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LIE-POISSON STRUCTURE ON SOME POISSON LIE GROUPS 

VIKTOR L. GINZBURG AND ALAN WEINSTEIN 

1. INTRODUCTION 

Poisson Lie groups appeared in the work of Drinfel'd (see, e.g., [Drl, Dr2]) 
as classical objects corresponding to quantum groups. Going in the other direc-
tion, we may say that a Poisson Lie group is a group of symmetries of a phase 
space that are allowed to "twist," in a certain sense, the symplectic or Poisson 
structure. The Poisson structure on the group controls this twisting in a precise 
way. Quantizing both the phase space and the symmetries, one may obtain a 
quantum group acting on a quantum phase space. 

In recent work, Lu and Ratiu [LR] used so-called standard Poisson structures 
on a compact semisimple Lie group K and on its Poisson dual K* in order 
to give a new proof of the nonlinear convexity theorem of Kostant [Ko]. Their 
method is analogous to the famous symplectic proof of the linear convexity 
theorem given by Atiyah [A] and Guillemin and Sternberg [GS]. The nonlinear 
convexity theorem, like the linear one, follows from a very general result on 
convexity of the image of the momentum map [A, GS]; however, in [LR] it is 
applied not to a coadjoint orbit in e* , but to a symplectic leaf in K* . 

The main result of this paper is that the standard Poisson structure on the 
Poisson dual K* to a compact semisimple Poisson Lie group K is actually 
isomorphic to the linear one on e* . This theorem seems to be related to some 
facts in the theory of quantum groups. Namely, (for generic q) the universal 
enveloping algebra Vee) and its quantum deformation Vq(e) are isomorphic 
as algebras (though not as coalgebras, of course, since the quantum version is 
not cocommutative). In particular, there is a bijective correspondence between 
their representations. A direct connection between our work and its quantum 
analogues, though, is still to be found. 

The present work supplies a positive answer to Question 5.1 in [LR] and 
strongly depends on that paper. To simplify reading, we keep the notations of 
[LR] wherever possible, on one hand, but give all necessary definitions, on the 
other. 

Our work is also related to [Du], in which the nonlinear convexity theorem 
is reduced to the linear one by a deformation argument not unlike the one that 
we use in §5. 

The paper is organized as follows. In §2 we define Poisson Lie groups, discuss 
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some of their properties, and describe the standard Poisson structures on a com-
pact semisimple Lie group and on its Poisson dual. More detailed information 
on these Poisson Lie groups may be found in [LW]. 

Sections 3 and 4 are devoted to preliminary results needed for the proof of 
our main theorem. In particular, we prove in §3 that if a compact Lie group 
G acts on a manifold M, then the cohomology of the Lie algebra 9 with 
coefficients in COO(M) is equal to the tensor product of H*(g) and the ring 
Inv of G-invariant smooth functions on M. Thus, Coo(M) behaves like a 
finite-dimensional g-module. (This result follows from the work of van Est [E], 
but we have chosen to give our proof since it is so short and essentially self-
contained.) In particular, H2(g, Coo(M)) = 0 if G is semisimple. The section 
is independent of [LR] and of §2. 

The last section is entirely devoted to the proof of our main result. 

2. POISSON LIE GROUPS 

Here we briefly discuss the notion of Poisson Lie group and give all necessary 
definitions. The proofs of results we mention may be found, for example, in 
[LW]. 

Definition 2.1. A Poisson Lie group (G, n) is a Lie group equipped with a 
Poisson structure n such that the multiplication G x G -4 G is a Poisson map, 
where G x G carries the product Poisson structure. 

It is easy to show that the Poisson structure n must vanish at the identity 
e E G, so that its linearization den: 9 -4 9 /\ 9 at e is well defined. (Here 9 is 
the Lie algebra of G.) This linear homomorphism turns out to be a l-cocycle 
with respect to the adjoint action, and the dual homomorphism 9 * /\ 9 * -4 9 * 
satisfies the Jacobi identity; i.e., 9 * becomes a Lie algebra. 

The preceding construction is in some sense invertible. Namely, assume that 
we are given Lie algebra structures on 9 and 9 * and that the homomorphism 
9 -4 9 /\ 9 dual to the bracket on 9 * is a cocycle. Then the homomorphism 
9 * -4 9 * /\ 9 * dual to the bracket on 9 is a co cycle as well, and the simply 
connected Lie groups G and G* with the Lie algebras 9 and g* , respectively, 
carry uniquely defined Poisson structures nand n* , making them into Poisson 
Lie groups for which the underlying linearizations are the original structures. 
The Poisson Lie groups (G, n) and (G* , n *) are said to be dual to each other. 

The Lie algebra 9 acts on the manifold G*; i.e., we have a Lie algebra 
homomorphism from 9 to the Lie algebra of vector fields on G* . To describe 
this action, we pick an element v E 9 = (g*)*. It may be identified with an 
element O!e E T*G* . Let us extend O!e to a right invariant I-form O! on G* . 
Then the vector field v * corresponding to v is obtained from -O! by means of 
the Poisson structure n* . One may check that in this way we get an action of 
9 on G* [W]. Hence, if all the vector fields v* are complete, we can integrate 
the g-action and obtain a G-action on G* called the dressing action. 

Trivial example. Let G be any Lie group equipped with the zero Poisson struc-
ture. Then G* = 9 * with its natural Poisson and (additive) Lie group structures. 
The dressing action is just the coadjoint action. 
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In general the dressing action preserves neither the group structure nor the 
Poisson structure on G* _ Nevertheless, it is Poisson in the sense that the map 
G x G* ...... G* is a Poisson map. Moreover, the symplectic leaves of n* are 
precisely the orbits of the G-action. 

In the rest of this section, we are going to describe our main object, the so-
called standard Poisson structures on compact connected semisimple Lie groups 
and their duals. First we change our notation slightly to match that in [LR]. 

From now on, let GC be a complex semisimple Lie group and K its compact 
real form. 

Example. The standard Poisson Lie structures on K and K* • Fix an Iwasawa 
decomposition GR = KAN (see [H]) of GC regarded as a real group GR , and 
let < , > be the imaginary part of the complex Killing form on GC . Denote 
the Lie algebras of GR , K, and B = AN by l, t, and b, respectively. 
One can check that t and b are isotropic subspaces of l with respect to 
< , >. Therefore, since < , > is nondegenerate, b is identified with e* . The 
cocycle condition is satisfied, and thus both K and B = K* become Poisson 
Lie groups. 

Example. GC = SL(n, C), K = SU(n); then B is the group SB(n, C) of 
all n x n upper triangular complex matrices with determinant one and real 
positive elements on the diagonal. The Poisson Lie group structure on SU(n) 
was described by Lu and Weinstein in [LW]. We prove below that the Poisson 
structures on su( n ) * and SB( n ,C) are diffeomorphic. 

Remark. Since the group K is compact and semisimple, it follows from the 
result of Conn [C] that, in a neighborhood of e E K* , the Poisson structure n* 
is diffeomorphic to the standard one on a neighborhood of the origin in t* . 

Theorem 2.2. The Poisson structures on t* and K* are globally diffeomorphic. 

Remark. The Lie groups t* and K* are obviously not isomorphic. Therefore, 
t* and K* cannot be isomorphic as Poisson Lie groups. 

3. POISSON COHOMOLOGY AND LIE ALGEBRA COHOMOLOGY 

Let Ok be the space of all k-vector fields on a Poisson manifold (P, n) . 
Recall that the graded vector space 0* carries a natural bilinear homomorphism 
[ , ]: Ok x Of ...... 0k+f_1 called the Schouten bracket and satisfying the graded 
Jacobi identity (see, e.g., [Ku]). As a consequence, the linear operator d1(: Ok ...... 

0k+ I' d1( W = [n , w] is, in fact, a differential: d; = 0 . 

Definition 3.1. The Poisson cohomology H;(P) of (P, n) is the cohomology 
of the complex (0*, d1() . 

Example. If (P, w) is a symplectic manifold then H;(P) = H*(P). In fact, 
we have the isomorphism of the complex (0*, d1() and the de Rham complex 
of P given by the formula VI /\ ... /\ vk f----t iv w /\ ... /\ iv W. 

I k 

Let us now come back to our main objects: a Poisson Lie group G and its 
dual group G* . The goal of this section is to calculate the Poisson cohomology 
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of G* in terms of the Lie algebra cohomology of g. Denote by Inv the algebra 
of all Casimir functions on G*, i.e., functions constant on the leaves of the 
symplectic foliation. Equivalently, Inv is the algebra of G-invariant functions 
with respect to the dressing action of G on G* . 

Theorem 3.2. If G is a compact Poisson Lie group then H: ( G*) = H* (g) 181 Inv . 

Corollary 3.3. If G is a compact semisimple Poisson Lie group then H; ( G*) = 0 . 

Remark. We do not require G to be equipped with the standard Poisson struc-
ture. 

We will not need this theorem in its full generality. In fact, all that we need 
is the corollary. However, the proof in this particular case does not differ too 
much from the general one, which we prefer. 

Theorem 3.2 follows from the next two results. 

Proposition 3.4 [L]. If G is any Poisson Lie group then 

H; ( G*) = H* (g, COO ( G*)) , 

where COO (G*) is made into a g-module by means of the dressing action of 9 
on G*. 

The proof of this proposition is rather standard (see, e.g., [L] or [GL]) and 
we omit it. Note also that a similar result holds for any open subset U c G* . 
Namely, H:(U) = H*(g, COO(U)). 

The right-hand member of the equality in Proposition 3.4 may be calculated 
in an even more general situation. Consider a compact group G acting on a (not 
necessary compact) manifold M, and denote by Inv the algebra of G-invariant 
smooth functions on M. 

Theorem 3.5. H*(g, COO(M)) = H*(g) 181 Inv. 
Proof of Theorem 3.2. Combine Theorem 3.5 and Proposition 3.4. Q.E.D. 

Proof of Theorem 3.5. Consider the direct product G x M with two commut-
ing G-actions TT and TI, TT(g)(h, x) = (hg-' , gx) and TI(g)(h, x) = 
(gh, x) , where g, h E G, x EM, and x I--> gx is just the action of g on M. 
Orbits of these actions are precisely fibers of the fibrations l, /: G x M -t M, 
where l (h, x) = hx and / is just the natural projection (h, x) I--> x. 
Let Q* (pT) be the complex of T I-invariant differential forms on the pT -fibers 
equipped with the de Rham differential d . 

Denote by 'tJ'* the Chevalley-Eilenberg complex for the cohomology of 9 
with coefficients in COO(M). 

Lemma 3.6. There exists a natural isomorphism of complexes <1>: 'tJ'* -t n* . 
Proof of Lemma 3.6. To define <I> pick c E 'tJ'k and vectors v,, ... ,vk tan-
gent to the T T -orbit at a point (g, x) E G x M . There are k uniquely defined 
elements a, ' ... , ak in 9 such that for the corresponding vector fields T/ (ai) , 
i = 1, ... ,k on G x M we have T:(ai)(g,X) = Vi' Let us set 

<l>C(g,X)(V" ... ,Vk ) = c(a" ... , ak)(x). 
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Since the actions T' and T' commute, the k-form <I>c is T '-invariant. 
The linear homomorphism <I> is, in fact, an isomorphism. Indeed, let a E 

nk(p') d h u an a l , • •• , ak E 9 ; t en 
-I " <I> a(a l , .•. , ak)(x) = a(T* aI' ... , T* ak)(g, x) 

is well defined since a and all of the T/ (ai ) are T '-invariant. 
A straightforward calculation shows that <I> is actually an isomorphism of 

complexes. Q.E.D. 
By Lemma 3.6 we see that 

H* (Q* (p') , d) = H* (g, COO (M)), 

and it remains to show that 
H*(Q*(p') , d) = H*(g) ~ Inv. 

It is slightly simpler to work with the complex Q* (p') formed by T' -invariant 
forms on the p' -fibers, which is isomorphic to Q* (p') via the involution (h, x) 
t--> (h- I ,hx) of G x M that switches the actions T' and T'. 

Fix aT' -invariant metric on G x M, and let Jr* be the linear space of 
fiberwise harmonic forms in Q* (p'). The (T' -invariant) fiberwise Hodge de-
composition implies that H*(Q*(P') , d) = Jr*. On the other hand, Jr* co-
incides with the linear space of all G-invariant smooth functions on M with 
values in H* (G) = H* (g) . Therefore, 

H*(Q*(P') , d) = H*(Q*(P') , d) = Jr* = H*(g) ~ Inv. Q.E.D. 
Remarks. 1. Our proof shows that there exists an operator K, from the space 
of all exact cochains c E C?f* to C?f*-I , such that dLieK C = C , where dLie is the 
differential in the Chevalley-Eilenberg complex; this operator preserves smooth 
dependence on parameters. 

2. We felt that Theorem 3.5 should be in the literature somewhere. After 
asking many people about such a reference, we learned from D. Wigner that the 
theorem follows easily from Theorem 2 of [E]. On the other hand, the proof 
above is simple and self-contained except for the use of Hodge theory. 

For bounded domains in Euclidean space, a result very close to Theorem 
3.5 was also proved by Conn [C], who also found bounds for the operator K 
mentioned in the previous remark. Lemma 3.6 is not quite new either. A 
similar result was proved by Weinstein and Xu [WX] in the much more general 
context of groupoids, and the same method was used in [GL] in order to prove 
the Morita invariance of the first Poisson cohomology. 

3. The only simplification that would occur in a direct proof of Corollary 
3.3 would be to notice that H2(G) = 0 if G is semisimple and to prove that 
H 2 (Q*(P') , d) = 0 using again the fiberwise Hodge theory. 

4. Theorem 3.5 does not extend to the case where one simply has a Lie 
algebra action. For instance, consider the coadjoint action of SU(2) restricted 
to the complement of a line through the origin. The resulting action is defined 
only at the level of the Lie algebra, and the resulting cohomology is not trivial in 
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dimension 1. One may see this by identifying the, Lie algebra cohomology with 
Poisson cohomology and observing that the doubly-punctured spheres admit 
locally hamiltonian vector fields that are not globally hamiltonian. 

4. RIGIDITY OF INY ARIANT SYMPLECTIC STRUCTURES 

In this section, we establish a sort of rigidity of symplectic structures invariant 
with respect to a given torus action and satisfying certain extra conditions. 

Consider a compact manifold W equipped with an action of a torus T. 
Suppose that the set W T of fixed points is discrete. 

Proposition 4.1. If Wo and w, are two T-invariant symplectic structures on W 
that admit momentum maps Jo and J" respectively, such that Jo(x) = J, (x) 
for every x E W T , then the cohomology classes of the symplectic structures 
coincide, [wo] = [wd· 

Remarks. 1. If we are given a family of T-invariant symplectic structures wt ' 
t E [0, 1] with the momentum maps Jt such that both wt and Jt are smooth in 
t and Jt(x) is independent of t for every x E W T , then the proposition and 
(equivariant) Moser's theorem [M] imply that all (W, Wt) are equivariantiy 
diffeomorphic. 

2. If dim T = dim Wj2, no continuous deformation is necessary. Namely, 
it was proved by Delzant [D] that the image of the momentum map determines 
the symplectic structure up to an equivariant diffeomorphism. 

3. The hypothesis that the fixed points of the T-action are isolated may 
be weakened and replaced by the assumption that the cohomology classes of 
wol W T and w,1 W T coincide. 

Proof. Throughout the proof all cohomology groups will be taken with real 
coefficients. 

First assume that T is a circle and identify the dual space t* with R. Let 
C; be a vector field generating the T-action. In other words, C; is a hamiltonian 
vector field for both the symplectic structures Wo and w, with the hamiltonians 
Jo and J" respectively. 

Following Atiyah and Bott [AB], we recall that the T-equivariant de Rham 
complex of W is the graded algebra n~[u] of polynomials in u, degu = 2, 
with the coefficients in T-invariant differential forms, equipped with the differ-
ential dT = d + i~u. The cohomology of the complex (n~[u], dT) coincides 
with the equivariant cohomology H;(W) of W [AB]. It is known (see [K]) 
that the restriction homomorphism 

.* * * T * T iwT: HT(W) -t HT(W ) = H (W ) ® R[u] 

is injective because the T-action is hamiltonian with respect to either symplectic 
structure. 

In particular, consider the elements w~ = wo+Jou and wi = w, +J, u of the 
equivariant de Rham complex. These elements are dT-closed and the restriction 
homomorphism j:VT sends their cohomology classes into ffiXEWT Jo(x)u and 
ffiXEWT J, (x)u , respectively. Since j:VT is injective and Jol W T = J,I W T , we 
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see that [w~] = [wi] in H;(W) _ Since the cohomology classes [wo] and 
[wd are just the images of [w~] and [wi] under the natural homomorphism 
Fr(W) -+ H*(W) "forgetting" the T-action, [wo] = [w,]_ 

The general case where dim T > 1 can either be proved in the same manner 
as the one above or reduced to it as follows_ Let dim T > 1 ; recall that only a 
finite number of subgroups of T may appear as stabilizers of points of W (see, 
e.g., [BJ). Therefore, there exists a one-dimensional closed subgroup T' c T 
that meets the stabilizer of every point in W\ W T along a discrete subgroup and 
thus W T1 = W T • It is obvious that both of the momentum maps of the T'-

I 

action coincide on W T . This means that the action of the circle T' satisfies 
the hypothesis of the proposition. Q.E.D. 

5. PROOF OF THEOREM 2.2 
With all preparations in place, we can now prove Theorem 2.2. 
Recall that K is a compact semisimple Poisson Lie group equipped with the 

standard Poisson structure, K* is its dual. Let 1C be the Poisson structure on 
K* ; except for this insignificant modification we will keep all the notation of 
§2. There exists a natural diffeomorphism E:t* -+ K* (see [LR, §5J), and hence 
we may identify (the manifold) K* with the linear space t* . 

Although it is not really necessary for our purpose we prefer to recall the 
definition of E. The subspaces t and p = it clare isotropic with re-
spect to the imaginary part < , > of the complex Killing form. Therefore, 
p may be identified with t* by means of < , >. The exponential map is, in 
fact, a diffeomorphism between p and P = exp p. The Cartan decomposition 
GR = KP (see, e.g., [R)), along with the Iwasawa decomposition GR = KB, 
where B = K* , gives rise to a diffeomorphism P -+ K* . Combining all these 
diffeomorphisms we obtain E. 

Now consider the family 1Ct ' t E [0, 1] of Poisson structures on K* = 
t* defined by the formula 1Ct (X) = 1C(tX)/t. Then 1C, = 1C, and 1CO is the 
linearization of 1C at the origin, i.e., the standard Lie-Poisson structure on t* . 

According to [LR], E sends coadjoint orbits to orbits of the dressing action, 
so the symplectic foliations of 1C and 1CO coincide. Since the foliation for 1CO 
is invariant under homotheties, all the 1Ct have the same symplectic foliation 
as well. In other words, all of the 1Ct are tangent to the coadjoint orbits in t* 
and symplectic on them. We need the following 

Lemma 5.1. On every coadjoint orbit & c t* , all the symplectic structures w t 
corresponding to the Poisson structures 1Ct lie in the same cohomology class. 
Proof. Although E is not Poisson, it is T-equivariant (and even K-equivari-
ant), where T c K is the maximal torus used in the Iwasawa decomposition. 
Since the T-action on t* preserves the Poisson structure 1C [LR], it preserves 
all the 1Ct • Let Jt : & -+ t be the momentum map of the T-action with respect to 
the symplectic structure w t . The fixed points of the T-action are precisely those 
where the rank of Jt is equal to zero. As was proved in [LR], the momentum 
maps Jo and J, may be chosen to have the same image: Jo(&) = J, (&); 
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moreover, Jo(x) = J1 (x) for all the fixed points x of the T-action. This 
implies that all the Jt may be chosen so that Jt(x) = const for every fixed 
point x. Hence the hypothesis of Proposition 4.1 holds for W = & and the 
lemma follows. Q.E.D. 

To prove Theorem 2.2, we consider the bivector field ict = d7Ct/dt and, in 
particular, ic = ic 1 • We claim that there exists a vector field X such that 

(1) ic = L X 7C; 
(2) X has the zero linearization at the origin; 
(3) X is tangent to the coadjoint orbits in e* . 
Obviously, [ic, 7C] = 0, i.e., ic is a Poisson cocycle on (e* , 7C) . By Corollary 

3.3, ic is a Poisson coboundary; i.e., there exists a vector field Y such that 
ic = [7C, Y] (= L y7C). 

All the Poisson structures 7C t vanish only at the origin and have the same 
linearization TCO there. This implies that Y vanishes at the origin and that its 
linearization doY is Poisson with respect to 7CO' i.e., Ld y7CO = O. Thus Ld y 

o 0 
is dual to a derivation of 9 that, since 9 is semisimple, must be inner. Hence 
there is a linear function f on 9 * such that do Y is precisely the hamiltonian 
vector field for the hamiltonian f with respect to the Poisson structure 7CO ' 

Finally, let c; be the hamiltonian vector field determined by f, but this time 
with respect to the Poisson structure 7C. The linearization of c; is the same as 
that of Y, and X = Y - c; satisfies both (1) and (2). 

To prove (3), note first that ic is tangent to the orbits, so the flow of X must 
preserve the singular foliation by the coadjoint orbits. Lemma 5.1 implies that 
the flow of X sends every generic coadjoint orbit onto an orbit with the same 
cohomology class [wd = [wo]' Since the algebra e is semisimple, the cohomol-
ogy class [wo] varies nontrivially in all transversal directions to a generic orbit. 
Therefore, the flow preserves a generic orbit, i.e., X is tangent to the generic 
orbits of the coadjoint action. 

Consider now the time dependent vector field X t given by the formula 
Xt(x) = X(tx)/t2 • By (2), the field Xt is well defined for t = 0 and smooth 
in t E [0, 1]. By (3), all the X t are tangent to the generic coadjoint orbits. It 
follows that they are tangent to the (compact) level surfaces of the quadratic 
Casimir function given by the Killing form, so the family X t can be globally 
integrated to a family cPt of diffeomorphisms. Finally, a straightforward cal-
culation based on (1) shows that Lx 7Ct = ict . Therefore, cPt*7Co = 7C t and, in 

t 

particular, cP 1 is the desired diffeomorphism cPh7CO = 7C. This finishes the proof 
of Theorem 2.2. Q.E.D. 
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