developed into a powerful tool for classifying differential equations and for solving them. These
aspects of Lie group theory have been described in many books and lecture notes [5, 6, 7, 8, 9, 10].

Applications of Lie group theory to difference equations are much more recent [11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. Essentially there are two different points of view
that have been adopted when studying continuous symmetries of equations involving discrete or discretely varying
independent variables.

One point of view is that a difference equation is a priori given on some fixed lattice and the task is to determine
a group of transformations, leaving the solution set invariant. Different approaches differ in their treatment of
independent variables, and in the assumed form of the global and infinitesimal transformations considered. In any
case, the distinction between point symmetries and generalized symmetries becomes blurred. In order to obtain
symmetries that go into dilations, rotations, or Lorentz transformations in the continuous limit, it is necessary to
significantly modify the Lie techniques used in the continuous case [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

An alternative point of view [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34] is to pose the question: How does one
discretize a differential equation while preserving all of its Lie point symmetries? Here one starts from a differential
equation and finds its Lie point symmetries, using well known techniques [5, 6, 7, 8, 9, 10]. Thus a symmetry group
G and its Lie algebra are a priori given. One then looks for a difference scheme, i.e. a difference equation and a mesh
that have the same symmetry group and the same symmetry algebra L. In particular the Lie algebra L is realized
by the same vector fields in the continuous and in the discrete case.

In this article we adopt the second point of view. We start out from Lie’s classification of second order ordinary
differential equations (ODEs) according to their point symmetries. Our aim is to provide a similar classification of
second order difference schemes.

Thus, Lie considered equations of the form

E(x, y, y′, y′′) = 0,
∂E

∂y′′
6= 0, (1.1)

where E is an arbitrary sufficiently smooth function. The Lie algebra L of the symmetry group G of eq. (1.1) is
realized by vector fields of the form

Xα = ξα(x, y)
∂

∂x
+ ηα(x, y)

∂

∂y
, α = 1, . . . , n. (1.2)

Lie showed [1,2] that the Lie algebra of eq. (1.1) can be of dimension n = dim L = 0, 1, 2, 3, or 8. Moreover, he
classified equations with point symmetries into equivalence classes under the action of the infinite dimensional group
Diff(2, C) of all local diffeomorphisms of a complex plane C2 (his analysis was over the field C of complex numbers).
For each equivalence class he chose a simple representative equation and gave the corresponding realization of L. He
showed that all equations with dim L ≥ 2 can be integrated in quadratures.

We shall provide a similar classification of discrete models of second order ODEs. We restrict ourselves to three
point stencil, as shown in Fig. 1.
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Figure 1: Elementary stencil for 3 point difference equation

Thus, we are considering a six-dimensional subspace (x, x−, x+, y, y−, y+) of the space of independent and depen-
dent variables. The discrete model under consideration can be presented in terms of a pair of difference equations{

F (x, x−, x+, y, y−, y+) = 0,
Ω(x, x−, x+, y, y−, y+) = 0,

(1.3)
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such that

det
∂(F,Ω)

∂(x+, y+)
6= 0, det

∂(F,Ω)
∂(x−, y−)

6= 0. (1.4)

The conditions on the model are
1. In the continuous limit h+ = x+ − x → 0 and h− = x − x− → 0 the first equation should go into a second

order ODE of the form (1.1). The second equation gives the lattice on which the first equation is considered. In the
continuous limit the second equation becomes an identity (0 = 0).

2. The difference system (1.3)–(1.4) is invariant under the same group as the ODE (1.1). That is, the difference
scheme (1.3)–(1.4) and the ODE (1.1) are annihilated by the appropriate prolongations (see below) of the same vector
fields (1.2).

Lie’s classification of ODEs was performed over the field of complex numbers C. He made use of his classification
of all finite-dimensional Lie algebras that can be realized in terms of vector fields of the form (1.2). Thus, he classified
all finite-dimensional subalgebras L ⊂ diff(2, C) [3].

Our classification of the difference models will be over R; that over C will be obtained as a byproduct. We shall
make use of a much more recent classification of finite dimensional subalgebras of diff(2, R) [37].

The article is organized as follows. In Section 2 we present the general theory and outline the classification
method. Difference models invariant under 1 and 2–dimensional groups are analyzed in Section 3. Section 4 is
devoted to groups of dimension 3. The dimensions 6 ≤ n ≤ 8 are discussed in Section 5. Section 6 is devoted to
the free particle equation ÿ = 0 and its discretization. Finally, the results are summed up in two tables and the
conclusions are presented in Section 7.

2 Construction of invariant difference schemes

As stated in the Introduction, we wish to construct all three-point difference schemes invariant under some transfor-
mation group. The Lie algebra of this group is realized by vector fields of the form (1.2), i.e. the Lie algebra, and
the group action is the same as for differential equations.

An essential tool for studying Lie symmetries is prolongation theory. For a second order ODE we must prolong
the action of a vector field (1.2) from the space (x, y) of independent and dependent variables to a four–dimensional
space (x, y, y′, y′′). The prolongation formula for vector fields is [5, 6, 7, 8, 9, 10]:

pr(2)Xα = ξα(x, y)
∂

∂x
+ ηα(x, y)

∂

∂y
+ η1

α(x, y, y′)
∂

∂y′
+ η2

α(x, y, y′, y′′)
∂

∂y′′
(2.1)

with
η1

α = Dx(ηα(x, y))− y′Dx(ξα(x, y)), η2
α = Dx(η1

α)− y′′Dx(ξα(x, y)), (2.2)

where Dx is the total differentiation operator.
In the discrete case we prolong the operators Xα to a six–dimensional space (x, x−, x+, y, y−, y+). The prolonga-

tion formula is

pr(2)Xα = Xα + ξα(x−, y−)
∂

∂x−
+ ξα(x+, y+)

∂

∂x+
+

+ηα(x−, y−)
∂

∂y−
+ ηα(x+, y+)

∂

∂y+
.

(2.3)

Let us assume that a Lie group G is given and that its Lie algebra is realized by vector fields of the form (1.2).
If we wish to construct a second order ODE that is invariant under G, we proceed as follows. We choose a basis of
L, namely {Xα, α = 1, . . . , n}, and impose the equations

pr(2)XαΦ(x, y, y′, y′′) = 0, α = 1, . . . , n, (2.4)

with pr(2)Xα as in eq. (2.1). Using the method of characteristics, we obtain a set of elementary invariants I1, . . . , Ik.
Their number is

k = dim M − (dim G− dim G0), (2.5)

where M is the manifold that G acts on and G0 is the stabilizer of a generic point on M . In our case we have
M ∼ {x, y, y′, y′′} and hence dim M = 4. An equivalent, but more practical formula for the number of invariants is

k = dim M − rankZ, k ≥ 0, , (2.6)
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where Z is the matrix

Z =

 ξ1 η1 η1
1 η2

1
...

ξn ηn η1
n η2

n

 . (2.7)

The rank of Z is calculated at a generic point of M . The invariant equation is written as

E(I1, . . . , Ik) = 0, (2.8)

where E must satisfy the condition from (1.1). Equation (2.8) obtained in this manner is “strongly invariant”, i.e.
pr(2)XαE = 0 is satisfied identically [38].

Further invariant equations are obtained if the rank of Z is less than maximum on some manifold described by
the equation E(x, y, y′, y′′) = 0, itself satisfying the condition

pr(2)XαE = 0,
E = 0

α = 1, . . . , n.
(2.9)

We then obtain a “weakly invariant” equation of the form (1.1), i.e. eq. (2.9) is satisfied on the solution set of the
equation E = 0.

The procedure for obtaining an invariant second order difference model for a given group G is quite analogous.
Instead of eq. (2.4) we write

pr(2)XαΦ(x, y, x−, y−, x+, y+) = 0, α = 1, . . . , n, (2.10)

with pr(2)Xα as in eq. (2.3). We use the method of characteristics to obtain the elementary invariants I1, . . . , Ik in
the space M ∼ {x, y, x−, y−, x+, y+}. The number of invariants k satisfies eq. (2.5) and (2.6). However, in this case
we have dim M = 6 and the matrix Z is

Z =

 ξ1 η1 ξ1,− η1,− ξ1,+ η1,+

...
ξn ηn ξn,− ηn,− ξn,+ ηn,+

 , (2.11)

where
ξj,± = ξj(x±, y±), ηj,± = ηj(x±, y±), 1 ≤ j ≤ n. (2.12)

The “strongly invariant” difference scheme is then given by the equations

F (I1, . . . , Ik) = 0, Ω(I1, . . . , Ik) = 0, (2.13)

satisfying condition (1.4).
“Weakly invariant” difference schemes are obtained by finding invariant manifolds in M , i.e. finding surfaces

S(x, y, x−, y−, x+, y+) = 0 on which the rank of Z is less than maximal. The system (2.13) represents both the
difference equation and a mesh. In general, for the same group G we expect to have more difference invariants, than
differential ones (since we have dim M = 6 in the first case and dim M = 4 in the second). We need two equations
for a difference scheme, just one for a differential equation. That still leaves us with one more degree of freedom in
the discrete case.

We shall run through subalgebras of diff(2, R) by dimension. For each representative subalgebra we shall construct
the most general difference scheme. We shall then specialize it by specific choices of the arbitrary functions involved,
so as to obtain a scheme that has the appropriate ODE as its continuous limit.

To do this it is often convenient to use different coordinates in the six–dimensional space of a three–point model.
For instance, we may use

x, h+ = x+ − x, h− = x− x−, yx =
y+ − y

h+
, yx̄ =

y − y−
h−

yxx̄ =
2

h+ + h−

(
y+ − y

h+
− y − y−

h−

)
.

(2.14)

We shall call yx and yx̄ discrete right and left derivatives respectively, and yxx̄ a discrete second derivative.
In the continuous limit we have

h+ → 0, h− → 0, yx → y′, yx̄ → y′, yxx̄ → y′′. (2.15)
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The most common way of discretizing independent variables is to introduce a regular (uniform) mesh, i.e. to put

h+ = h−. (2.16)

Using the prolongation formula (2.3) it is easy to determine the class of transformations which preserves the uniformity
of the mesh. The invariance condition of eq. (2.16) is

ξ(x+, y+)− 2ξ(x, y) + ξ(x−, y−) = 0.
h+ = h−

(2.17)

We shall see below that condition (2.17) is not satisfied for most transformations in the (x, y) plane. Hence, the use
of nonregular lattices is essential in the construction of invariant difference schemes.

Below we shall make use of two types of classifications of low–dimensional Lie algebras, The first is a classification
of abstract Lie algebras. Such classification exists for all Lie algebras of dim L ≤ 6 [39, 40, 41, 42], both over R
and over C. The second is a classification of finite dimensional subalgebras of diff(2, F) with F = R or F = C. This
classification is known for all (finite) values of dim L [3, 37]. It is easy to see that for dim L ≥ 2 the two classifications
do not coincide. Indeed, let us consider the lowest dimensions.

dim L = 1:
Any vector field of the form (1.2) can be rectified (in the neighborhood of a nonsingular point (x, y)). That is,

by a locally invertible change of variables we can transform

X → X =
∂

∂y
. (2.18)

In other words, every one–dimensional subalgebra of diff(2, F) is conjugate to X of eq. (2.18).
dim L = 2:
Two isomorphism classes of two–dimensional Lie algebras exist (over R and over C). They are represented by

L2,1 : [X1, X2] = X1 (2.19)

L1 ⊕ L1 : [X1, X2] = 0 (2.20)

Each of the isomorphism classes can be realized in two different ways as subalgebras of diff(2, F). The realizations
are represented by

D2,1 : X1 =
∂

∂x
, X2 =

∂

∂y
,

D2,2 : X1 =
∂

∂y
, X2 = x

∂

∂y
,

D2,3 : X1 =
∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y
,

D2,4 : X1 =
∂

∂y
, X2 = y

∂

∂y
.

(2.21)

The algebras D2,1 and D2,2 are Abelian, D2,3 and D2,4 isomorphic to L2,1 from (2.19). In the tangent space
{

∂
∂x , ∂

∂y

}
D2,2 and D2,4 generate a one–dimensional subspace, D2,1 and D2,3 the entire two–dimensional space. We say that
X1 and X2 are “linearly connected” for D2,2 and D2,4, i.e. they are linearly dependent at any fixed generic point of
F2. For D2,1 and D2,3 the vector fields X1 and X2 are “linearly nonconnected”.

dim L = 3:
Six classes of indecomposable three–dimensional Lie algebras exist over R, four over C. Two classes of decom-

posable three–dimensional Lie algebras exist in both cases. We shall use the following notations for the isomorphism
classes:

1. Nilpotent
L3,1 : [e2, e3] = e1, [e1, e2] = 0, [e1, e3] = 0 (2.22)

2. Solvable
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A solvable three–dimensional Lie algebra has a two–dimensional Abelian ideal. We choose X1 and X2 as basis
elements of the ideal. The commutation relations then are [e1, e3]

[e2, e3]

 = M

 e1

e2

 , [e1, e2] = 0, (2.23)

where M ∈ F2 can be chosen in its Jordan canonical form. Over R we have

L3,2 : M =
(

1 0
0 a

)
0 < |a| ≤ 1

L3,3 : M =
(

1 0
1 1

)

L3,4 : M =
(

a 1
−1 a

)
0 ≤ a

(2.24)

Over C the algebras L3,2 and L3,4 are isomorphic, so L3,4 is dropped.

3. Simple
L3,5 ∼ sl(2, F) : [e1, e2] = e1, [e2, e3] = e3, [e3, e1] = −2e2 (2.25)

L3,6 ∼ o(3) : [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2 (2.26)

Over C these two algebras are isomorphic, so L3,6 should be dropped. The decomposable three dimensional algebras
are represented by L2,1 ⊕ L1 and L1 ⊕ L1 ⊕ L1.

As subalgebras of diff(2, R) L3,1, L3,6, L2,1 ⊕ L1 and L1 ⊕ L1 ⊕ L1 can be realized in one way each, L3,5 in four
inequivalent ways, all others in two inequivalent ways. All these realizations will be presented below in Section 4.
For L3,2 it is convenient to treat the value a = 1 separately.

Let us now construct the invariant difference schemes, proceeding by dimension.

3 Equations invariant under one and two–dimensional groups

We start with the simplest case of a symmetry group, namely a one–dimensional one. Its Lie algebra is generated
by one vector field of the form (1.2). By an appropriate change of variables we take this vector field into its rectified
form. Thus we have

D1,1 : X1 =
∂

∂y
. (3.1)

The most general second order ODE invariant under the corresponding group is

y′′ = F (x, y′), (3.2)

where F is an arbitrary function. In order to write a difference scheme invariant under the same group we need the
difference invariants annihilated by the prolongation of X1 to the prolonged space (x, x−, x+, y, y−, y+). A basis for
the invariants is

{η+ = y+ − y, η− = y − y−, x, x−, x+},

but a more convenient basis is {
yxx̄,

yx + yx̄

2
, x, h−, h+

}
.

The general invariant model can be written as
yxx̄ = f

(
x,

yx + yx̄

2
, h−

)
;

h+ = h−g

(
x,

yx + yx̄

2
, h−

)
,

(3.3)

where f and g are arbitrary functions.
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The simplest invariant difference scheme that approximates the ODE (3.2) is obtained by restricting f to be
independent of h− and putting g ≡ 1. We have yxx̄ = F

(
x,

yx + yx̄

2

)
;

h− = h+.
(3.4)

We would like to stress that (3.4) is just a specified case of the difference model (3.3), involving two arbitrary
functions. In other words, invariant difference schemes have much more freedom than invariant differential equations

D2,1 The Abelian Lie algebra with nonconnected basis elements (see eq.(2.21)).
In the continuous case the invariant ODE is

y′′ = F (y′), (3.5)

where F is an arbitrary function. A convenient set of difference invariants is{
h+, h−,

yx + yx̄

2
, yxx̄

}
.

The most general invariant difference model can be written as
yxx̄ = f

(
yx + yx̄

2
, h−

)
;

h+ = h−g

(
yx + yx̄

2
, h−

)
.

(3.6)

The simplest scheme approximating eq. (3.5) is again obtained by restricting f and putting g = 1:
yxx̄ = F

(
yx + yx̄

2

)
;

h− = h+.

(3.7)

D2,2 The Abelian Lie algebra with connected basis elements (see eq.(2.21)).
The invariant differential equation is

y′′ = F (x). (3.8)

This equation can be transformed into the equation u′′ = 0 by the change of variables

u = y −W (x), where W ′′(x) = F (x), (3.9)

i.e. W (x) is any solution of equation (3.8).
A basis for the finite–difference invariants of the group corresponding to the Lie algebra D2,2 is

{yxx̄, x, h+, h−}

and the invariant model can be presented as  yxx̄ = f(x, h−);

h+ = h−g(x, h−).
(3.10)

Restricting f and setting g = 1 we obtain the discrete system representing eq. (3.8): yxx̄ = F (x);

h− = h+.
(3.11)

The discrete model (3.10) can be taken into standard form uxx̄ = 0;

h+ = h−g(x, h−)
(3.12)
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by putting
u = y −W (x, h−, h+), Wxx̄ = f(x, h−), (3.13)

i.e. W is any solution of the system (3.10) (just as in the continuous case).

D2,3 The non–Abelian Lie algebra with nonconnected elements (see eq.(2.21)) yields the invariant ODE

y′′ =
1
x

F (y′). (3.14)

A convenient basis for the finite–difference invariants of the group corresponding to D2,3 is{
xyxx̄,

yx + yx̄

2
,

h+

h−
,

h−
x

}
.

The general invariant difference scheme can be written as
yxx̄ =

1
x

f

(
yx + yx̄

2
,
h−
x

)
;

h+ = h−g

(
yx + yx̄

2
,
h−
x

)
.

(3.15)

Restricting f and setting g = 1, we obtain an invariant approximation of eq. (3.14), namely
yxx̄ =

1
x

F

(
yx + yx̄

2

)
;

h− = h+.

(3.16)

D2,4 The non–Abelian Lie algebra with linearly connected basis elements (see eq.(2.21)) leads to the invariant ODE

y′′ = F (x)y′. (3.17)

This equation can be taken to its standard form v′′ = 0 by a transformation of the independent variable t =
g(x), v(t) = y(x), where g(x) is any particular solution of eq. (3.17).

Finite–difference invariants for D2,4 are{
yxx̄

yx + yx̄
, x, h−, h+

}
.

The general invariant difference model can be written as
yxx̄ =

yx + yx̄

2
f(x, h−);

h+ = h−g(x, h−).

(3.18)

An invariant difference approximation of the ODE (3.17) is obtained by putting f(x, h−) = F (x), g(x, h−) = 1, i.e.
yxx̄ =

yx + yx̄

2
F (x);

h− = h+.

(3.19)

The discrete model (3.18) can be simplified by a transformation of the independent variable, just as in the
continuous case. Indeed, let φ(x) be a solution of eq. (3.18) and transform

(x, y) → (t = φ(x), u(t) = y(x)). (3.20)

We obtain the difference scheme (3.12)

The results on two–dimensional symmetry algebras can be summed up as a theorem.

Theorem 1. The two subalgebras D2,1 and D2,3 of diff(2, F) with linearly nonconnected basis elements provide
invariant difference schemes involving two arbitrary functions of two variables each, namely (3.6) and (3.15) respec-
tively. The subalgebras D2,2 and D2,4 with linearly connected elements lead to the difference schemes (3.10) and
(3.18), respectively. Both of them can be transformed into the scheme (3.12) if one solution of the original scheme is
known.
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3.0.1 Comments

1. We have obtained the discrete analog of a well known result for ODEs. Namely, any second order ODE invariant
under a two–dimensional Lie group with linearly connected generators can be transformed by a point transformation
into y′′ = 0 [1, 2].

2. The transformations (3.13) and (3.20) will be used below for equations with higher dimensional symmetry
algebras, containing D2,2 and D2,4 as subalgebras.

4 Equations invariant under three-dimensional Lie groups

As stated in Section 2, eight isomorphism classes of three–dimensional Lie algebras exist over R. Two of them, L3,2

and L3,4, depend on a continuous parameter called a in eq. (2.24). For our purpose it is sometimes convenient to
separate out some special values of this parameter for the algebra L3,2. All together we must consider 16 classes of
three dimensional subalgebras D3,j ⊂ diff(2, R), j = 1, . . . , 16.

For differential equations, seven of these algebras, we shall call them D3,1, . . . ,D3,7 lead to equations equivalent
to

y′′ = 0. (4.1)

This ODE is invariant under SL(3, F), so none of of the groups corresponding to D3,1, . . . ,D3,7 is a maximal symmetry
group of eq. (4.1), i.e. we have D3,j ⊂ sl(3, F), j = 1,. . . , 7.

Two of the subalgebras, we call them D3,15 and D3,16, do not allow any invariant second order ODE. The
remaining 7 algebras lead to specific invariant ODEs, not involving any arbitrary functions.

We shall run through all the algebras D3,j, j = 1,. . . , 16 and construct the invariant ODEs and the invariant
difference schemes whenever they exist. The difference schemes in general involve arbitrary functions. Whenever
possible, we specialize these functions so as to obtain invariant difference schemes, approximating the invariant ODEs.
This last step is of course not unique; different discrete schemes can approximate the same ODE.

We start from the six algebras that contain D2,2 or D2,4 as subalgebras. The invariant ODE will hence be
equivalent to eq. (4.1) and the invariant difference schemes can always be transformed to the form (3.12), though the
function g(x, h−) may differ from case to case.

D3,1 The nilpotent Lie algebra isomorphic to L3,1 can, up to equivalence, be realized in one way only:

X1 =
∂

∂x
; X2 =

∂

∂y
; X3 = x

∂

∂y
. (4.2)

Notice that X2 and X3 commute and are linearly connected. The invariant ODE y′′ = C is equivalent to eq. (4.1).
The difference invariants are

{yxx̄, h−, h+} .

The most general invariant difference scheme is  yxx̄ = f(h−);

h+ = h−g(h−).
(4.3)

The ODE y′′ = C is approximated if we set f = C, g = 1. The scheme (4.3) is equivalent to that of eq. (3.12),
however the function g is independent of x.

D3,2 The solvable Lie algebra L3,3 can be represented as

X1 =
∂

∂y
; X2 = x

∂

∂y
; X3 =

∂

∂x
+ y

∂

∂y
; (4.4)

with X1 and X2 linearly connected. The invariant ODE is

y′′ = C exp(x). (4.5)

A basis for the difference invariants is
{yxx̄ exp(−x), h−, h+.}
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The general invariant difference scheme is  yxx̄ = f(h−) exp(x);

h+ = h−g(h−);
(4.6)

and eq. (4.5) is approximated if we put f = C, g = 1. The scheme (4.6) can be transformed into (3.12) with g
independent of x.

D3,3 The decomposable algebra L2,1 ⊕ L1 can be represented by

X1 =
∂

∂x
; X2 =

∂

∂y
; X3 = y

∂

∂y
. (4.7)

The invariant ODE is
y′′ = Cy′. (4.8)

The simplest set of difference invariants is
{

h+, h−, y+−y
y−y−

}
, but an equivalent and more convenient set is{

yxx̄

yx
,

yx + yx̄

yx
, h−

}
.

We write the general invariant difference scheme as
yxx̄ =

yx + yx̄

2
f(h−);

h+ = h−g(h−).

(4.9)

The ODE (4.8) is approximated by putting f = C , g = 1.
The transformation (3.20) will take (4.9) into (3.12) with g independent of x.

D3,4 The Lie algebra L3,2 with a = 1 is realized by

X1 =
∂

∂y
; X2 = x

∂

∂y
; X3 = y

∂

∂y
. (4.10)

In this case all three operators are linearly connected. The only differential invariant is x, but y′′ = 0 is an invariant
manifold, so y′′ = 0 is a weakly invariant ODE.

The difference invariants are only {x−, x, x+}, but yxx̄ = 0 is again an invariant manifold. The general (weakly)
invariant difference scheme is  yxx̄ = 0;

h+ = h−g(x, h−).
(4.11)

The simplest approximation of the invariant ODE is obtained if we set g = 1 in eq. (4.11).

D3,5 The Lie algebra L3,2 with a 6= 1 can be realized as

X1 =
∂

∂y
; X2 = x

∂

∂y
; X3 = (1− a)x

∂

∂x
+ y

∂

∂y
; a 6= 1. (4.12)

The invariant ODE is
y′′ = Cx

2a−1
1−a , a 6= 1. (4.13)

A convenient set of invariants is {
yxx̄x

2a−1
a−1 ,

h−
x

,
h+

x

}
.

The general invariant difference scheme is 
yxx̄ = x

2a−1
1−a f

(
h−
x

)
;

h+ = h−g

(
h−
x

)
.

(4.14)
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Equation (4.13) is approximated by setting f = C, g = 1. The difference scheme can again be transformed into
(3.12) with g as in eq. (4.14).

D3,6 The algebra L3,4 can be represented as

X1 =
∂

∂y
; X2 = x

∂

∂y
; X3 = (1 + x2)

∂

∂x
+ (x + b)y

∂

∂y
; (4.15)

and corresponds to the invariant ODE

y′′ = C(1 + x2)−3/2 exp(b arctan(x)), (4.16)

which can be transformed into y′′ = 0.
The expressions {

h+

1 + xx+
,

h−
1 + xx−

, (yx − yx̄)
√

1 + x2 exp(−b arctan(x)),
}

form a complete set of difference invariants for the group corresponding to D3,6. The invariant difference scheme can
be written as 

yxx̄ =
exp(b arctan(x))√

1 + x2

(
h+

h− + h+

1
1 + xx+

+
h−

h− + h+

1
1 + xx−

)
f

(
h−

1 + xx−

)
;

h+ = h−
1 + xx+

1 + xx−
g

(
h−

1 + xx−

)
.

(4.17)

Putting f = g = 1 we obtain an invariant discrete approximation of the ODE (4.16).
When considered over C, the case D3,6 is equivalent to D3,5. Indeed, if we put

x = i
t− i

t + i
, y =

√
2u

1− it
, (4.18)

the vector fields (4.15) go into a linear combination of the fields (4.12) and eq. (4.16) goes into

utt =
√

2
4

exp
(

iπ
3− ib

4

)
Ct−

3+ib
2 , (4.19)

i.e. (4.13) with a = (−1 + ib)(1 + ib)−1. Similarly, the model (4.17) goes into (4.14).

D3,7 The Lie algebra L3,2 with a = 1 was already realized as D3,4. A different, inequivalent realization of L3,2 (a = 1)
is given by

X1 =
∂

∂x
; X2 =

∂

∂y
; X3 = x

∂

∂x
+ y

∂

∂y
. (4.20)

Notice that the Abelian ideal {X1, X2} is realized by linearly nonconnected vector fields. The only differential
invariant is y′, however y′′ = 0 is an invariant manifold. Hence the equation y′′ = 0 is weakly invariant.

A basis for the difference invariants is {
h−yxx̄,

yx + yx̄

2
,

h+

h−
.

}
We obtain a strongly invariant difference scheme, namely

h−yxx̄ = f

(
yx + yx̄

2

)
;

h+ = h−g

(
yx + yx̄

2

)
.

(4.21)

In general, this model does not have a continuous limit. That exists only for f = 0. The equation y′′ = 0 is
approximated by eq. (4.21) with f = 0, g = 1.

All different schemes obtained so far are equivalent to special cases of the model yxx̄ = 0;

g(x, h−, h+) = 0.
(4.22)
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The following algebras D3,8, . . . ,D3,14 are different in that they lead to equations that can not be reduced to the
form (4.22).

D3,8 The Lie algebra L3,3 was already realized as D3,2. A second realization, not equivalent to (4.4), is given by

X1 =
∂

∂x
; X2 =

∂

∂y
; X3 = x

∂

∂x
+ (x + y)

∂

∂y
. (4.23)

Notice that the elements of the ideal {X1, X2} are linearly nonconnected. The corresponding invariant ODE is

y′′ = exp(−y′). (4.24)

Its general solution is
y = −x + (x + B) ln(x + B) + A,

where A and B are integration constants.
A basis for the difference invariants is{

h+

h−
, h+ exp (−yx) , h− exp (−yx̄)

}
.

The general invariant difference scheme can be written as
2

h− + h+
(exp (yx)− exp (yx̄)) = f (h− exp (−yx̄));

h+ = h−g (h− exp (−yx̄));

(4.25)

An invariant approximation of the ODE (4.24) is obtained by setting f = g = 1. An equivalent alternative to the
scheme (4.25) is 

yxx̄ = exp
(
−yx + yx̄

2

)
f

(√
h−h+ exp

(
−yx + yx̄

2

))
;

h+ = h−g

(√
h−h+ exp

(
−yx + yx̄

2

))
.

(4.26)

An approximation of eq. (4.24) is again obtained by setting f = g = 1. The two above approximations are not
equivalent (they correspond to different choices of the arbitrary functions).

D3,9 The algebra L3,2 with a 6= 1 was realized as D3,5. A second realization is

X1 =
∂

∂x
; X2 =

∂

∂y
; X3 = x

∂

∂x
+ ky

∂

∂y
, k 6= 0, 1. (4.27)

In this case {X1, X2} are not linearly connected, hence D3,9 and D3,5 are not equivalent. The corresponding invariant
ODE is

y′′ = y′
k−2
k−1 . (4.28)

and its general solution is

y =
(

1
k − 1

)k−1 1
k

(x− x0)k + y0 (4.29)

A basis for finite–difference invariants is given by{
h+

h−
, yxh+

(1−k), yx̄h−
(1−k)

}
.

An invariant difference scheme is given by
2(k − 1)
h− + h+

(
(yx)

1
k−1 − (yx̄)

1
k−1

)
= f

(
yx̄h−

(1−k)
)
;

h+ = h−g
(
yx̄h−

(1−k)
)
.

(4.30)
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An approximation of eq. (4.28) is obtained if we put f = g = 1 (this can be verified by setting yx = yx̄ + ε and
expanding in terms of powers of ε). An alternative invariant difference model is

yxx̄ =
(

yx + yx̄

2

) k−2
k−1

f

(
yx + yx̄

2
h−

(1−k)

)
;

h+ = h−g

(
yx + yx̄

2
h−

(1−k)

)
.

(4.31)

The ODE (4.28) is approximated if we put f = g = 1.

D3,10 The Lie algebra L3,4, already realized as D3,6, can also be realized with the ideal {X1, X2} linearly unconnected.
We have

X1 =
∂

∂x
; X2 =

∂

∂y
; X3 = (kx + y)

∂

∂x
+ (ky − x)

∂

∂y
. (4.32)

Over C this algebra is equivalent to D3,9. The corresponding transformation of variables is

t =
x− iy√

2
, w = − i√

2
(x + iy). (4.33)

The invariant ODE is
y′′ = (1 + (y′)2)3/2 exp(k arctan(y′)). (4.34)

and its solution is

exp
(

2k arctan
(
−(x− x0) + k(y − y0)
k(x− x0) + (y − y0)

))
(1 + k2)

(
(x− x0)2 + (y − y0)2

)
= 1 (4.35)

A basis for the finite–difference invariants can be chosen in the form{
h+

√
1 + y2

x exp (k arctan yx), h−

√
1 + y2

x̄ exp (k arctan yx̄),
yx − yx̄

1 + yxyx̄

}
.

The general form of the invariant difference model is

yxx̄ = (1 + yxyx̄)
(

h+

h− + h+

√
1 + y2

x exp (k arctan yx)+

+
h−

h− + h+

√
1 + y2

x̄ exp (k arctan yx̄)
)

f

(
h−

√
1 + y2

x̄ exp (k arctan(yx̄))
)

;

h+

√
1 + y2

xexp (k arctan(yx)) = h−

√
1 + y2

x̄ exp (k arctan(yx̄) +

+g

(
h−

√
1 + y2

x̄ exp (k arctan(yx̄))
)

.

(4.36)

In order to approximate the ODE (4.34) we set f = 1, g = 0.

D3,11 This is the first of four inequivalent realizations of sl(2, F). We have

X1 =
∂

∂x
; X2 = 2x

∂

∂x
+ y

∂

∂y
; X3 = x2 ∂

∂x
+ xy

∂

∂y
. (4.37)

The invariant ODE is
y′′ = y−3, (4.38)

with the general solution

y2 = A(x− x0)2 +
1
A

, A 6= 0.

A convenient set of difference invariants is{
y(yx − yx̄),

1
y

(
h+

y+
+

h−
y−

)
,

1
y2

h+h−
h+ + h−

}
.
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The invariant difference scheme can be written as
yxx̄ =

1
y2

(
h+

h+ + h−

1
y+

+
h−

h+ + h−

1
y−

)
f

(
1
y2

h+h−
h+ + h−

)
;

1
y

(
h+

y+
+

h−
y−

)
= 4

1
y2

h+h−
h+ + h−

g

(
1
y2

h+h−
h+ + h−

)
.

(4.39)

We approximate the ODE (4.38) by setting f = g = 1.
We mention that this particular realization of sl(2, F) is not maximal in diff(2, F). Indeed, we have an embedding

sl(2, F) ⊂ gl(2, F) ⊂ sl(3, F) ⊂ diff(2, F) (4.40)

and the centralizer of D3,11 is Y = y ∂
∂y . Note also that the coefficients of ∂

∂x in Xi depend only on the variable x.
The realization is hence imprimitive.

D3,12 A second realization of sl(2, F) is

X1 =
∂

∂x
; X2 = x

∂

∂x
+ y

∂

∂y
; X3 = (x2 − y2)

∂

∂x
+ 2xy

∂

∂y
; (4.41)

The invariant ODE is
yy′′ = C(1 + (y′)2)3/2 − (1 + (y′)2), C = const. (4.42)

with the general solution
(Ax−B)2 + (Ay − C)2 = 1.

The difference invariants can be chosen in the form

I1 =
h2
− + (y − y−)2

yy−
, I2 =

h2
+ + (y+ − y)2

yy+
,

I3 =
2y(h+ + h− + h+y2

x + h−y2
x̄ + 2y(yx − yx̄))

4y2 − (h+(1 + y2
x) + 2yyx)(h−(1 + y2

x̄)− 2yyx̄)
.

We write the invariant difference scheme as
I3 =

1
2
(
√

I1 +
√

I2)f(I1);

I2 = I1g(I1).

(4.43)

A discrete approximation of the ODE (4.42) is obtained by setting f = C, g = 1 in eq. (4.43).
The subalgebras D3,11 and D3,12 are not equivalent, neither for F = C, nor for F = R. To see this, it is sufficient

to notice that there is no nonzero element of diff(2, F) that commutes with all elements Xi from (4.41), i.e. the
centralizer of D3,12 in diff(2, F) is zero, whereas that of D3,11 is Y = y ∂

∂y . Over R the algebra (4.41) is primitive.
However, over C we can put

u = x + iy, v = x− iy. (4.44)

The algebra (4.41) in terms of the coordinates u and v is transformed into the algebra D3,13, which we turn to now.
D3,13 A third realization of sl(2, F) is

X1 =
∂

∂x
+

∂

∂y
; X2 = x

∂

∂x
+ y

∂

∂y
; X3 = x2 ∂

∂x
+ y2 ∂

∂y
. (4.45)

Over R D3,13 is a new inequivalent imprimitive realization of sl(2, F). As mentioned above D3,13 and D3,12 are
equivalent over C. The realization is imprimitive.

The invariant ODE is
y′′ +

2
x− y

(y′ + y′
2) =

2C

x− y
y′

3/2
. (4.46)

Its general solution is

y =
1

A
(
B + 1

2C
)
−Ax

+
2B − C

2A
, A 6= 0.
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A special solution is
y = ax,

where the constant a is a solution of the following algebraic equation

a− Ca
√

a + a2 = 0.

A complete set of difference invariants is

I1 =
h2

+yx

(x− y+)(x+ − y)
, I2 =

h2
−yx̄

(x− y−)(x− − y)
, I3 =

x+ − y

x− y

h−
h− + h+

.

An invariant difference scheme can be written as
I1

(1− I3)2
− I2

(I3)2
= f(I3)

(
I1

(1− I3)2
+

I2

(I3)2

)3/2

;

I1 = I2g(I3).

(4.47)

It approximates eq. (4.46) if we put f = C, g = 1.
We mention that D3,13 is not maximal in diff(2, F). For F = R and F = C we have D3,13 ⊂ o(2, 2) ⊂ diff(2, R), or

D3,13 ⊂ o(4, C) ⊂ diff(2, C),
(4.48)

respectively. The algebras o(2, 2) and o(4, C) are both realized by the vector fields{
∂

∂x
, x

∂

∂x
, x2 ∂

∂x
,

∂

∂y
, y

∂

∂y
, y2 ∂

∂y

}
(4.49)

D3,14 There exists just one (up to equivalence) realization of o(3) as a subalgebra of diff(2, F). We choose it in the
form

X1 = (1 + x2)
∂

∂x
+ xy

∂

∂y
; X2 = xy

∂

∂x
+ (1 + y2)

∂

∂y
;

X3 = y
∂

∂x
− x

∂

∂y
.

(4.50)

The corresponding invariant ODE is

y′′ = C

(
1 + y′

2 + (y − xy′)2

1 + x2 + y2

)3/2

. (4.51)

The general solution of this equation can be presented in the from(
Bx−Ay + C

√
1 + x2 + y2

)2

= 1 + C2 −A2 −B2.

The discrete invariants can be chosen to be

I1 =
h2

+(1 + y2
x + (y − xyx)2)

(1 + x2 + y2)(1 + x2
+ + y2

+)
, I2 =

h2
−(1 + y2

x̄ + (y − xyx̄)2)
(1 + x2

− + y2
−)(1 + x2 + y2)

,

I3 =
h+h−(yx − yx̄)√

1 + x2
− + y2

−
√

1 + x2 + y2
√

1 + x2
+ + y2

+

The general form of the invariant difference model can be written as

h+h−(yx − yx̄)√
1 + x2

− + y2
−
√

1 + x2 + y2
√

1 + x2
+ + y2

+

= f

(
h2
−(1 + y2

x̄ + (y − xyx̄)2)
(1 + x2

− + y2
−)(1 + x2 + y2)

)
;

h2
+(1 + y2

x + (y − xyx)2)
(1 + x2 + y2)(1 + x2

+ + y2
+)

= g

(
h2
−(1 + y2

x̄ + (y − xyx̄)2)
(1 + x2

− + y2
−)(1 + x2 + y2)

)
.

(4.52)
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As an invariant discrete model that approximates the ODE (4.51) we can consider the discrete equation

h+h−(yx − yx̄)√
1 + x2

− + y2
−
√

1 + x2 + y2
√

1 + x2
+ + y2

+

=

= C

((
h2

+(1 + y2
x + (y − xyx)2)

(1 + x2 + y2)(1 + x2
+ + y2

+)

)3/2

+
(

h2
−(1 + y2

x̄ + (y − xyx̄)2)
(1 + x2

− + y2
−)(1 + x2 + y2)

)3/2
)

on the grid
h2

+(1 + y2
x + (y − xyx)2)

(1 + x2 + y2)(1 + x2
+ + y2

+)
=

h2
−(1 + y2

x̄ + (y − xyx̄)2)
(1 + x2

− + y2
−)(1 + x2 + y2)

= ε2

Over C the algebra D3,14 is equivalent to the sl(2, R) algebra D3,13. The transformation of variables that takes
one algebra into the other one is quite complicated and we shall not reproduce it here. The algebra D3,14 does not
have a nontrivial centralizer in diff(2, R).

D3,15 The fourth realization of sl(2, R) is represented by

X1 =
∂

∂y
; X2 = y

∂

∂y
; X3 = y2 ∂

∂y
; (4.53)

so that all three elements are linearly connected. The independent variable x is the only invariant in the continuous
case, i.e. in the space (x, y, y′, y′′). The only invariant manifold is y′ = 0, so it does not provide an invariant second
order ODE.

In the discrete case we have three invariants x, x−, x+. The variables y, y− and y+ are not involved and hence
we can not form an invariant difference scheme.

D3,16 The Abelian Lie algebra can be presented as

X1 =
∂

∂y
; X2 = x

∂

∂y
; X3 = φ(x)

∂

∂y
; φ′′(x) 6= 0. (4.54)

Again, all the elements of the Lie algebra D3,16 are linearly connected. There is neither a second order ODE, nor a
second order difference scheme, invariant under this group.

5 Equations invariant under higher dimensional Lie groups

The symmetry group of a second order ODE can be at most 8–dimensional. Moreover, it is 8–dimensional only if the
equation can be transformed into y′′ = 0 by a point transformation. The symmetry group is that case is SL(3, F).
Any second order ODE invariant under a Lie group of dimension 4, 5, or 6 is also invariant under SL(3, F). No such
ODE invariant under a Lie group of dimension 7 exists.

Now let us consider the case of invariant difference models.

5.1 Four–dimensional Lie algebras

Twelve isomorphism classes of indecomposable Lie algebras with dimL = 4 exist, as well as ten decomposable
ones [39]. Many of them can be ruled out immediately as symmetry algebras of three–point difference schemes. We
already know that no difference schemes invariant under the group corresponding to the algebras D3,15 and D3,16

exist. Hence we can rule out all algebras containing one of these as a subalgebra.
This rules out Abelian and nilpotent Lie algebras, solvable Lie algebras with three–dimensional Abelian ideals

and all decomposable Lie algebras of the type L3,j⊕L1, where L3,j is nilpotent, solvable, or sl(2, R) realized as D3,15.
We can also rule out the sl(2, F) algebras with no centralizer in diff(2, F) and the o(3) algebra D3,14 for the same
reason. Indeed, L1 must be in the centralizer of L3,j in diff(2, F).

This leaves us with the following eight Lie algebras to consider.

A. Solvable, indecomposable, with nilradical NR(L) ∼ 2L1. There is just one class of such algebras, isomorphic
to the similitude algebra of the Euclidean plane (two translations, a rotation and a uniform dilation. Over R the
algebra is indecomposable, over C decomposable according to the pattern 4 = 2 + 2. Since 2L1 can be realized in
two ways as a subalgebra of diff(2, R) we have two realizations of this algebra.
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D4,1 The algabra is represented as

X1 =
∂

∂x
; X2 =

∂

∂y
; X3 = x

∂

∂x
+ y

∂

∂y
; X4 = y

∂

∂x
− x

∂

∂y
. (5.1)

There are no differential invariants in the space (x, y, y′, y′′), but y′′ = 0 is an invariant manifold.
There are two independent difference invariants, namely

I1 =
yx − yx̄

1 + yxyx̄
, I2 =

h+

h−

(
1 + y2

x

1 + y2
x̄

)1/2

.

Hence we can write an invariant difference scheme as
yx − yx̄ = C1(1 + yxyx̄);

h+ = C2h−

√
1 + y2

x̄

1 + y2
x

;
(5.2)

where C1 and C2 are arbitrary constants. However, a continuous limit exists only if we have C1 = 0. The limit is
then y′′ = 0.

D4,2 The group with infinitesimal operators

X1 =
∂

∂y
; X2 = x

∂

∂y
; X3 = y

∂

∂y
; X4 = (1 + x2)

∂

∂x
+ xy

∂

∂y
; (5.3)

has no invariants in the space (x, y, y′, y′′). There is however an invariant manifold y′′ = 0.
Finite–difference invariants are

I1 =
h+

1 + xx+
, I2 =

h−
1 + xx−

and yxx̄ = 0 is an invariant manifold. We thus have an invariant difference model
yxx̄ = 0;

h+ = h−
1 + xx+

1 + xx−
g

(
h−

1 + xx−

)
.

(5.4)

For g = 1 it approximates the ODE y′′ = 0.

B. Solvable, indecomposable with NR(L) ∼ A3,1. The nilradical will be {X1, X2, X3} (the Heisenberg algebra).
The additional nonnilpotent element is X4. Depending on the form of X4, we obtain three mutually nonisomorphic
Lie algebras.

D4,3 The group with infinitesimal operators

X1 =
∂

∂x
; X2 =

∂

∂y
; X3 = x

∂

∂y
; X4 = x

∂

∂x
+ ay

∂

∂y
(5.5)

has a differential invariant, namely y′′, only if a = 2 in X4. For a 6= 2 there is an invariant manifold, y′′ = 0.
The expressions

I1 =
h+

h−
, I2 = yxx̄h2−a

+

form the entire set of difference invariants of the corresponding group. The general form of the invariant model is yxx̄ = C1h
a−2
+ ;

h+ = C2h−.
(5.6)

For a > 2 the continuous limit is y′′ = 0. For α < 2 a continuous limit exists only if we choose C1 = 0.

D4,4 The group with infinitesimal generators

X1 =
∂

∂x
; X2 =

∂

∂y
; X3 = x

∂

∂y
; X4 = x

∂

∂x
+ (2y + x2)

∂

∂y
(5.7)
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has neither invariants, nor invariant manifolds in the continuous case.
The expressions

I1 =
h+

h−
, I2 = yxx̄ − ln(h−h+)

form the entire set of difference invariants in this case. We can hence write an invariant difference scheme yxx̄ = ln(h−h+) + C1;

h+ = C2h−;
(5.8)

but it does not have a continuous limit.

D4,5 The group with infinitesimal generators

X1 =
∂

∂x
; X2 =

∂

∂y
; X3 = x

∂

∂y
; X4 = y

∂

∂y
; (5.9)

has no invariants in the space (x, y, y′, y′′), but there is the invariant manifold y′′ = 0.
The step lengths h+ and h− form a basis of difference invariants and yxx̄ = 0 is an invariant manifold.
The general form of the invariant difference model is yxx̄ = 0;

h+ = h−g(h−).
(5.10)

C. The decomposable Lie algebra A2 ⊕A2 can be realized in two inequivalent manners.

D4,6 The Lie algebra is

X1 =
∂

∂x
; X2 =

∂

∂y
; X3 = x

∂

∂x
; X4 = y

∂

∂y
; (5.11)

and exist both over C and R. Over C D4,1 and D4,6 are equivalent.
There are no differential invariants, but y′′ = 0 is an invariant manifold. Difference invariants are

I1 =
h+

h−
, I2 =

yx

yx̄
.

The general form of the invariant difference scheme can be written as
yxx̄ = C1

yx̄

h−
;

h+ = C2h−.;

(5.12)

however a continuous limit exists only for C1 = 0.

D4,7 The second realization of A2 ⊕A2 is

X1 =
∂

∂y
; X2 = x

∂

∂y
; X3 = x

∂

∂x
; X4 = y

∂

∂y
(5.13)

Over R this is new, over C D4,2 and D4,7 are equivalent. There are no differential invariants in the space (x, y, y′, y′′),
but y′′ = 0 is an invariant manifold.

The ratios h+
x and h−

x are difference invariants and yxx̄ = 0 is an invariant manifold. The general invariant
difference scheme is 

yxx̄ = 0;

h+ = h−g

(
h−
x

)
.

(5.14)

D. The decomposable Lie algebra sl(2, F)⊕ A1 can be realized in a single manner allowing invariant differential
or difference equations.
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D4,8 The group with infinitesimal generators

X1 =
∂

∂x
; X2 = x

∂

∂x
; X3 = y

∂

∂y
; X4 = x2 ∂

∂x
+ xy

∂

∂y
(5.15)

has no differential invariants, but does leave the manifold y′′ = 0 invariant.
The expressions

I1 = h+h−
yxx̄

y
, I2 =

y−h+

y+h−

generate the entire set of difference invariants. The general form of an invariant difference model is
yxx̄ =

C1

h+h−
y;

h+y− = C2h−y+.

(5.16)

A continuous limit exists only for C1 = 0.

5.2 Five–dimensional Lie algebras

The number of isomorphism classes of five–dimensional Lie algebras is quite large. We can immediately exclude
all those that are not subalebras of diff(2, F), that contain a three–dimensional Abelian subalgebra, or the sl(2, F)
algebra D3,15 of eq. (4.53).

Finally, only two five–dimensional Lie algebras provide invariant difference schemes.

D5,1 A solvable Lie algebra with the Heisenberg algebra A3,1 as its nilradical.

X1 =
∂

∂x
; X2 =

∂

∂y
; X3 = x

∂

∂x
; X4 = x

∂

∂y
; X5 = y

∂

∂y
. (5.17)

The corresponding group has no differential invariants, but y′′ = 0 is an invariant manifold.
The group has one difference invariant, namely ξ = h+

h−
, and one invariant manifold, namely

η = (x− x−)(y+ − y)− (x+ − x)(y − y−). (5.18)

The most general invariant difference scheme can hence be written as yxx̄ = 0;

h+ = Ch−;
(5.19)

where C is an arbitrary constant.

D5,2 The special affine Lie algebra saff(2, F)

X1 =
∂

∂x
; X2 =

∂

∂y
; X3 = y

∂

∂x
; X4 = x

∂

∂y
; X5 = x

∂

∂x
− y

∂

∂y
. (5.20)

There is no differential invariant, but y′′ = 0 is an invariant manifold.
There are no difference invariants either, but η = 0 of eq. (5.18) is an invariant manifold. Eq. (5.19) again provide

a (weakly) invariant difference scheme. Note that the relation ξ = x+ − x − C(x − x−) = 0 is invariant on the
manifold η = 0 (It is strongly invariant under the group generated by {X1, X2, X5}.

5.3 A six-dimensional symmetry algebra

D6,1 The general affine Lie algebra gaff(2, F)

X1 =
∂

∂x
; X2 =

∂

∂y
; X3 = x

∂

∂x
;

X4 = y
∂

∂x
; X5 = x

∂

∂y
; X6 = y

∂

∂y
.

(5.21)
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This algebra contain D5,1 and D5,2 as subalgebras. Again, y′′ = 0 is an invariant manifold in the continuous case
and eq. (5.19), with C arbitrary, provides a weakly invariant difference scheme.

The ODE y′′ = 0 is invariant under a larger group, namely SL(3, F) of dimension 8. There are no three–point
difference schemes invariant under Lie groups of dimension d ≥ 7. We shall compare the continuous and discrete
situations in the following section.

The obtained classification of invariant difference schemes is summed up in Table 1.

6 The free particle equation and its discretization

The free particle equation

y′′ = 0. (6.1)

is invariant (weakly) under the group SL(3, F). The most general second order ODE invariant under SL(3, F) is
known [43, 44, 45, 46, 47] and is quite complicated. It can be transformed into eq. (6.1) by a point transformation.
Every linear second order ODE is invariant under SL(3, F).

A three–point discretization of the free particle equation (6.1) should have the form

yxx̄ = 0;

Ω(x, x−, x+, yx̄, yx) = 0;
(6.2)

where Ω = 0 determines the mesh.

In the continuous case the second prolongations of the 8 basis elements of sl(3, F) are

pr(2)X1 =
∂

∂x
;

pr(2)X2 =
∂

∂y
;

pr(2)X3 = x
∂

∂y
+

∂

∂y′
;

pr(2)X4 = x
∂

∂x
+ 2y

∂

∂y
+ y′

∂

∂y′
;

pr(2)X5 = y
∂

∂y
+ y′

∂

∂y′
+ y′′

∂

∂y′′
;

pr(2)X6 = y
∂

∂x
− (y′)2

∂

∂y′
− 3y′y′′

∂

∂y′′
;

pr(2)X7 = x

(
x

∂

∂x
+ y

∂

∂y

)
+ (y − xy′)

∂

∂y′
− 3xy′′

∂

∂y′′
;

pr(2)X8 = y

(
x

∂

∂x
+ y

∂

∂y

)
+ y′(y − xy′)

∂

∂y′
− 3xy′y′′

∂

∂y′′
.

(6.3)

Thus I = y′′ is an invariant of the group generated by the subalgebra {X1, X2, X3, X4} and y′′ = 0 is an invariant
manifold for the entire group (i.e. the coefficients of ∂

∂y′′ vanish for X1, . . . ., X4 and are proportional to y′′ for
X5, . . . ., X8).
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This realization of sl(3, F) as a subalgebra of diff(2, F) will be called D8,1. In the discrete case we have

pr(2)X1 =
∂

∂x
+

∂

∂x+
+

∂

∂x−

pr(2)X2 =
∂

∂y
+

∂

∂y+
+

∂

∂y−

pr(2)X3 = x
∂

∂y
+x+

∂

∂y+
+x−

∂

∂y−

pr(2)X4 = x
∂

∂x
+x+

∂

∂x+
+x−

∂

∂x−
+2y

∂

∂y
+2y+

∂

∂y+
+2y−

∂

∂y−

pr(2)X5 = y
∂

∂y
+y+

∂

∂y+
+y−

∂

∂y−

pr(2)X6 = y
∂

∂x
+y+

∂

∂x+
+y−

∂

∂x−

pr(2)X7 = x2 ∂

∂x
+x2

+

∂

∂x+
+x2

−
∂

∂x−
+xy

∂

∂y
+x+y+

∂

∂y+
+x−y−

∂

∂y−

pr(2)X8 = xy
∂

∂x
+x+y+

∂

∂x+
+x−y−

∂

∂x−
+y2 ∂

∂y
+y2

+

∂

∂y+
+y2

−
∂

∂y−

(6.4)

The subalgebra {X1, X2, X3, X4} has two difference invariants, namely

I1 = yxx̄, I2 =
h+

h−
. (6.5)

Moreover, the matrix of the coefficients of the derivatives in eq. (6.4) has rank 3, rather than rank 4, on the surface

yxx̄ = 0, i.e. (x− x−)(y+ − y)− (x+ − x)(y − y−) = 0. (6.6)

Thus yxx̄ = 0 is an invariant manifold, but it is the only one, and we need an independent equation to determine the
mesh.

We have
pr(2)XiI2 = 0,

I1 = 0
α = 1, . . . , 6.

(6.7)

However, we have
pr(2)X7I2 = I2(h+ + h−) 6= 0;

I1 = 0

pr(2)X8I2 = I2(η+ + η−) 6= 0;
I1 = 0

(6.8)

so I2 is not invariant on the surface I1 = 0.
We are not allowed to set I2 = 0 since h+ and h− by assumption satisfy h+ > 0, h− > 0.
Finally, we find that the difference scheme (5.19) is (weakly) invariant under the general affine group generated

by D6,1, but not under the larger group SL(3, F).
The difference scheme (6.2) is invariant under subgroups of D6,1 for more general meshes than those satisfying

h+ = Ch−. These are obtained from the results of Sections 3, 4 and 5. The invariant mesh equations and maximal
invariance algebras are given in Table 2.

Finally, while there is no difference scheme invariant under SL(3, F), there are schemes of the type (5.19), invariant
under subgroups of SL(3, F), not contained in D6,1. The corresponding algebras are D3,11, D3,14, D4,2 and D4,8.

7 Conclusions

Let us first of all compare Lie’s classification of second order ordinary differential equations with the obtained
classification of three point difference schemes.

20



1. For every ODE invariant under a Lie group G of dimension n, 1 ≤ n ≤ 3, there exist a family of different
schemes invariant under the same group G. In particular, for n = 3, the invariant ODE is specified up to at most a
constant. The invariant difference scheme in general involves two arbitrary functions.

2. All ODEs invariant under a Lie group G of dimension n = 4, 5, or 6 are also invariant under SL(3, F) and we
have G ⊂ SL(3, F). Moreover, the ODE can be transformed into y′′ = 0. Three point difference schemes invariant
under groups of dimensions 4, 5, and 6 exist. If a continuous limit exists, it is y′′ = 0. However, other invariant
schemes exist that do not have continuous limits. (see D4,1, D4,4, D4,6, D4,8).

3. The “discrete free particle equation” yxx̄ = 0 has a different symmetry behavior from its continuous limit. First
of all, it is invariant at most under a six–dimensional Lie group, namely the group of all linear transformations of
the space R2, or C2, i.e. {x, y}. This invariance occurs on the mesh h+ = Ch−, where C > 0 is a constant. We have
shown in Section 6 that the equation yxx̄ = 0 is invariant under groups of dimension 1 ≤ n ≤ 4 for more general
meshes (see Table 2).

Our main results are summed up in two tables. Table 1 presents all invariant three point difference schemes. In
Column 1 we identify the Lie algebra of the invariance group, using the notations of Sections 2–5. The difference
equations and meshes are given in Columns 2 and 3 for each algebra. The invariant ODE is given in Column 4. The
ODEs involve arbitrary functions for 1 ≤ dim L ≤ 2. For dim L ≥ 3 they are either completely specified or involve
arbitrary constants. The difference schemes in general involve two functions. In the limit h+ → 0, h− → 0 they can
be specified to obtain the correct continuous limit. The difference schemes are linear whenever the ODEs are, and
vice versa.

In Table 2 we sum up the results on the free particle equation yxx̄ = 0. For each Lie algebra in Column 2 the
invariant mesh is in Column 3. We list those algebras that are maximal for the given mesh.

Work is in progress on constructing invariant Lagrangians, first integrals and solutions of the obtained difference
schemes.
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