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Preface

This book is intended for advanced undergraduates, graduate students, and young
researchers in geometry. It was written with two main goals in mind. First, we give a
gentle introduction to the classical theory of Lie groups, using a concise geometric
approach. Second, we provide an overview of topics related to isometric actions,
exploring their relations with the research areas of the authors and giving the main
ideas of proofs. We discuss recent applications to active research areas, such as
isoparametric submanifolds, polar actions and polar foliations, cohomogeneity one
actions, and positive curvature via symmetries. In this way, the text is naturally
divided in two interrelated parts.

Let us give a more precise description of such parts. The goal of the first part
(Chaps. 1 and 2) is to introduce the concepts of Lie groups, Lie algebras and
adjoint representation, relating these objects. Moreover, we give basic results on
closed subgroups, bi-invariant metrics, Killing forms, and splitting of Lie algebras
in simple ideals. This is done concisely due to the use of Riemannian geometry,
whose fundamental techniques are also quickly reviewed.

The second part (Chaps. 3–6) is slightly more advanced. We begin with some
results on proper and isometric actions in Chap. 3, presenting a few research
comments. In Chap. 4, classical results on adjoint and conjugation actions are
presented, especially regarding maximal tori, roots of compact Lie groups, and
Dynkin diagrams. In addition, the connection with isoparametric submanifolds and
polar actions is explored. In Chap. 5, we survey on the theory of polar foliations,
which generalizes some of the objects studied in the previous chapter. Finally,
Chap. 6 briefly discusses basic aspects of homogeneous spaces and builds on all
the previous material to explore the geometry of low cohomogeneity actions and its
interplay with manifolds with positive (and nonnegative) sectional curvature.

Prerequisites expected from the reader are a good knowledge of advanced
calculus and linear algebra, together with rudiments of calculus on manifolds.
Nevertheless, a brief review of the main definitions and essential results is given
in the Appendix A.

This book can be used for a one-semester graduate course (of around 3 h per
week) or an individual study, as it was written to be as self-contained as possible.
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Part of the material in Chap. 3, as well as Chaps. 5 and 6, may be skipped by students
in a first reading. Most sections in the book are illustrated with several examples,
designed to convey a geometric intuition on the material. These are complemented
by exercises that are usually accompanied by a hint. Some exercises are labeled
with a star (�), indicating that they are slightly more involved than the others. We
encourage the reader to think about them, in an effort to develop a good working
knowledge of the material and practice active reading.

The present book evolved from several lecture notes that we used to teach
graduate courses and minicourses. In 2007, 2009, and 2010, graduate courses on
Lie groups and proper actions were taught at the University of São Paulo, Brazil,
exploring mostly the first four chapters of the text. Graduate students working in
various fields followed these courses, with very positive results. During this period,
the same material was used in a graduate course at the University of Parma, Italy.
Relevant contributions also originated from short courses given by the authors
during the XV Brazilian School of Differential Geometry (Fortaleza, Brazil, July
2008), the Second São Paulo Geometry Meeting (São Carlos, Brazil, February
2009), and the Rey Pastor Seminar at the University of Murcia (Murcia, Spain, July
2009). In 2009, a preliminary draft of this text was posted on the arXiv (0901.2374),
which prompted instructors in various universities to list it as complementary
study material. Since then, we have substantially improved and updated the text,
particularly the last chapters, featuring many recent advances in the research areas
discussed.

There are several important research areas related to the content of this book that
are not treated here. We would like to point out two of these, for which we hope to
give the necessary background: first, representation theory and harmonic analysis,
for which we recommend Bröken and Tom Dieck [56], Deitmar [78], Fulton and
Harris [90], Gangolli and Varadarajan [94], Helgason [125], Katznelson [136],
Knapp [144], and Varadarajan [217], and, second, symmetries in differential equa-
tions and integrable systems, for which we recommend Bryant [57], Fehér and
Pusztai [86, 87], Guest [119], Noumi [175], and Olver [176].
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