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�e optimal homotopy analysis method (OHAM) is employed to investigate the steady laminar incompressible free convective
�ow of a nano�uid past a chemically reacting upward facing horizontal plate in a porous medium taking into account heat
generation/absorption and the thermal slip boundary condition. Using similarity transformations developed by Lie group analysis,
the continuity, momentum, energy, and nanoparticle volume fraction equations are transformed into a set of coupled similarity
equations. �e OHAM solutions are obtained and veri	ed by numerical results using a Runge-Kutta-Fehlberg fourth-	
h order
method. �e e�ect of the emerging �ow controlling parameters on the dimensionless velocity, temperature, and nanoparticle
volume fraction have been presented graphically and discussed. Good agreement is found between analytical and numerical
results of the present paper with published results. �is close agreement supports our analysis and the accuracy of the numerical
computations. �is paper also includes a representative set of numerical results for reduced Nusselt and Sherwood numbers in a
table for various values of the parameters. It is concluded that the reduced Nusselt number increases with the Lewis number and
reaction parameter whist it decreases with the order of the chemical reaction, thermal slip, and generation parameters.

1. Introduction

Research in micro- and nano�uids has become a popular
area of research in engineering. At micro- and nanoscale,
conventional ideas of classical �uid mechanics do not apply,
and traditional approaches to �uidmechanics problems need
to be changed to correctly re�ect the importance of the
interaction between a �uid and a solid boundary. Conven-
tional heat transfer �uids like oil, water, and ethylene glycol
mixtures are poor heat transfer �uids because of their poor
thermal conductivity. Many attempts have been made by
various investigators during the recent years to enhance
the thermal conductivity of these �uids by suspending
nano/microparticles in liquids [1, 2]. Researchers have
observed that the thermal conductivity of a nano�uid is

much higher than that of the base �uid even for low solid
volume fraction of nanoparticles in the mixture [3–5]. �e
e�ect of temperature on thermal conductivity in a model has
been considered by Kumar et al. [6]. Patel et al. [7] have
improved the model given in [6] by incorporating the e�ect
of microconvection due to particle movement.

Nano- and micro�uidics is a new area with signi	cant
potential for novel engineering applications, especially for the
development of new biomedical devices and procedures [8].
Napoli et al. [9] reviewed applications of nano�uidic phe-
nomena to various nanofabricated devices, in particular ones
designed for biomolecule transport and manipulation. �ere
has been signi	cant interest in nano�uids.�is interest is due
to its diverse applications, ranging from laser-assisted drug
delivery to electronic chip cooling. Nano�uids are made of
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ultra	ne nanoparticles (<100 nm) suspended in a base �uid,
which can be water or an organic solvent. Nano�uids possess
superior thermophysical properties like high thermal con-
ductivity, minimal clogging in �ow passages, long term sta-
bility and homogeneity. Industrial applications of nano�uid
include electronics, automotive and nuclear applications.
Nanobiotechnology is also a fast developing 	eld of research
with application in many domains such as medicine, phar-
macy, cosmetics, and agroindustry. Many of these industrial
processes involve nano�uid �ow and nanoparticle volume
fraction past various geometries. In these applications, the
di�using species can be generated/absorbed due to chemical
reaction with the ambient �uid. �is can greatly a�ect the
�ow and hence the properties and quality of the 	nal product
[10, 11].

Di�erent industrial applications of internal heat gen-
eration include polymer production and the manufacture
of ceramics or glassware, phase change processes, thermal
combustion processes, and the development of a metal waste
from spent nuclear fuel [12]. A review of convective transport
in nano�uids was conducted by Buongiorno [13]. Kuznetsov
and Nield [14] presented a similarity solution of natural
convective boundary-layer �ow of a nano�uid past a vertical
plate. �ey have shown that the reduced Nusselt number is
a decreasing function of the buoyancy-ratio number ��, a
Brownianmotion number��, and a thermophoresis number��. Godson et al. [15] presented the recent experimental and
theoretical studies on convective heat transfer in nano�uids
and their thermophysical properties and applications and
clari	ed the challenges and opportunities for future research.

Convective �ow in porous media has received the atten-
tion of researchers over the last several decades due to its
many applications in mechanical, chemical, and civil engi-
neering. Examples include 	brous insulation, food processing
and storage, thermal insulation of buildings, geophysical sys-
tems, electrochemistry, metallurgy, the design of pebble bed
nuclear reactors, underground disposal of nuclear or nonnu-
clear waste, and cooling system of electronic devices. Excel-
lent reviews of the fundamental theoretical and experimental
works can be found in the books by Nield and Bejan [16],
Vadasz [17], Vafai [18]. �e Cheng-Minkowycz problem [19]
was investigated by Nield and Kuznetsov [20] for nano�uid
where the model involves the e�ect of Brownian motion
and thermophoresis. �e classical problem of free convective
�ow in a porous medium near a horizontal �at plate was
	rst investigated by Cheng and Chang [21]. Following him
many researchers such as Chang and Cheng [22], Shiunlin
and Gebhart [23], Merkin and Zhang [24], and Chaudhary et
al. [25] have extended the problem in various aspects. Gorla
and Chamkha [26] presented a similarity analysis of free
convective �ow of nano�uid past a horizontal upward facing
plate in a porous medium numerically. Khan and Pop [27]
extended this problem for nano�uid. Very recently, Aziz et al.
[28] extended the same problem for a water-based nano�uid
containing gyrotactic microorganisms.

Lie group analysis has been used by many investigators
to analyze various convective phenomena under various
�ow con	gurations arising in �uidmechanics, aerodynamics,
plasma physics, meteorology, chemical engineering, and

other engineering branches [29]. �is method has been
applied by many investigators to study various transport
problems. For example, the symmetrical properties of the
turbulent boundary-layer �ows and other turbulent �ows
are investigated by using the Lie group techniques by
Avramenko et al. [30]. Kuznetsov et al. [31] investigated
a falling bioconvection plume in a deep chamber 	lled
with a �uid saturated porous medium theoretically. Jalil et
al. [32] studied mixed convective �ow with mass transfer
using Lie group analysis. �e e�ect of thermal radiation and
convective surface boundary condition on the boundary-
layer �ow was investigated by Hamad et al. [33]. Aziz et al.
[34] studied MHD �ow over an inclined radiating plate with
the temperature dependent thermal conductivity, variable
reactive index and heat generation using scaling group of
transformations. Reviews for the fundamental theory and
applications of group theory to di�erential equations can be
found in the texts by Hansen [35], Ames [36], Seshadri and
Na [37], and Shang [38].

Most scienti	c problems and phenomena such as the
boundary-layer problem occur nonlinearly. For these non-
linear problems we have di�culty in 	nding their exact
analytical solutions. Analytical solutions to these nonlinear
equations are of fundamental importance. Where no analyti-
cal solutions can be found, researchers have resorted to other
approaches. One such approach is a perturbation method
[39] that is strongly dependent upon the so-called “small
parameters.” �e perturbation method cannot provide us
with a simple way to adjust and control the convergence
region and rate of convergence of a given approximate series.

Another known method is the di�erential transform
method that has been used in recent years [40–44]. In 1992,
Liao introduced the basic ideas of the homotopy in topology
to propose a general analytic method for nonlinear problems,
namely, homotopy analysismethod (HAM) [45] that does not
need any small parameter.�is method has been successfully
applied to solve many types of nonlinear problems by others
[46–48]. As this approach is based on the homotopy of
topology, the validity of the HAM is independent of whether
or not there exists a small parameter in the considered
equation. �erefore, the HAM can overcome the foregoing
restrictions and limitations of perturbation methods [49].
�is method also provides us with great freedom to select
proper base functions to approximate solutions of nonlinear
problems. Using one interesting property of homotopy, one
can transform any nonlinear problem into an in	nite number
of linear problems.

In this paper, the steady �ow of an Ostwald-de Waele
power-law �uid induced by a steadily rotating in	nite disk to
a non-Darcian �uid-saturated porous medium is considered.
�e coupled governing equations are transformed into ordi-
nary di�erential equations in the boundary layer.�eOHAM
is applied to solve the ODEs. �e validity of our solutions
is veri	ed by the numerical results (by using a fourth-order
Runge-Kutta and shooting method).

�e aim of the present study is to investigate the e�ect of
higher order chemical reaction, internal heat generation, and
the thermal slip boundary condition on the boundary-layer
�ow of a nano�uid past an upward facing horizontal plate.
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Figure 1: Coordinate system and �ow model.

Lie group analysis is used to develop the similarity transfor-
mations and the corresponding similarity representations of
the governing equations. �e coupled governing equations
are transformed into ordinary di�erential equations in the
boundary layer. �e OHAM is applied to solve the ODEs.
�e obtained solutions are veri	ed by the numerical results
(obtained by using a Runge-Kutta-Fehlberg fourth-	
h order
and shooting method). �e e�ect of relevant parameters on
dimensionless �uid velocity, temperature, and nanoparticle
volume fraction are investigated and shown graphically and
discussed. A table containing data for the reduced Nusselt
number and reduced Sherwood number is also provided to
show the e�ects of various parameters on them. To the best of
our knowledge, the e�ects of thermal slip boundary condition
with internal heat generation and chemical reaction on the
boundary-layer �ow of a nano�uid past a horizontal plate in
porous media have not been reported in the literature yet.

�e paper is divided up as follows. In Section 2, themath-
ematical formulation is presented. In Section 3, we used the
Lie group method to reduce the system of partial di�erential
equations to a system of ordinary di�erential equations. In
Section 4 the basic idea of theHAM is presented. In Section 5,
we derived the OHAM solution of the coupled system of
nonlinear ordinary di�erential equations. In Section 6, we
compared our results with numerical solutions obtained
using a Runge-Kutta-Fehlberg method. In Section 7, we
introduced the physical quantities to be considered and
compared in this paper. Section 8 contains the results and
discussion. �e conclusions are summarized in Section 9.

2. Formulation of the Problem

We consider a two-dimensional laminar free convective
boundary-layer �ow of a nano�uid past an upward facing
chemically reacting horizontal plate in a porous media
(Figure 1). We assume that a homogeneous isothermal irre-
versible chemical reaction of order � takes place between
the plate and nano�uid. �ere is internal heat genera-
tion/absorption within the �uid inside the boundary layer at

the volumetric rate ̇�. Variation of density of the �uid is taken
into account using the Oberbeck-Boussinesq approximation.
�e conservation of mass, momentum, energy, and nanopar-
ticles describing the �ow can be written in dimensional form
(see [27]):

∇ ⋅ �⃗ = 0, (1)

�� ��⃗�� = − ∇� − �� �⃗
+ [�� + (1 − �) {� (1 − � (� − �∞))}] ⃗�,

(2)

(�)� ���� + (�)��⃗ ⋅ ∇�
= ��∇2� + �(�)� [�� ∇� ⋅ ∇� + (���∞)∇� ⋅ ∇�] + ̇�,

(3)

���� + 1� �⃗ ⋅ ∇� = ��∇2� + (���∞)∇2�
− � (#) (� − �∞)�.

(4)

�e�ow is assumed to be slow to ignore an advective term
and a Forchheimer quadratic drag term in the momentum
equation.

We consider a steady �ow where the Oberbeck-
Boussinesq approximation is used. In addition, we assume
that the nanoparticle concentration is dilute. With a suitable
choice for the reference pressure, the momentum equation
can be linearized and (2) written as (see [50])

− ∇� − �� �⃗ + [(� − �∞) (� − �∞)
+ (1 − �∞) �∞� (� − �∞)] ⃗� = 0. (5)

We also consider the e�ect of temperature-dependent
volumetric heat generation/absorption in the �ow region that
is given by Vajravelu and Hadjinicolaou [51] as

̇� = Ra2/3&0'4/3#4/3 (� − �∞) , � > �∞, (6)

where&0 is the heat generation/absorption constant. Also, we
consider the case where the reaction rate varies as

� (#) = Ra2/3�0'4/3#4/3 , (7)

where �0 is the constant reaction rate.
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With these assumptions along with standard boundary-
layer approximation, the governing equations can be written
in dimensional form as �*�# + �V�- = 0, (8)

���# = −�� *, (9)

���- = − �� V + [(1 − �∞) �∞�� (� − �∞)
− (� − �∞) � (� − �∞)] ,

(10)

*���# + V

���- = /� �2��-2
+ 2 [�� ���- ���- + (���∞)(

���-)
2]

+ &0(�)�
Ra2/3'4/3 #4/3 (� − �∞) ,

(11)

*���# + V

���- = �� �2��-2 + (���∞)
�2��-2

− Ra2/3�0'4/3#4/3 (� − �∞)�,
(12)

where /� = ��/(6�)� is the thermal di�usivity of the �uid

and 2 = �(�)	/(�)� is a parameter.

�e boundary conditions are taken to be

V = 0, � = �
 + �1 ���- , � = �

at - = 0,

* 7→ 0, � 7→ �∞, � 7→ �∞ as - 7→ ∞,
(13)

where �1(#) is the thermal slip factor with dimension(length)−1. �e following new nondimensional variables are
introduced to make (8)–(13) dimensionless:

# = #'√Ra , - = -' , * = *'/�√Ra ,
V = V'/� , ; = � − �∞Δ� ,

@ = � − �∞Δ� , Δ� = �
 − �∞, Δ� = �
 − �∞,
(14)

where Ra = ���(1 − �∞)Δ�'/(/�]) is the Rayleigh number
based on the characteristic length '. A stream function A
de	ned by

* = �A�- , V = −� A�# , (15)

is introduced into (8)–(13) to reduce the number of depen-
dent variables and the number of equations. Note that (8) is
satis	ed identically. Hence, we have

Δ 1 ≡ �2A�-2 + �;�# − ���@�# = 0, (16)

Δ 2 ≡ �A�- �;�# − �A�# �;�- − �2;�-2 − ���;�- �@�-
− ��(�;�-)

2 + &;#4/3 = 0,
(17)

Δ 3 ≡ Le [�A�- �@�# − �A�# �@�-] − �2@�-2
− ���� �

2;�-2 − �@�#4/3 = 0.
(18)

�e boundary conditions become

�A�# = 0, ; = 1 + �1 (#)' �;�- ,
@ = 1 at - = 0,

�A�- 7→ 0, ; 7→ 0, @ 7→ 0 as - 7→ ∞.
(19)

�e parameters in (16)–(19) are introduced in Nomencla-
ture and de	ned by

�� = 2��Δ�/� �∞, �� = 2��Δ�/� ,
�� = (� − �∞) Δ��∞ � (1 − �∞) Δ�,

& = &0'2/�(�)� , C = �0'2(Δ�)�−1/� , Le = /��� .
(20)

3. Lie Group Analysis

We consider the following scaling group of transformations
which is a special form of Lie group analysis [52]:

Γ : #∗ = #F�1 , -∗ = -F�2 ,
A∗ = AF�3 , ;∗ = ;F�4 ,
@∗ = @F�5 , �∗1 = �1F�6 .

(21)

Here � is the parameter of the group Γ and /� (G =1, 2, 3, 4, 5, 6) are arbitrary real numbers whose connec-
tion will be determined by our analysis. �e transfor-
mations in (21) can be considered as a point transfor-
mation transforming the coordinates (#, -, A, ;, @, �1) to
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(#∗, -∗, A∗, ;∗, @∗, �∗1 ). We now investigate the relationship
among the exponents /’s such that

Δ � (#∗, -∗, ;∗, @∗, . . . , �3A∗�-∗3 )

= O� (#, -, ;, @, . . . , �3A�-3 ; Q)

× Δ � (#, -, ;, @, . . . , �3A�-3 ) ,
(R = 1, 2, 3) .

(22)

Since this is the requirement that the di�erential formsΔ 1, Δ 2, and Δ 3 be reformed under the transformation group
in (19), by using (21), (16)–(18) are transformed to (see [35,
38])

Δ 1 ≡ �2A∗�-∗2 + �;∗�#∗ − ���@
∗

�#∗
= F�(3−22) �2A�-2 + F�(4−1) �;�# − F�(5−1) �@�# ,

Δ 2 ≡ �A∗�-∗ �;
∗

�#∗ − �A∗�#∗ �;
∗

�-∗ − �2;∗�-∗2 − ���;
∗

�-∗ �@
∗

�-∗
− ��(�;∗�-∗)

2 + &;∗#∗4/3
= F�(3+4−1−2) [�A�- �;�# − �A�# �;�-]

− F�(4−22) �2;�-2 − F�(4+5−22)���;�- �@�-
− F�(24−22)��(�;�-)

2 + F�(4−(4/3)1) &;#4/3 ,

Δ 3 ≡ Le [�A∗�-∗ �@
∗

�#∗ − �A∗�#∗ �@
∗

�-∗ ] − �2@∗�-∗2
− ���� �

2;∗�-∗2 − C@∗�#∗4/3
= − F�(5−22) �2@�-2
+ F�(3+5−1−2)Le [�A�- �@�# − �A�# �@�-]

− F�(4−22)���� �
2;�-2 − F�(�5−(4/3)1)C@

�

#4/3 .

(23)

�e system will remain invariant (structure of the equa-
tions same) under the group transformation Γ, if we have the
following relationship among the exponents:

/3 − 2/2 = /4 − /1 = /5 − /1,
/3 + /4 − /1 − /2 = /4 − 2/2 = /4 + /5 − 2/2

= 2/4 − 2/2 = /4 − 43/1,
/3 + /5 − /1 − /2 = /5 − 2/2 = /4 − 2/2

= /5 − 43/1.

(24)

For invariance of the boundary conditions, we have

/4 = 0 = /4 + /6 − /2, /5 = 0. (25)

Solving (24) and (25) yields

/4 = /5 = 0, /1 = 3/22 , /3 = /22 , /6 = /2.
(26)

�e set of transformations Γ reduces to
#∗ = #F3�2/2, -∗ = -F�2 ,
A∗ = AF�2/2, ;∗ = ;,
@∗ = @, �∗1 = �1F�2 .

(27)

Expanding by the Taylor’s series in powers of � and
keeping the terms up to the order � yields

#∗ − # = 3#�/22 , -∗ − - = /2-,
A∗ − A = �A/22 , ;∗ − ; = 0,
@∗ − @ = 0, �∗1 − � = /2�1.

(28)

In terms of di�erentials, we have

2S#3/2# = S-/2- = 2SA/2A = S;0 = S@0 = S�1/2�1 ,
/2 ̸= 0.

(29)

3.1. Similarity Transformations. From (29), 2S#/3/2# =S-//2-, which can be integrated to give

-#2/3 = constant = U (say) . (30a)

Similarly, 2S#/3/2# = 2SA//2A yields

A#1/3 = constant = V (U) (say) , that is, A = #1/3V (U) ,
(30b)
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where V is an arbitrary function of U. From the equations2S#/3/2# = S;/0 and 2S#/3/2# = S@/0, we obtain by
integration

; = ; (U) , @ = @ (U) . (30c)

From the equation 2S#/3/2# = S�1//2�1, we obtain by
integration

�1 = (�1)0#−2/3, (30d)

where (�1)0 is a constant thermal slip factor.
�us from (30a)–(30d), we obtain

U = -#−2/3, A = #1/3V (U) ,
; = ; (U) , @ = @ (U) , �1 = (�1)0#−2/3. (31)

Here U is the similarity variable and V, ;, @ are dependent
variables. Note that the similarity transformations in (31) are
consistent with the well-known similarity transformations
reported in the paper of Cheng and Chang [21] for W = 0
in their paper. �us, the dimensionless velocity components*, V can be expressed as

* = V�#1/3 , V = − 13#2/3 (V − 2UV�) , (32)

where primes indicate di�erentiation with respect to U.
3.2. Similarity Equations. On substituting the transforma-
tions in (31) into the governing (16)–(18), we obtain the
following system of ordinary di�erential equations:

V�� − 23U (;� − ��@�) = 0, (33)

;�� + 13 V;� + ��;�@� + ��;�2 + &; = 0, (34)

@�� + Le3 V@� + ����;�� − C@� = 0. (35)

We have to solve the system equations (33)–(35) subject
to the boundary conditions

V (0) = 0, ; (0) = 1 + �;� (0) , @ (0) = 1,
V� (∞) = 0, ; (∞) = 0, @ (∞) = 0, (36)

where � = (�1)0/' is the thermal slip parameter.

4. Basic Idea of the HAM

Let us consider the following di�erential equation:

N [* (2)] = 0, (37)

where N is a nonlinear operator, 2 denotes independent
variable, and *(2) is an unknown function, respectively. For
simplicity, we ignore all boundary or initial conditions, which
can be treated in the similar way. By means of generalizing

the traditional homotopy method, Liao [45] constructs the
so-called zero-order deformation equation

(1 − X)L [Z (2; X) − *0 (2)] = XℏO (2)N [Z (2; X)] , (38)

where X ∈ [0, 1] is the embedding parameter, ℏ ̸= 0 is a
nonzero auxiliary parameter, O(2) ̸= 0 is an auxiliary func-
tion,L is an auxiliary linear operator, *0(2) is an initial guess
of *(2), and Z(2; X) is an unknown function, respectively. It
is important that one has great freedom to choose auxiliary
things in the HAM. Obviously, when X = 0 and X = 1, it
holds Z(2; 0) = *0(2), Z(2; 1) = *(2), respectively. �us, asX increases from 0 to 1, the solution Z(2; X) varies from the
initial guess *0(2) to the solution *(2). Expanding Z(2; X) in
Taylor series with respect to X, we have

Z (2; X) = *0 (2) + +∞∑
�=1

*� (2) X�, (39)

where

*� (2) = 1a! �
�Z (2; X)�X�

ccccccccc	=0. (40)

If the auxiliary linear operator, the initial guess, the
auxiliary parameter ℏ, and the auxiliary function are so
properly chosen, the series (39) converges at X = 1, then we
have

* (2) = *0 (2) + +∞∑
�=1

*� (2) , (41)

which must be one of solutions of original nonlinear equa-
tion, as proved by Liao [45]. As ℏ = −1 and O(2) = 1, (38)
becomes

(1 − X)L [Z (2; X) − *0 (2)] + XN [Z (2; X)] = 0, (42)

which is used mostly in the homotopy perturbation method,
where the solution can be obtained directly without using
Taylor series.

According to de	nition (39), the governing equation
can be deduced from the zero-order deformation equation
(37). By de	ning the vector *⃗� = {*0(2), *1(2), . . . , *�(2)}
and di�erentiating equation (37) a times with respect to
the embedding parameter X and then setting X = 0 and
	nally dividing them bya!, we have the so-calledath-order
deformation equation

L [*� (2) − d�*�−1 (2)] = ℏO (2) e� (*⃗�−1) , (43)

where

e� (*⃗�−1) = 1(a − 1)! �
�−1

N [Z(2; X)]�X�−1
ccccccccc	=0,

d� = {0, a ≤ 1,1, a > 1.
(44)

It should be emphasized that *�(2) for a ≥ 1 is
governed by the linear equation (39) with the linear boundary
conditions that come from original problem, which can
be easily solved by symbolic computation so
ware such as
MAPLE and MATHEMATICA.
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Figure 3: �e ℏ-curve of ;�(0) given by the various HAM-order
approximate solution.

5. HAM Solution

In this section, we applied the HAM to obtain approx-
imate analytical solutions of the e�ect of higher order
chemical reaction, internal heat generation, and the thermal
slip boundary condition on the boundary-layer �ow of a
nano�uid past an upward facing horizontal plate (33)–(35).
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Figure 4: �e ℏ-curve of @�(0) given by the various HAM-order
approximate solution.

We start with the initial approximation i0(U) = 0, Θ0(U) =(1/(� + 1))Exp[−U],Φ0(U) = Exp[−U] and the linear operator
L [i (U; X)] = �2i (U; X)�U3 ,

L [Θ (U; X)] = �2Θ(U; X)�U2 + �Θ (U; X)�U ,
L [Φ (U; X)] = �2Φ(U; X)�U2 + �Φ (U; X)�U .

(45)

Furthermore, from (33)–(35) we de	ne the nonlinear
operators

N [i (U; X)] = �2i (U; X)�U2
− 23U(�Θ (U; X)�U − ���Φ (U; X)�U ) ,

N [Θ (U; X)] = �2Θ(U; X)�U2 + 13i (U; X) �Θ (U; X)�U
+ ���Θ (U; X)�U �Φ (U; X)�U
+ ��(�Θ (U; X)�U )2 + &Θ (U; X) ,

N [Φ (U; X)] = �2Φ(U; X)�U2 + Le3 i (U; X) �Φ (U; X)�U
+ ���� �

2Θ(U; X)�U2 − C(Φ (U; X))�.

(46)
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Using the above de	nition, with assumption O�(2) = 1,OΘ(2) = Exp[−U], and OΦ(2) = Exp[−U], we construct thelF�mth-order deformation equation

(1 − X)L [Z (#; X) − *0 (#)] = O (2) XℏN [Z (#; X)] .
(47)

Obviously, when X = 0 and X = 1,
Z (#; 0) = *0 (#) , Z (#; 1) = * (#) . (48)

Di�erentiating the lF�mth-order deformation equation
(47)a times with respect to X and 	nally dividing bya!, we
have theath-order deformation equation

L [i� (#) − d�i�−1 (#)] = ℏe� (i⃗�−1) ,
L [Θ� (#) − d�Θ�−1 (#)] = Exp [−U] ℏe� (Θ⃗�−1) ,
L [Φ� (#) − d�Φ�−1 (#)] = Exp [−U] ℏe� (Φ⃗�−1) ,

(49)

subject to boundary condition

i� = 0, Θ� = 1 + �Θ��, Φ� = 1, at : U = 0;
i�� 7→ 0, Θ� 7→ 0, Φ� 7→ 0, as : U 7→ ∞. (50)

For � = 1 (Newtonian �uid),

e� (i⃗�−1) = �2i�−1 (U)�U2
− 23U(�Θ�−1 (U)�U − ���Φ�−1 (U)�U ) ,

e� (Θ⃗�−1) = �2Θ�−1 (U)�U2 + 13
�−1∑
�=0
i� (U) �Θ�−1−� (U)�U

+ ���−1∑
�=0

(�Θ� (U)�U
�Φ�−1−� (U)�U )

+ ���−1∑
�=0

(�Θ� (U)�U
�Θ�−1−� (U)�U )

+ &Θ�−1 (U) .

(51)

For � = 1,
e� (Φ⃗�−1) = �2Φ�−1 (U)�U2 + Le3

�−1∑
�=0
i� (U) �Φ�−1−� (U)�U

+ ���� �
2Θ�−1 (U)�U2 − CΦ�−1 (U) .

(52)

Table 1: �e optimal values of ℏ for di�erent values of��,&, �.
�� = 0.1,�� = 0.1, Le = 1.0, C = 1.0, � = 0.0

Series
solution� 1.0 2.0 3.0

Nt 0.1 0.05 0.1

& 0.1 0.0 0.1

V�(U) ℏOptimal = −1.45 ℏOptimal = −1.87 ℏOptimal = −1.69;(U) ℏOptimal = −1.19 ℏOptimal = −0.98 ℏOptimal = −1.08@(U) ℏOptimal = −1.11 ℏOptimal = −0.86 ℏOptimal = −0.95

Also for � = 2,

e� (Φ⃗�−1) = �2Φ�−1 (U)�U2 + Le3
�−1∑
�=0
i� (U) �Φ�−1−� (U)�U

+ ���� �
2Θ�−1 (U)�U2 − C�−1∑

�=0
Φ� (U)Φ�−1−� (U) ,

(53)

and for � = 3,

e� (Φ⃗�−1)
= �2Φ�−1 (U)�U2 + Le3

�−1∑
�=0
i� (U) �Φ�−1−� (U)�U

+ ���� �
2Θ�−1 (U)�U2

− C�−1∑
�=0

(Φ�−1−� (U) �−1∑
�=0

(Φ� (U)Φ�−� (U))) .

(54)

Obviously, the solution of the ath-order deformation
equations (49) fora ≥ 1 becomes

i� (U) = i�−1 (U) + ℏL −1 [e� (i⃗�−1)] ,
Θ� (U) = Θ�−1 (U) + Exp [−U] ℏL −1 [e� (Θ⃗�−1)] ,
Φ� (U) = Φm−1 (U) + Exp [−U] ℏL −1 [e� (Φ⃗�−1)] .

(55)
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By using the symbolic so
ware MATHEMATICA to
solve the system of linear equations (49) with the boundary
conditions (46), it can be obtained 	nally

i1 (U) = − 43 (1 + �)ℏ + 4F−�3 (1 + �)ℏ + 4��3 (1 + �)ℏ
+ 4���3 (1 + �)ℏ − 4��F−�3 (1 + �)ℏ − 4���F−�3 (1 + �) ℏ
+ 2F−�U3 (1 + �)ℏ − 2��F−�U3 (1 + �) ℏ − 2���F−�U3 (1 + �) ℏ,

Θ1 (U) = F−2�2 (1 + �)ℏ − F−�2(1 + �)2 ℏ − �F−�2(1 + �)2 ℏ
− ��F−3�6(1 + �)2 ℏ + ���F−3�6(1 + �)2 ℏ − ��F−�6(1 + �)2 ℏ
− ���F−�6(1 + �)2 ℏ + ��F−3�6(1 + �)2 ℏ − ��F−�6(1 + �)2 ℏ
+ &F−2�2 (1 + �)ℏ − &F−�2(1 + �)2 ℏ − �&F−�2(1 + �)2 ℏ,

Φ1 (U) = F−2�2 (1 + �)ℏ + �F−2�2 (1 + �)ℏ − F−�2 (1 + �)ℏ
− �F−�2 (1 + �)ℏ − CF−2�2 (1 + �)ℏ − �Ce−2�2 (1 + �)ℏ
+ CF−�2 (1 + �)ℏ + �CF−�2 (1 + �)ℏ + ���� F−2�2 (1 + �)ℏ
− ���� F−�2 (1 + �)ℏ.

...

(56)

�e higher orders solutions of i(U), Θ(U), and Φ(U) were
too long to be mentioned here; therefore, they are shown
graphically.

5.1. Convergence of the HAM Solution. As mentioned by Liao
[45], HAM provides us with great freedom in choosing the
solution of a nonlinear problem by di�erent base functions.
�is has a great e�ect on the convergence region because the
convergence region and rate of a series are chie�y determined
by the base functions used to express the solution. We used
several terms in evaluating the approximate solution iapp ≈∑��=0 i�,Θapp ≈ ∑��=0Θ�,Φapp ≈ ∑��=0Φ�; note that the solution
series contains the auxiliary parameter ℏ which provides us
with a simple way to adjust and control the convergence of
the solution series. Generally, by means of the so-called ℏ-
curve, that is, a curve of a versus ℏ. As pointed by Liao [45],
the valid region of ℏ is a horizontal line segment. Figures
2, 3, and 4 show the ℏ-curve with the various order of the
HAM for V��(0), ;�(0), @�(0), respectively, when �� = 0.1,
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Figure 5: �e residual error of V�(U) for (33) using 12th order of
approximations.
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Figure 6: �e residual error of ;(U) for (34) using 12th order of
approximations.

�� = 0.1, �� = 0.1, & = 0.1, Le = 1.0, C = 1.0, � = 1.0,� = 0.0. It can be seen that when the order of series is 12 the
segment of the horizontal line is more than the other orders.
For example, it can be found that for i��(0), the acceptable
range ofℏ is between−0.5 and−2.0 for 12th order of theHAM,
but for 8th order of the HAM the acceptable range of ℏ is
between −1.0 and −2.0 or −1.0 and −1.5 for 4th order of the
HAM, so horizontal line segment of 12th order of the HAM is
more than others. �erefore, it is straightforward to choose
an appropriate range for ℏ which ensures the convergence
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Figure 7: �e residual error of @(U) for (35) using 12th order of
approximations.

of the solution series. To choose optimal value of auxiliary
parameter, the averaged residual errors (see [53] for more
details) are de	ned as

u�,� = 1C
�∑
�=0
[N�( �∑

�=0
i� (GΔ#))]

2,

uΘ,� = 1C
�∑
�=0
[NΘ( �∑

�=0
Θ� (GΔ#))]

2,

uΦ,� = 1C
�∑
�=0
[NΦ( �∑

�=0
Φ� (GΔ#))]

2,

(57)

where Δ# = 10/C and C = 20. For given order of
approximation a and the optimal values ℏ are given by
the minimum of u�, corresponding to nonlinear algebraic
equations

Su�,�Sℏ = 0, SuΘ,�Sℏ = 0, SuΦ,�Sℏ = 0. (58)

It is noted that the optimal value of ℏ is replaced into
the equations. Table 1 shows optimal values obtained for the
auxiliary parameter ℏ, for various quantities of��, &, and �,
when�� = 0.1,�� = 0.1, Le = 1.0, C = 1.0, � = 0.0. To see

the accuracy of the solutions, the residual errors are de	ned
for the system as (fora order approximation)

Res�� = S2i�SU2 − 23U(SΘ�SU − ��SΦ�SU ) , (59)

ResΘ� = S2Θ�SU2 + 13i� SΘ�dU + ��SΘ�SU SΦ�SU
+ ��(SΘ�SU )2 + &Θ�,

(60)

ResΦ� = S2Φ�SU2 + Le3 i� SΦ�SU + ���� S
2Θ�SU2

− C(SΦ�SU )�.
(61)

Figures 5, 6, and 7 show the residual errors for 12th-order
deformation solutions when �� = 0.1, �� = 0.1, �� = 0.1,& = 0.1, Le = 1.0, C = 1.0, � = 1.0, � = 0.0. For example ℏ =−1.45 has the minimum range of residual curve in Figure 5
and so on.

Graphical representation of results is very useful to
demonstrate the e�ciency and accuracy of the HAM for the
above problem.

6. Comparisons and Verification

It is worth citing that for isothermal plate (� = 0) and in the
absence of internal heat generation/absorption (& = 0) and
chemical reaction (C = 0) our problem reduces to Gorla and
Chamkha [26] and Khan and Pop [27]. To verify the accuracy
of our results, the present results are compared in Table 2
with Gorla and Chamkha [26] and are found to be in good
agreement.

7. Physical Quantities

�eparameters of physical interest of the present problem are
the local skin friction factor ���, the local Nusselt number
Nu�, and the local Sherwood number Sh�, respectively.
Physically, ��� indicates wall shear stress, Nu� indicates the
rate of wall heat transfer whilst Sh� indicates the rate of
wall nanoparticle volume fraction.�e following relations are
used to 	nd these quantities:

��� = 2�z2� (
�*�-)�=0, Nu� = −#�� − �∞(

���-)�=0,
Sh� = −#�
 − �∞(

���-)�=0.
(62)
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Table 2: Comparison of present solution with Gorla and Chamkha
[26] for di�erent values of buoyancy and nano�uid parameters.

Present results (HAM) Gorla and Chamkha [26]−;� (0) −@� (0) −;� (0) −@� (0)
Nr �� = 0.3,�� = 0.1, Le = 10, � = C = & = 0
0.1 0.32578 1.48242 3.26u − 01 1.484164

0.2 0.32385 1.46704 3.25u − 01 1.468161

0.3 0.32188 1.45125 3.22u − 01 1.452664

0.4 0.31985 1.43503 3.21u − 01 1.436392

0.5 0.31777 1.41833 3.19u − 01 1.419499

Nt �� = 0.3,�� = 0.5, Le = 10, � = C = & = 0
0.1 0.31777 1.41833 3.19u − 01 1.419499

0.2 0.30486 1.41491 3.05u − 01 1.416536

0.3 0.2927 1.41561 2.93u − 01 1.416866

0.4 0.28125 1.41991 2.82u − 01 1.421582

0.5 0.27046 1.42737 2.71u − 01 1.429226

Nb �� = 0.1,�� = 0.5, Le = 10, � = C = & = 0
0.1 0.3672 1.32611 3.68u − 01 1.327454

0.2 0.34271 1.39216 3.43u − 01 1.393615

0.3 0.31777 1.41833 3.19u − 01 1.419499

0.4 0.29399 1.43428 2.94u − 01 1.435464

0.5 0.27161 1.44598 2.72u − 01 1.44772
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Figure 8: Comparison of dimensionless velocity pro	le V�(U)
obtained by various orders of the HAM.

By substituting from (14) and (31) into (37), it can be
shown that physical quantities are putted in the following
dimensionless form

12Ra�Pr��� = V�� (0) , Ra−1/3� Nu� = −;� (0) ,
Ra−1/3� Sh� = −@� (0) .

(63)
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Figure 9: Comparison of dimensionless temperature pro	le ;(U)
obtained by various orders of the HAM.
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Figure 10: Comparison of dimensionless concentration pro	le @(U)
obtained by various orders of the HAM.

Here Ra� = �C�(1−�∞)Δ�#/(/�]) is the local Rayleigh
number, Pr = ]//� is the Prandtl number, and z� = (1 −�∞)�C�Δ�//� is the reference velocity.
8. Results and Discussion

Graphical representation of results is very useful to discuss
the physical features presented by the solutions. �is section
describes the in�uence of some interesting parameters on
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Figure 11: E�ect of buoyancy ratio�� on the dimensionless velocity
pro	le.
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Figure 12: E�ect of buoyancy ratio �� on the dimensionless
temperature pro	le.

the velocity and temperature 	elds. Equations (33) to (35)
with boundary conditions in (36) were solved analytically by
HAM and numerically using Runge-Kutta-Fehlberg fourth-
	
h order proposed by Aziz [54].

Figures 8, 9, and 10, respectively, for V�(U), ;(U), and @(U)
show the comparisons between various order approximation
of the optimal HAM and the numerical solutions for the case
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Figure 13: E�ect of buoyancy ratio �� on the dimensionless
concentration pro	le.
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Figure 14: E�ect of Brownian motion �� on the dimensionless
velocity pro	le.

�� = 0.1, �� = 0.1, �� = 0.1, & = 0.1, Le = 1.0, C = 1.0,� = 1.0, � = 0.0. For better presentation, these results are
presented in Tables 3, 4, and 5. Also Tables 6, 7, and 8 present
the comparisons between various order approximation of the
optimal HAM and the numerical solutions for the case�� =0.3, �� = 0.05, �� = 0.3, & = 0.1, Le = 2.0, C = 0.5,
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Figure 15: E�ect of Brownian motion �� on the dimensionless
temperature pro	le.
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Figure 16: E�ect of Brownian motion �� on the dimensionless
concentration pro	le.

� = 2.0, � = 0.1. It is observed that the results of 12th-
order approximation of the optimal HAM are very close to
the numerical solutions which con	rm the validity of these
methods.

In the following 	gures, e�ects of various physical
parameters on the dimensionless velocity, temperature, and

Table 3: Comparison of values of V�(U) obtained by various orders
of the HAM with numerical solution, when �� = 0.1,�� =0.1,�� = 0.1, & = 0.1, Le = 1.0, C = 1.0, � = 1.0, � = 0.0.
U V�(U)

Order 4 Order 8 Order 12 Numerical

0.0 0.88267 1.00955 1.08826 1.08831

1.0 0.75049 0.9014 0.99093 0.99103

2.0 0.46074 0.59671 0.70078 0.70087

3.0 0.23608 0.31739 0.39214 0.39231

4.0 0.1104 0.15062 0.19027 0.19036

5.0 0.04904 0.06729 0.08572 0.08579

6.0 0.0211 0.02901 0.03707 0.03716

Table 4: Comparison of values of ;(U) obtained by various orders of
the HAM with numerical solution, when�� = 0.1,�� = 0.1,�� =0.1, & = 0.1, Le = 1.0, C = 1.0, � = 1.0, � = 0.0.
U ;(U)

Order 4 Order 8 Order 12 Numerical

0.0 1.0 1.0 1.0 1.0

1.0 0.60691 0.6461 0.66369 0.66357

2.0 0.27401 0.31754 0.35115 0.35122

3.0 0.10855 0.13105 0.15384 0.15391

4.0 0.04102 0.0503 0.06065 0.06072

5.0 0.01524 0.01879 0.02289 0.02297

6.0 0.00563 0.00695 0.0085 0.0089

Table 5: Comparison of values of @(U) obtained by various orders of
the HAM with numerical solution, when�� = 0.1,�� = 0.1,�� =0.1, & = 0.1, Le = 1.0, C = 1.0, � = 1.0, � = 0.0.
U @(U)

Order 4 Order 8 Order 12 Numerical

0.0 1.0 1.0 1.0 1.0

1.0 0.41163 0.36407 0.3442 0.3438

2 0.18283 0.16764 0.15287 0.15283

3 0.07338 0.07232 0.08158 0.08154

4 0.02792 0.02848 0.04155 0.04149

5 0.0104 0.01075 0.01918 0.01912

6 0.00384 0.004 0.00821 0.00816

temperature pro	les will be investigated. �ese results have
been obtained by 12th order of the HAM and have been
validated by numerical results. Figures 11–13, respectively,
represent that the comparison of solutions of V�(U), ;(U),
and @(U) for 	x values �� = 0.1, �� = 0.1, & = 0.1,
Le = 1.0, C = 1.0, � = 1.0, � = 0.0 and di�erent values of
buoyancy ratio��. In Figure 11, it is clear that velocity of the
�uid tremendously decreases in the near of horizontal plate
with an increase in the buoyancy ratio. It is observed that the
temperature increases slightly but concentration of the �uid
does not vary sensibly (Figures 12 and 13). �e e�ects of the
Brownian motion �� are depicted in Figures 14, 15, and 16,
when�� = 0.1,�� = 0.1,& = 0.1, Le = 1.0,C = 1.0, � = 1.0,
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Table 6: Comparison of values of V�(U) obtained by various orders
of the HAM with numerical solution, when �� = 0.3,�� =0.05,�� = 0.3, & = 0.1, Le = 2.0, C = 0.5, � = 2.0, � = 0.1.
U V�(U)

Order 4 Order 8 Order 12 Numerical

0.0 0.93747 1.01946 1.03856 1.03833

1.0 0.86389 0.91983 0.99064 0.99252

2.0 0.67859 0.71873 0.75376 0.75988

3.0 0.24894 0.40252 0.45987 0.46099

4.0 0.149487 0.19832 0.23701 0.23933

5.0 0.04859 0.07928 0.11094 0.11295

6.0 0.00845 0.01837 0.04967 0.04982

Table 7: Comparison of values of ;(U) obtained by various orders of
the HAMwith numerical solution, when�� = 0.3,�� = 0.05,�� =0.3, & = 0.1, Le = 2.0, C = 0.5, � = 2.0, � = 0.1.
U ;(U)

Order 4 Order 8 Order 12 Numerical

0.0 0.89657 0.95221 0.97467 0.97632

1.0 0.50975 0.66165 0.67598 0.67875

2.0 0.29868 0.35284 0.37256 0.37414

3.0 0.10858 0.15647 0.17187 0.17382

4.0 0.04869 0.05079 0.07075 0.07284

5.0 0.00958 0.01094 0.02486 0.02870

6.0 0.00608 0.00490 0.00957 0.01074

Table 8: Comparison of values of @(U) obtained by various orders of
the HAMwith numerical solution, when�� = 0.3,�� = 0.05,�� =0.3, & = 0.1, Le = 2.0, C = 0.5, � = 2.0, � = 0.1.
U @(U)

Order 4 Order 8 Order 12 Numerical

0.0 1 1 1 1

1.0 0.45775 0.34755 0.32674 0.32440

2 0.21848 0.18589 0.08345 0.08117

3 0.13859 0.10958 0.02375 0.02136

4 0.01985 0.01847 0.00746 0.00716

5 0.00974 0.00857 0.00489 0.00274

6 0.00285 0.00486 0.00289 0.00106

� = 0.0. If �� increases, V�(U) and ;(U) increase lightly and@(U) decreases. �e dimensionless velocity, dimensionless
temperature, and dimensionless concentration pro	les for
di�erent values of thermophoresis �� with constant values�� = 0.1, �� = 0.1, & = 0.1, Le = 1.0, C = 1.0,� = 1.0, � = 0.0 are presented in Figures 17, 18, and
19. It is observed that the velocity and temperature of the
�uid are not impressible from�� but concentration increases
slightly. In Figures 20, 21, and 22, respectively, comparison of
solutions of V�(U), ;(U), and @(U) for �� = 0.1, �� = 0.1,�� = 0.1, Le = 1.0, C = 1.0, � = 1.0, � = 0.0 and
di�erent values of heat generation/absorption parameter &
are shown. It is observed that in presence of heat source,V�(U), ;(U) both increase while heat sink causes that V�(U),;(U) both decrease extremely. �ese e�ects are more visible

Table 9: Values of reduced Nusselt number and Sherwood number
obtained by HAM for di�erent values of the parameters Le, C, �, �
and & when�� = �� = �� = 0.1.
Le � C � & Nur Shr

1 1 0.1 0.1 0.1 0.274760 0.456132

5 1 0.1 0.1 0.1 0.279814 1.072702

10 1 0.1 0.1 0.1 0.279925 1.539431

5 2 0.1 0.1 0.1 0.279805 1.054203

5 3 0.1 0.1 0.1 0.279804 1.046708

5 1 0.2 0.1 0.1 0.279818 1.118838

5 1 0.3 0.1 0.1 0.279822 1.163333

5 1 0.1 0.2 0.1 0.268552 1.066393

5 1 0.1 0.3 0.1 0.258247 1.060405

5 1 0.1 0.1 0.11 0.270438 1.082799

5 1 0.1 0.1 0.15 0.233428 1.129999
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Figure 17: E�ect of thermophoresis �� on the dimensionless
velocity pro	le.

for temperature distribution. For @(U), the e�ect of changing& is seen to be almost insigni	cant. �is is in agreement
with the physical fact.�e dimensionless pro	les for di�erent
values of Lewis number Le with constant parameters �� =0.1, �� = 0.1, �� = 0.1, & = 0.1, C = 1.0, � = 1.0,� = 0.0 are shown in Figures 23, 24, and 25. It is clear that for
these constant parameters, variation of Lewis number has any
considerable e�ect on the velocity and temperature pro	les,
but concentration pro	le decreases with the increase of Lewis
number. What is similar to these results can be detected in
Figures 26, 27, and 28 for chemical reaction parameter C.
Figures 29, 30, and 31, respectively, present the comparison
of solutions of V�(U), ;(U), and @(U) for �� = 0.5, �� = 0.5,�� = 0.1, & = 0.01, Le = 1.0, C = 1.0, � = 0.0 and di�erent
values of order of chemical reaction �. It is observed that
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Figure 18: E�ect of thermophoresis �� on the dimensionless
temperature pro	le.
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Figure 19: E�ect of thermophoresis �� on the dimensionless
concentration pro	le.

for higher order of chemical reaction, velocity decreases and
temperature and concentration pro	les increase extremely.
Ultimately, Figures 32, 33, and 34 depict the e�ect of thermal
slip parameter � on velocity, temperature and concentration
functions when �� = 0.1, �� = 0.1, �� = 0.1, & = 0.1,
Le = 2.0, C = 1.5, � = 1.0. It is seen that the velocity
and temperature of the �uid decrease with the increase of the
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Figure 20: E�ect of generation/absorption heat parameter& on the
dimensionless velocity pro	le.
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Figure 21: E�ect of generation/absorption heat parameter & on the
dimensionless temperature pro	le.

thermal slip parameter in the near of horizontal plate, while
the concentration of the �uid does not vary patently.

Also, for investigation of the parameters of physical
interest, Table 9 is presented. In this table, numerical values
of reduced Nusselt number and Sherwood number obtained
by HAM for di�erent values of the parameters F, C, �, �, and& can be compared, when�� = �� = �� = 0.1.
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Figure 22: E�ect of generation/absorption heat parameter& on the
dimensionless concentration pro	le.
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Figure 23: E�ect of Lewis number Le on the dimensionless velocity
pro	le.

9. Conclusions

In this paper, we studied the steady laminar incompressible
free convective �ow of a nano�uid past a chemically reacting
upward facing horizontal plate in porous medium taking
into account heat generation and the thermal slip boundary
condition.
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Figure 24: E�ect of Lewis number Le on the dimensionless
temperature pro	le.
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Figure 25: E�ect of Lewis number Le on the dimensionless
concentration pro	le.

�e governing partial di�erential equations have been
transformed by similarity transformations into a system of
ordinary di�erential equations which are solved by OHAM
and numerical method (fourth-order Runge-Kutta scheme
with the shooting method). Dimensionless velocity, temper-
ature, and concentration functions are presented for various
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Figure 26: E�ect of chemical reaction parameter C on the dimen-
sionless velocity pro	le.
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Figure 27: E�ect of chemical reaction parameter C on the dimen-
sionless temperature pro	le.

values of parameters for the problem, for example, buoy-
ancy ratio ��, Brownian motion ��, thermophoresis ��,
heat generation/absorption parameter &, Lewis number Le,
chemical reaction parameterC, order of chemical reaction �,
and thermal slip parameter �. From the present investigation,
the following may be concluded.

(i) �e velocity V�(U) increases with increasing �� and
decreases with increasing��, �, and �.
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Figure 28: E�ect of chemical reaction parameter C on the dimen-
sionless concentration pro	le.
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Figure 29: E�ect of order of chemical reaction � on the dimension-
less velocity pro	le.

(ii) �e temperature ;(U) increases with ��, ��, � and
decreases with �.

(iii) Parameters of��, Le, andC have no e�ect on velocity
and temperature pro	les.

(iv) �e concentration distribution @(U) increases with
increasing N�, � and decreases with ��, Le, and C,
but��, &, and � are not a�ected by it.
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Figure 30: E�ect of order of chemical reaction � on the dimension-
less temperature pro	le.
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Figure 31: E�ect of order of chemical reaction � on the dimension-
less concentration pro	le.

(v) In presence of heat source (& > 0), V�(U), ;(U) both
increase while heat sink (& < 0) causes that V�(U),;(U) both decrease extremely. �ese e�ects are more
visible for temperature distribution.

In addition, numerical results for the reducedNusselt and
Sherwood numbers are tabulated. It is concluded that the
reduced Nusselt number increases with the Lewis number
and reaction parameter whist it decreases with the order of
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Figure 32: E�ect of order of thermal slip parameter � on the
dimensionless velocity pro	le.
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Figure 33: E�ect of order of thermal slip parameter � on the
dimensionless temperature pro	le.

chemical reaction, thermal slip, and generation parameters.
It is further concluded that the reduced Sherwood number
enhances with the Lewis number, generation and reaction
parameters whist it suppresses with thermal slip and order
of chemical reaction.

�e convergence of the solution series and the power of
HAM in controlling and adjusting the convergence region
and rate of solution series were discussed. �e proper range
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Figure 34: E�ect of order of thermal slip parameter � on the
dimensionless concentration pro	le.

of auxiliary parameter ℏ to ensure the convergence of the
solution series was obtained through the so called ℏ-curve.
�e HAM provides us with a convenient way to control the
convergence of approximation series, which is a fundamental
qualitative di�erence in analysis between the HAM and
other methods. �e numerical results of the above problems
display a fast convergence, with minimal calculations. �is
shows that the HAM is a very e�cient method. Finally, the
agreement between analytical and numerical results of the
present study with previous published results is excellent.

Nomenclature

�: �ermal slip parameter�: Dimensional concentration��: Skin friction factor�1: �ermal slip factor��: Brownian di�usion coe�cient��: �ermophoretic di�usion coe�cientV: Dimensionless velocity functions�: Gravitation accelerationC: Chemical reaction parameter�: Permeability of the porous media�0: �e constant reaction rate��: E�ective thermal conductivity of the porous
medium�(#): Variable reaction rate

L: Linear operator of the HAM': Length of horizontal plate
Le: Lewis number
N: Nonlinear operator of the HAM

�: Order of chemical reaction��: Brownian motion��: Buoyancy ratio��: �ermophoresis
Nu: Nusselt number�: Pressure
Pr: Prandtl number&: Heat generation/absorption parameter&0: Heat generation/absorption constanṫ�: Internal heat generation rate
Ra: Rayleigh number
Sh: Sherwood number�: Temperature�: Time*: Velocity in #-directionz�: Reference velocity�⃗: Velocity vector
V: Velocity in --direction#: Distance along the surface-: Distance normal to the surface.

Greek Letters

/�: �ermal di�usivity�: Volumetric expansion coe�cient of nano�uid�: Porosity of the porous media@: Dimensionless concentrationU: Similarity variable�: Dynamic viscosity;: Dimensionless temperature�: Density of the base �uid	: Density of the nanoparticles(�)�: E�ective heat capacity of the �uid(�)�: E�ective heat capacity of the nanoparticle materialA: Stream function.

Subscript, Superscript

∞: Conditions far away from the surface
�: Di�erentiation with respect to U.
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no. 3, pp. 179–184, 1990.

[25] M. A. Chaudhary, J. H. Merkin, and I. Pop, “Natural convection
from a horizontal permeable surface in a porous medium—
numerical and asymptotic solutions,” Transport in Porous
Media, vol. 22, no. 3, pp. 327–344, 1996.

[26] R. S. R. Gorla and A. Chamkha, “Natural convective boundary
layer �ow over a nonisothermal vertical plate embedded in
a porous medium saturated with a nano�uid,” Nanoscale and
Microscale ermophysical Engineering, vol. 15, no. 2, pp. 81–94,
2011.

[27] W. A. Khan and I. Pop, “Free convection boundary layer �ow
past a horizontal �at plate embedded in a porous medium 	lled
with a nano�uid,” Journal of Heat Transfer, vol. 133, no. 9, Article
ID 094501, 2011.

[28] A. Aziz, W. A. Khan, and I. Pop, “Free convection boundary
layer �ow past a horizontal �at plate embedded in porous
medium 	lled by nano�uid containing gyrotactic microorgan-
isms,” International Journal of ermal Sciences, vol. 56, pp. 48–
57, 2012.

[29] G. W. Bluman and S. C. Anco, Symmetry and Integration
Methods for Di�erential Equations, Springer, New York, NY,
USA, 2009.

[30] A. A. Avramenko, S. G. Kobzar, I. V. Shevchuk, A. V. Kuznetsov,
and L. T. Iwanisov, “Symmetry of turbulent boundary-layer
�ows: investigation of di�erent eddy viscosity models,” Acta
Mechanica, vol. 151, no. 1-2, pp. 1–14, 2001.

[31] A. V. Kuznetsov, A. A. Avramenko, and P. Geng, “Analytical
investigation of a falling plume caused by bioconvection of
oxytactic bacteria in a �uid saturated porous medium,” Inter-
national Journal of Engineering Science, vol. 42, no. 5-6, pp. 557–
569, 2004.

[32] M. Jalil, S. Asghar, and M. Mushtaq, “Lie group analysis of
mixed convection �ow with mass transfer over a stretching
surface with suction or injection,” Mathematical Problems in
Engineering, vol. 2010, Article ID 264901, 14 pages, 2010.

[33] M. A. A. Hamad, M. J. Uddin, and A. I. M. Ismail, “Radiation
e�ects on heat and mass transfer in MHD stagnation-point
�ow over a permeable �at plate with thermal convective
surface boundary condition, temperature dependent viscosity
and thermal conductivity,”Nuclear Engineering and Design, vol.
242, pp. 194–200, 2012.



Mathematical Problems in Engineering 21

[34] A. Aziz, M. J. Uddin, M. A. A. Hamad, and A. I. Md.
Ismail, “MHD �ow over an inclined radiating plate with the
temperature-dependent thermal conductivity, variable reactive
index, and heat generation,”Heat Transfer, vol. 41, no. 3, pp. 241–
259, 2012.

[35] A. G. Hansen, Similarity Analysis of Boundary Layer Problems
in Engineering, Prentice Hall, Englewood Cli�s, NJ, USA, 1964.

[36] W. F.Ames,Nonlinear Partial Di�erential Equations in Engineer-
ing, Academic Press, New York, NY, USA, 1972.

[37] R. Seshadri and T. Y. Na, Group Invariance in Engineering
Boundary Value Problems, Springer, New York, NY, USA, 1985.

[38] D. Shang, eory of Heat Transfer with Forced Convection Film
Flows, vol. 3 of Heat and Mass Transfer, 2010.

[39] A.H.Nayfeh,PerturbationMethods,Wiley,NewYork,NY,USA,
2000.

[40] E. Erfani, M. M. Rashidi, and A. B. Parsa, “�e modi	ed
di�erential transform method for solving o�-centered stag-
nation �ow toward a rotating disc,” International Journal of
Computational Methods, vol. 7, no. 4, pp. 655–670, 2010.

[41] M. M. Rashidi, N. Laraqi, and A. Basiri Parsa, “Analytical
modeling of heat convection in magnetized micropolar �uid by
using modi	ed di�erential transform method,” Heat Transfer,
vol. 40, no. 3, pp. 187–204, 2011.

[42] M. M. Rashidi and M. Keimanesh, “Using di�erential trans-
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