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We classify and study those coordinate systems which permit R separation of variables for the wave
equation in four-dimensional space-time and such that at least one of the variables corresponds to a one-
parameter symmetry group of the wave equation. We discuss over 100 such systems and relate them to
orbits of triplets of commuting operators in the enveloping algebra of the conformal group SO(4,2).

1. INTRODUCTION

This paper is an introduction to the problem of R-
separation of variables for the wave equation

(099 = Byq = 85— 335)¥(x) = 0, (1.1)

As is well known, ! the symmetry group of (1.1) is locally
isomorphic to the fifteen-parameter group SO(4, 2). In
this and subsequent papers we will show explicitly that
every known separable coordinate system for (1.1) (as
well as some systems which we derive for the first
time)} corresponds to a three-dimensional commuting
subspace of the space of second-order elements in the
enveloping algebra of so(4, 2). {We consider the elements
of so(4, 2) as first-order differential operators which
map solutions of (1.1) into solutions. ] If the commuting
operators S, S,, S; form a basis for such a subspace
then the associated R-separable solutions ¥ of (1.1) are
characterized by the eigenvalue equations S;¥ =¥,
7=1,2,3, where the eigenvalues }; are the separation
constants. The group SO(4, 2) acts on the enveloping al-
gebra of so(4, 2) via the adjoint representation and de-
composes the set of three-dimensional commuting sub-
spaces of second-order elements into SO(4, 2)-orbits.
We regard coordinate systems associated with sub-
spaces on the same orbit as equivalent.

Several earlier papers of the authors and collaborators
can be considered as preparation for the problem we
tackle directly here. In particular, the Helmholtz, 2
Klein—Gordon, ° and Euler—Poisson—Darboux, ¢ equa-
tions are special cases of (1.1) as are the eigenvalue
equations for the Laplace operator on the sphere S, 3
and the hyperboloids of one and two sheets.® The same
is true for the time-dependent Schrodinger equations
for the free-particle, free-fall, harmonic oscillator’
and hydrogen atom. Our procedure will follow closely
the analogous study of the three-variable wave equation
in Refs. 3, 8, and 9. The difference consists mainly in
the greater complexity of the four-variable case (al-
though a number of computations turn out to be easier
in four dimensions than in three). In this paper we pro-
ceed as in Ref. 8 and present a group theoretic analysis
of (1.1) as well as a rough classification of semisub-
group systems for this equation. Qur future (much more
detailed) results will be fitted into the framework es-
tablished here.
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In Sec. 2 we define the symmetry algebra so(4, 2) of
(1.1) in two distinct bases and construct a Fourier-
transform Hilbert space // as well as a Hilbert space of
positive energy solutions of this equation. On#/, the
elements of so(4, 2) exponentiate to yield a unitary ir-
reducible representation of the covering group SU(2, 2)
of the identity component in SO(4, 2). In Sec. 3 we de-
termine explicitly the action of SU(2, 2). Most of the
results in this section were obtained in Ref. 10 by an-
other method. [However, Eq. (6.6) for the action of a
lightlike special conformal transformation appears to
be new. ]

The remainder of the paper is concerned with separa-
tion of variables. In analogy with Ref. 8 we say that R-
separable coordinates {u,} associated with a three-
dimensional commuting subspace of symmetry operators
are semisubgroup coovdinates if the subspace has a basis
S1, Ss, S; such that S; =A% where A< so(4, 2) and [4, S;]
=0, j=2,3. A particular A € so(4, 2) may correspond
to several (or to no) semisubgroup systems. If ¥ sat-
isfies (1.1) and the equation A¥=4)¥, then, since 4 is
a symmetry of (1.1), we can use standard Lie theory
and introduce new variables vy, ¥y, ¥,, ¥, such that
A=0, +fly)and ¥(y) =7(y) exp(iry,)®,(y;), where r is a
fixed function satisfying 3,7 +fr=0. Then (1.1) reduces
to a second-order partial differential equation () for
@, in the three variables y;. The possible semisubgroup
systems A%, S,, S, thus correspond to the possible co-
ordinate systems such that the reduced equation (f)
separates.

In Secs. 4—8 we examine the possible semisubgroup
systems for which S, and S, belong to the symmetry en-
veloping algebra of (f). They are of seven types corre-~
sponding to seven choices for A. Using the notation in-
troduced in Sec. 2, we find the types are:

1] A=I'y. In this case (1) is the eigenvalue equation
for the Laplace operator on the sphere S,. There are
six coordinate systems.

2] A=P and (1) is the Helmholtz equation (5. 1) which
separates in 11 coordinate systems,?

3] A=P; and (1) is the Klein—Gordon equation (5. 4)
which separates in 53 orthogonal coordinate systems.?

4] A=D and (}) is the eigenvalue equation (5. 8) for
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the Laplace operator on the hyperboloid which separates
in 35 coordinate systems,

5] A=P,+P, and (7) is the free particle Schrodinger
equation {6.1). There are 17 coordinate systems.”

6] A=I'y, and (f) is a generalized EPD equation (7. 1).
The number of coordinate systems for this case has not
yet been determined.

7JA=T,+Dy =T and (1) is (8.3). The number of
coordinate systems for this case is still unknown,

Cases 6] and 7] will be discussed in detail in future
papers. For each case we show how to pass from the
Fourier-transform Hilbert space ~ to the space of posi-
tive energy solutions of (1.1).

Qur classification includes all known semisubgroup
coordinates for (1.1) with one principal exception. Di-
agonalization of the operator A=P;+ P, in Case 5] does
not uniquely determine the variable vy, which is split off
to obtain the reduced equation (f). Thus (F) is not unique
in this case. The possibilities for the nonorthogonal
coordinates which can arise will be classified in a future
paper. [See Ref. 9 where a similar classification was
carried out for (3, — 94— 9,,)% =0.) In all other cases
there is an identity analogous to (2. 24) which uniquely
determines the reduced equation. The variable y, is
still not unique, but new nonorthogonal coordinates so
obtained are rather trivial modifications of the coordi-
nates we have listed.

Finally, in Sec. 9 we classify the orbits in so(4, 2)
under the adjoint action of SO(4, 2) to see why not every
A e s0(4, 2) belongs to a semisubgroup system.

The next two papers in this series will be devoted to
an explicit classification of all orthogonal R-separable
coordinate systems (semisubgroup or not) whose coor-
dinate surfaces are families of confocal cyclides. The
classification will proceed in analogy to that in Ref. 3.
However, the number of coordinate systems involved is
approximately 300. Later we will classify the nonortho-
gonal systems. Future work will concern the resulis in
special function theory which follow from separation of
variables in (1.1). Equation (1.1) is the most important
equation in special function theory and it is no accident
that Bateman'!'"'2 devoted so much energy to its solution
by separation of variable methods.

2.S0(4, 2) AND THE WAVE EQUATION

The symmetry algebra of the wave equation

(0gg= 04y = Bpp — 5 ¥(x) =0, x= (%, %1, X3, X3) (2.1)

is the set of all linear differential operators
2
L :ZJ CZJ-(X)a!- + b(x)
§=0

such that LY is a (local) solution of (1.1) whenever ¥
is a (local) solution.

As is well known, the possible symmetry operators
L form a 15-dimensional Lie algebra, isomorphic to
so(4, 2), where the commutator is the usual Lie bracket.}?
A convenient basis for this model of so(4, 2) is provided
by the linear momentum operators

272 J. Math. Phys., Vol. 18, No. 2, February 1977

Py=9,, a=0,1,2,3, (2.2)

the generators of homogeneous Lorentz transformations

Mg = 2501 = %135, Myg=2x103— x50y, My =x;05 — X35,

Moy = x40 + 2,0y, Mp=2x,0, +5,0y, My=x,05+x,0,,

My, =-M,;, My=»M;, j, k=123, (2.3)
the generator of dilatations
D=~ (1+x3)+xy9) + 3,0, + x334), (2.4)

and the generators of special conformal transformations
Ky=~ 200+ (x - 2 = 20)3 = 2%y 9y = 2 %50 — 2% X405,

Ky =2x; + (x - x +2x8)0; + 2x,x@ + 23X, 3, F+ 20 x50,

Ky=2x, + (x - x +2x2)3, + 2u,x (0 + 2x,%, 8) + 2x,%, 0y,
Ko=2x,+ (v - x +2x2)8, + 2x,x3 + 2x,%, 3y + 2%3%,7,,

where .5

XYy=XVo— X1V — XV — X3V3

3,
=X Wo—X-Y=24 BapXeVs-
aB=(

(2.8

The commutation relations will follow from relations
(2.22) to be derived later.

The symmetry operators can be exponentiated to yield
a local Lie transformation group of symmetries of
(2.1).1% Indeed, the momentum and Lorentz operators
generate the Poincaré group of symmetries

V() ~ ¥ (A (x - @), a=(aya, a4 a;), AcSO(,3),

2.7
while the dilatation operators generate

exp(AD)¥(x) = exp(~ M) ¥(exp(~ M)x), reR (2.8)
and the K, generate the special conformal tranformations

exp(agK, + a K, + a,K, + aK,) ¥ (x)

+a(x - x)
- ca+(q- . x) A x
[1+2x-a+(a-a)x 2] ‘P(l +2x-a+(a.a)(x-x)> )
(2.9
We shall also consider the inversion operator
R¥(x)=(x - x) (= x/x - x) (2.10)

which is a symmetry not generated by the local Lie
symmetries (2.2)—(2.5).

As is well known from quantum field theory, **!* by
formally taking the Fourier transform in the variables x,
we can express the positive energy solutions of (2.1) in
the form

‘I’(x):(’z;,%m ff[:eXp(ik~x)f(k)du(k),

du(k) = dky dk, dky/ky.

(2.11)

ko= (B} + k3 + D2,

Let / be the Hilbert space of all complex Lebesgue
measurable functions f(k) such that
Iz an <=, (2.12)

and with inner product
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Ko=[[ [feau®, fgch. (2.13)

As is well known, }!3 the functions ¥, & related to f, g,
respectively, by (2.11) satisfy

(b, &) =(f, @) =i fftf\lf(x)aod_)(x) dxy dx, dx,

x4=

:_ifftf(ao\ll(x))d?(x) dx, dx, dx,,
xg=

(2.14)

independent of ¢. [Note that (2.14) is easily derived
from (2.13) for f, g belonging to the dense subspace

[ of / consisting of C* functions with compact support
bounded away from k=0, and then considering the clo-
sure of /). For fe# the corresponding ¥ is a solution
of (2.1) in the sense of distribution theory. ]

The operators (2. 2)—(2.5) acting on solutions of (2.1)
induce, via (2.11), corresponding operators on #,

Py=iky, P;=-ik;, j=1,2,3,
Mgy = kydy = Ry 0y, Mlszklaks—kaakl, (2.15)
Maz:kzaks = RyOhyy My = ko3,
My = RyBy,y  Mog=FkyBy, (2.16)
D:1+/e18k1+kzak2+k38k3, (2.17)
Ky =1k(3pyay + Oupn, + 3ppp,),
K= i(k1ak1k1 -k akzka - klak3k3

+ Zkzaklkz + ZkSBkaa + Zakl),

{2.18)

K,= i(kaalzzkz - kzaklkl - kzakska
+ 2y By + 2hyDipp, T 20y,),
Ky= i(ksakzka - k3ak‘k1 - ksakzkz

+ 2y By, + 2ky0 +23,).

In Ref. 13 it is shown that // is invariant under R and

R0 = f f fJO((zk DM du),

where J((2) is a Bessel function. Furthermore, R*=E
(the identity operator on/) and R is a unitary self-
adjoint operator on this space. Also we have the
relations

RK,R'=-P,, RDR'=-D, RM,R'=M,,. (2.20)

(2.19)

Note: There is a minus sign error in the corresponding
expression in Ref. 8 which propagates through several
equations. The error is corrected in Ref. 15,

Now we introduce a new basis for the symmetry alge-
bra of (2.1) which makes apparent the isomorphism with
so(4, 2). We define so(4, 2) as the 15-dimensional Lie
algebra of 6X6 real matrices # such that 4G +GA*t =0,
where 0 is the zero matrix and

— —

= (GaB) .
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Let £, be the 6 X6 matrix with a 1 in row ¢, column j,
and zeros everywhere else. It is straightforward to
check that the matrices

L :5ab "‘6ba = - Fba!
FaA:(faA +5Aa:—rAay lSaS4, A:s, 67
Fsszgss‘fss:"rss
form a basis for so(4, 2) with commutation relations
[raﬂs r‘rw] =Gg g + Gawrsr = Gopley
- Gmrraw

l1<sa<bs<4,

(2.21)

{2.22)

This basis can be related to the operators (2.2)—(2.5)
as follows:

Py=Dy5+ 055 Py=Ip 4T, Py=Iy+T,
Py=Tyy+Tyg Ky=T15~Ty5, K =T~y

_ (2.23)
Ky=T13=Tygg Ky=T1y~Tyg My =Ty,
Myy =L, My=T4, My=TI,,
Mp=Tg5, Mp=0C4, D=Ty.

(That is, the appropriate commutation relations are
satisfied if these identifications are made.)

For our models of so(4, 2), [acting on the solution
space of (2.1) or on the Hilbert space /#/] we have the
identities

(1) PE-Pi-PZ_Pi=Ki-KI_-Ki-Ki=0,
(1) T3 + D +T{ + T3 + T3 + T3 =T +1,
(10) T+ 0% + Th=Tf - Th—Th == D241,
(iv) Ffa +r§6_r%5 "rlzs"rgs‘rgs =T +1.

If {¥, ()} is an orthonormal (ON) basis for the Hilbert
space of positive energy solutions of (2, 1) then {in the
sense of distributions)

Za‘;@'a(x)ga(x')za,(x-x'):(—qurv[ff

(2.24)

xexplik - (x = x")}du(k), (2.25)
where the distribution A, is given explictly by¢
1 1 i
A == —_— -+ - -
+(95) WW+4TIT [5(1’ t) 6(7’ t)],
(2.26)
r=(E+xirxB2 =y,
Note that
Y(x) =¥, A,(x" ~x)), (2.27)

where the integration is carried out over x’.

3. THE ACTION OF THE CONFORMAL GROUP

As is well known, the representation of so(4, 2) on 4
defined by the operators (2.15)—(2. 18) can be extended
to a unitary irreducible representation of the covering
group SU(2, 2) of the identity component of SO(4, 2).°
The maximal compact connected subgroup of SU(2, 2) is
S0O(4) X50(2), where SO(4) is generated by the Lie alge-
bra operators I'y;, 1<¢<j<4 and SO(2) by I';q. We will
explicitly determine the action of this subgroup on/# as
well as the actions of other interesting subgroups.
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The operators M,, generate a subgroup of SU(2, 2)
isomorphic to the homogeneous Lorentz group SO(3, 1).
The action of this subgroup is determined by

T(0)f(k) = f(k0}), 0eSO(3),
exp(aM ) (k) = f(k,(a), ky, k),

ky(a) = ky cosha + k&, sinha,

(3.1)

where My, M;, M,, generate SO(3), and the results for
My,, M, follow easily from that for M. The P, gener-
ate a translation subgroup of operators

exp(Z a, P, )f(k) = exp(ia - R)f(k). (3.2)

The unitary operators exp(Za,K,) are more difficult
to compute. Since the SO(3, 1) subgroup transforms a
via the adjoint action, one has to consider only three
distinct cases : (1) a=(a,, 0,0, 0), a,#0, timelike; (2)
a=(0,a,0,0), a,#0, spacelike; (3) a=(qy, &, 0, 0),

a, # 0, lightlike. All other cases can be obtained by com-~
posing these three operators with the operators (3.1),
(3.2).

Starting with the timelike case, we introduce the basis
{f,j} for /i consisting of generalized eigenvectors of the
commuting operators P,,

Fi, 00 =8k, = 1)6 (kg = 1)0 (g = LYkeg, =0 <1<
thlj:—ilhflj? h=1,2,3, Poftj:ilofzj, -
Fi o Frv) =50 = 10y = )0 U= 1), 3.9
L=+ 11,

It follows that the functions g, =Rf,j,
- (k) = (2% - 1YL/
&, () == (2 - D', (3.4)

form a basis for /#/ consisting of generalized eigenvec-
tors of the commuting operators K,,

thlj :ilhglj, Kn‘qu: - ilogzj,

3.5
(@1, &0 ) =000, = )8y - )3 (5= L), (3.5)
as follows from the fact that K is unitary.
Now we have for f</ that
explaK,) f(s) fffG(a 1, s)A(1) du(D), (3.6)

Gla, 1, 8) = <exp(aKo)fzjafsj>

=(Rexp(- aP)Rf ,, fs ) = (exp(- aP gy , &)

:TGI—TTZ/:/:/;XP(_ iak)d ((2k - 1)*/2) du (k)

-1 . 4
= +
ania) expli(l, +sg)a’]

X (@ [2(s 0y + $ydy + 851y + 85l ),
a#0. 3.7

To compute the action of exp(aK;), we choose a basis
of eigenfunctions of the commuting operators Py, Py, My,,

Foam(K) = (2117258 (ky ~ )6 (R, = 2) exp(im6),
0<p,
A () = dky dk, d6,

—-p<A<p, m=0,%1, (3.8)

ky = (B} - k) /2 sind,
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ky= (K3 = cos®.

Here,
Ph=iph, Pyh=-ixh, M,h=imh,

Brorm Byrromey = 8{p =p BN =N")5, 00

It follows that the functions g,,,= Rh,,,,

k%)l /2

(3.9

explim )

orm(k) = emT Jl(7s exp(a - B)' /2]

Xd,[(rs exp(B - @)! /2]

p=vcosho,

(3.10)
A=7sinha,

ky=s coshB, k,=ssinhB,

du(R)=sdsddde, s>0, —w<f<wm,
form a basis for // and satisfy relations
Mg.g=1mg,
=28 e

Kyg=-ipg, Kig=ixg,

<gp)\my g;:'l'm') =b (p - p,)6
Now,

exp(ak,)f(k)
where

H(a, 1, %) = (exp(aKy)fy, f)

= 2 /(‘)ef.: <fl’ exp(_ aKl)ngm><gakafk> dax dp

M3t

= [ H{a, 1, OAD du(l),

i/ f f exp(ira) Zoam(DEorn(K) dXdp

exp[z(k1 +1,)/al

aj',, :

><Jo(a~1 V2 (Roly + yly = kyly — Ryl)t/?).

(3.13)
We will compute expa(K, +K,) in Sec. 6.

The dilatation operator generates the symmetries
exp(aD)f(k) = e*f(ek). (3.14)

Using these results we can exponentiate the compact
generator ['ys=3(P,- K;). The operators P, D, K, gen-
erate a SL(2, R) subgroup of SU(2, 2) and we have

exp(20@';,) = exp{tanbP;) exp(- sinb cos 6 K)
X exp(— 2In cos D) (3.15)

on SL(2, R). Evaluating the right-hand side of this ex-
pression we find

exp(26T 5 )f(k)

__ ":;9 ‘ f expl—i(l, + ko) cotd] I y(escOl2(kyly + iy

+kyly + R I/ 2)FL) din(l), 0#nm, (3.16)

The operators Py, D, K, generate another SL(2, R)
subgroup of SU(2, 2) and there follows the relation

exp(26T;,) = exp(tandP,) exp(siné cos8 K,) exp(~ 2ln cos6 D)

or
exp(26l"12
T 4r smzﬁ fexp[z(kl +1;) cotd W (cscb{2(kyly + byl
_kzlz_kal:i)]l /Z)f(l) d“'( ), @+#nm. (3‘ 17)
E.G. Kalnins and W. Miller, Jr. 274
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4. DIAGONALIZATION OF Ty,

The restriction of the unitary irreducible represen-
tation T of SU(2, 2) on//, discussed above, to the com-
pact subgroup SO(4) decomposes into a direct sum of
SO(4)-irreducible representation Dy, dimDp = (2F +1)2,
A basis of eigenvectors for the commuting operators
I's6, D43, T'y2 can be used to exhibit this decomposition,

Lsof =i)f, Tyf=imf, Tyf=ipf,
—ilgg=zk(= 8, +1), Ty= kaatzz = k3, (4.1
. k
—il'y, :‘2“‘ (alzlkl = Onpr, = gty = 1)
+ kzaklkz + ksaklka F O,
Setting
ky=(8~1)/2, ky=Ensiné, |

du(k) =2Eindtdnde,

we find that the ON basis consists of eigenfunctions

ky= Encoss,

F—a)l(F=~b)! \!/2 R
Fran(es 0= (ST EE TN expl- (64 ) /200
XL (EBLE () expli(a +b)6], (4.2
A=2F+1, m=a+b, p=a->,
2F=0,1,2,+--, a,b=F F-1,,, . ,~F,

[Here L{*'(x) is a generalized Laguerre polynomial. ]
g

The (2F + 1)? functions frq for fixed F form a basis for
Dy, so TISO(4) =3 5.,® Dj.

The known recurrence relations for Laguerre poly-
nomials imply

2T frap=UF = a+ D(F +b+ D} % 1002500~ UF = F+0) 1 2y 12,00 12,5112
+{(Fta+tD)(F-b+1]} /szﬂ /2,41 [2,b-1 /2 = [(F+a)(F-b)] /sz-l /2,a-1/2,541 /25

ZipsfF,a,b = [(F +a+ 1)(F +b+ 1)]1 /sz#l /2,841 /2,641 /2= [(F‘ b)(F+ b+ 1)]‘ /afF,a,hl - [(F - a)(F +a+ 1)]1 /ZfF,a+1,b
+(F=-a)(F =01y 15,00 12,0 2 T UF+@)(F )2y 15 0t 12y ba 1= [(F+O)F =0+ D3 0y
-[(F+a)(F-a+ np /sz,a-l bt [(Fea+))(F-b+1] /sz+1 /2,a-1/2,b-1/2"

Expressions (4.1), (4.3), and the commutation rela-
tions (2. 22) suffice to determine the action of any ',
on fFab-

There is a close connection between the quantum
Kepler problem in three-space,

H®=E®, H=- ax1x1 = axgxz - axaxa

r=(x§ +x%+x91/2 fffR,,’dezdxldxzdx3<°°,

+e/r,

4.9

and the equation I';ef =¢Af., Indeed the equations can be
identified if we set k;=x,v—E, E=-¢?/42X%, (Although
the eigenvalue problems are defined on Hilbert spaces
with different inner products, it follows from the Virial
theorem, Ref. 17, p. 51, that if £ belongs to the point
spectrum of H, and @ is the corresponding eigenvector,
then ® has finite norm in//. Conversely, if fis an eigen-
vector of I'sg then [[[, ;1f1%dx; dx,dxy < and f corre-
sponds to an energy eigenvalue E in the point spectrum
of H.) Since the eigenvalues of —iI'yg are A=2F +1,
2F=0,1,2---, it follows that the point spectrum of H
consists of the eigenvalues E = — €2/4(2F + 1), (Similar-
ly, the continuous spectrum of H is related to the opera-
tor I'ys.)

Applying the transformation (2. 11) to the basis {f“b}
we can determine the corresponding ON basis {\If“b}
of positive energy solutions of (2.1),

Ty () = (21) /Zf f f eXp(ik * 1) fras () dit (i)

1/2
= explila 0o - 1/2) (T E )

x ﬂ i f " explb(ix, - D(€ + 1)
Q

- %xl(gz - T)Z)](g.n a+b+l

275 J. Math. Phys., Vol. 18, No. 2, February 1977

(4.3)
| XLED(R)LED () oy (rE7) dE (4.5)
X,=vsing, x;=vcose.
In terms of the coordinates
__ siny =N .= Vo
" yo~cosy’ 'y —cosd’ "2 y,~cosy’
xaz——ya——, Y¢=CO0SQ COST, ¥,=cosa sing,
Yo — cosy
y,=sinasing, y,=sinacosy, (4.6)

we have

Up (%) = (cosa coso — cosy) expli(ime + po - (2F + 1)7)]

X (21) /2(_ 1)F-a+t ((F+a)! (F +b)!

1z ,
n(F-a)!(F—b)!) (sina)

(cosa)?F= (b-F,a-F$ . )
Tar67D Zi\gepry |TtA02). @7
Indeed, direct computation shows
T'yg=- 9, + sind(cosa coso - cosy)?, T=a,,
(4.8)

T,,=3,+ cosasino{cos® coso - cosy)™
on the solution space of (2.1). Hence
Ppgp(X) = (cosa coso ~ cosy) expli[me + pa = (2F + V) pg(a)

and substitution into (2. 1) yields R-separation of vari-
ables. It follows from this that g(@) must be a multiple
of (sina)**’(cos )& - ,F, (b— F,a~ F;a+b+1; - tan®a).
The constant is determined by explicitly computing

(4. 6) for convenient values of the variables.

There is another model of this irreducible represen-
tation which is very convenient for computations involv-
ing eigenfunctions of I'sg, I'y;, and I'y,. The representa-
tion space 7 consists of functions % of three complex
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variables u, v, w such that (- u, = v, ~w) =hu, v, w).
More precisely, / is the complex H11bert space with
ON basis
(F+6)1(F =0)!
/"Fab RS N Y]

1/2
Frai(F —-(1)!] FraF+b,2F-a-b,

ab=F F-1,...,-F, 2F=0,1,-: 4.9

The operators

Tog=i(ud, + 00, +wd, +1), r“:%(uau + 02, — wd,),

Ty, =i(ud, = vd,),

ot
2l g=rw(vd, +1) m —— (- ud, + 03, +wd,)

3 (4.10)

+ﬂ(ua 08, twdy, +2) —utwt(ed,),

2P, = (ur — vao™) (03, +1) -%(%) %U—z>(- ud, tvd, twd,)

+ (et — by (ud,) + 2(w? — vtw)

X (U, ~0vd, +wd, +2),

acting on this basis satisfy relations (4.1), (4.3) and
completely determine the action of so(4, 2). The three
variable model appears to be the simplest in which to
compute matrix elements of the SU(2, 2) operators with
respect to the {1’56, T, [y, eigenbasis. For some ex-
amples of matrix elements computed with this model
see Ref. 18. (Indeed in this reference it is shown that
one can choose another basis for the complexification
of so(4, 2) for which the differential operators take a
much simpler form. The action of the Lie algebra on
the basis {fpe corresponds exactly to the 12 known dif-
ferential recurrence relations for the functions ,F;.)

We can see from (4.6) and (4. 8) how one characterizes
those solutions ¥ of (2.1) such that I';q¥ =¢x¥. It follows
from these expressions that ¥ =(y, - cosy)®(v) exp(~iry)
where v= (v, vy, Vs, ¥3) is an element of the sphere
Sy:yE+yi+yi+yi=1. Moreover, Eq. (2.1) for ¥ re-
duces to the eigenvalue equation

(03, + 13, + T3, + T3, + T4+ T3)®

=(1-23)d, (4.11)

Here (4.11) is the eigenvalue equation for the Laplace—
Beltrami operator on S;. Indeed, the symmetry algebra
of this equation is so(4) with basis {T';;, 1<i<j<4},
The operators

L =vedy = V19 g = V30, =50

ko
rza:ylav

vp!

2—_v28 (4.12)

bt
acting on S, generate this symmetry algebra.

Thus, the effect of diagonalizing I'y¢ is to reduce the
separation of variables problem for (2.1) to the corre-
sponding problem for (4.11). The latter equation was
studied in Ref. 5 where it was shown that (4.11) sepa-
rates in exactly six orthogonal coordinate systems,
each corresponding to a commuting pair of symmetric
second order symmetry operators from the enveloping
algebra of so(4). Briefly, the list is

111%, I, (cylindrical)
2] r¢,+1%,+1%, I, (spherical)
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3 ri, +r8, +r%, %4+, 0<k<1 (spheroelliptic)

4] D3+ T +T5 + T, - T3y, Ti, —-~<a<-1

(elliptic cylindrical, Type I)

5) Same as 4] with -1 <a <0 (elliptic cylindrical,
Type 17)

a-b-1 b—a-~1
BJ F‘§3—F124+(1—-a—[)> (F%B_F§4>+<1_a_[)>
X (r%g—f§4

26(1 - @) (DE +T5) + 2a(1 - bY(I', +T'%,)

+26(1 = a) (2 - TZ) +2a(l - b) (1—%—‘—}) (12, - I2%)

(ellipsoidal).

The names of the separable coordinates are listed in
parentheses. These systems are studied in detail in
Ref. 5 and related to the hydrogen atom eigenvalue
equation.

5. DIAGONALIZATION OF P, P,’, AND D

Next we search for coordinate systems permitting
separation of variables in (2.1) such that the correspond-
ing basis functions ¥ are eigenfunctions of P, : F ¥
=iw?, In this case we can set ¥(x) = expliwx,) ®(x;, x,, X,)
where

(8 + 8y T 0y T 094 =0, (5.1)
It follows that the reduced equation for the eigenfunctions
is the Helmholtz equation. The symmetry algebra for
(5.1) is £(3), the Lie algebra of the Euclidean group in
three-space. A basis for ¢ (3) is {Py, Py, Py, My, Myy, My},
1t is well known®'® that this equatlon separates in ex-
actly 11 orthogonal coordinate systems, each system
corresponding to a pair of commuting second order
symmetric operators in the enveloping algebra of & (3).
Briefly, the separable systems are

P PEZ (Cartesian),
P? (cylindrical),

Mg,

1
2
3
4] Mg +d?P}, P%Z d~ 0 (elliptic cylindrical),
5

MZ, + M2, + M2, M% (spherical),

)
| M
|{M,,, P,}, PZ (parabolic cylindrical),
|
]
] a>0

6) M2, + M}, + M2, — *(P} +P3), Mj,

(prolate spheroidal),

) Mg + M3, + M, + B(PE+FY, My, a0
(oblate spheroidal),
81 {My, Pot = {My,, P}, M% (parabolic),

9] MY - Py} +{Myy, P,
(P2 = P) +{My,, Py} —{My,, P5t (paraboloidal),

c?Pi+c({My,, P

10] P2+ aP%+ (a+ 1) P} + M5 + M{y + M3,

M2, +a(M3,+P3), a>1 (ellipsoidal),
11] ME, + M2y + M2, M2, +bME;, 1560

(conical). Here {4, Bt =AB+BA.
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On # the condition P,f=iwf implies fk)=5(k,- w)g, &)
where w>0 and k= (ky, Ry, ky) Tanges over the unit sphere

S,: k-k= 1, k= wk. To determine the functions £, one
uses the H11bert space L,(S,) ) of square 1ntegrab1e func-
tions on S, [with measure dQu(k) = dk, - dk,/k,] on which
£(3) acts via

P, =—iwk;,, M= - kyop,

1<j,1<3, j#l. (5.2

These operators determine a unitary irreducible rep-
resentation of E(3) on L,(S,).%" Once the eigenfunctions
Z4s(K) of the operator pairs 1]—11] have been deter-
mined, the corresponding separable solutions ¥, ,4(x)
of (2.1) can be obtained from the integral transform

w exp(iwxg)

Vs (X} = el A exp(iwx - K) g, (k) d2AK).

z (5.3)
All the eigenfunctions g,5 and integrals (5. 3) have been
computed in Ref. 2.

Now we study coordinate systems permitting variable
separation in (2.1) such that the basis functions ¥ are
eigenfunctions of P,: P,¥ =— i\ ¥. Here we can set ¥(x)
=exp(-ixx,)®(x,, x,,%,), Where

(3g9= Byq = 35 T A} 2 =0, (5.4)

The symmetry algebra of the Klein—Gordon equation
(5.4) is £ (2, 1) with basis {P, Py, Py, My, My, My},
Furthermore, the pseudo-Euclidean (or Poincaré) group
E(2,1) is the symmetry group of (5.4). In Ref. 3 it is
shown in detail that variables separate in (5. 4) for 53
orthogonal coordinate systems, each system character-
ized by a pair of commuting second-order symmetric
operators in the enveloping algebra of £ (2, 1).
the coordinates 1}—4] for (5.1) are counted again in the
list of 53 systems for (5.4). ]

On # the requirement P,f=—i\f implies f(k) =6 (k,
~ Ng(ky, k,) where — = <X <%, The search for eigenfunc-
tions reduces to a study of the Hilbert space L,(H) of
square integrable functions with respect to the measure
dt=dk, dky/ky, where ky=(k}+k:+2*)'/2 The inner
product is

(i, 1) = [ [ iRy, kB (g, k3) dE, B, B’ € Ly(H), (5.5)
and the action of £(2, 1) on L,(H) is given by
PO:ikO’ Plz‘ikly Pzz_ikZ: (56)

My = kzakl - klakzy My = koakl, My, = k[)aka-

As is well known, "2’ these operators define a unitary
irreducible representation of E(2,1) on L,(H). Once the
eigenfunctions g, corresponding to each of the 53 sepa-
rable systems have been determined, the associated
separable solutions of (2.1) follow from

- IAX.
Sy

- kzxz]gas(kp ky) dt.

A detailed study of the basis functions g,z and the inte-
grals (5.7) has not yet been undertaken.

Vs (x)=

(5.7
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[Of course

Now we search for separable coordinate systems for
(2.1) such that the corresponding basis functions ¥ are
eigenfunctions of D: D¥ = —iv¥. Then we have ¥(x)
=p*1d(sy, 51, Sz, S5), Where ¥, =ps,, p=0, s-S=¢,
and €e=+1, -1, or 0 depending on whether x-x>0, <0,
or =0. From Eq. (2.24ii) we see that the reduced equa-
tion for @ is

(Mg + Mgy + M, - Mig)e(s)= (V2 + 1) @(s).
(5.8)
The operator D commutes with the subalgebra so(3, 1)
with basis {My, Myg, My,, My, Mg, Mygh and, in fact,
so(3, 1) is the symmetry algebra of (5. 8).

2 2
A401 = A462 =

As discussed in Ref. 6, (5.8) separates in 34 ortho-
gonal coordinate systems for the case € =+1, each sys-
tem characterized by a pair of commuting second-order
symmetric operators in the enveloping algebra of
s0(3,1). Some results for the case €=~ 1 are also
presented in Ref. 6.

On A the requirement Df= - ivf implies flk) = k(‘;"'lh,,(ﬁ),
~ <y <o where k=k¢k and k ranges over the unit
sphere S;. The eigenfunction problem reduces to a study
of the Hilbert space L,(S;) on which so(3, 1) acts via

Mm:kza,;l—kla,;z, Mm:-kaa,;l, 32—k akz,
My == (1+iv)ly +(1 - oz, - by y2 9,
My=-(1 +zv)k2—k1kza +(1-#9ag,, (5.9

Myg= = (1+iv)ky = byydy, - kyydz,,

where we have chosen ;el, 1;2 as the independent variables.
These operators determine an irreducible unitary global
representation of SO(3, 1) which belongs to the principal
series. Once the eigenfunctions h,ae(ﬁ) for each of the
34 separable systems have been determined the corre-
sponding separable solutions ¥,,, of (2. 1) can be ob-
tained from

ival

B, s(¥) =(’2’T)mr(1 — i)

X // expl+ 1(i + 1) /2][1 = kysy = kys, — }:’353 | -t
S3

X (k) dS(K), (5.10)
where the plus sign occurs when 1 - k- s >0 and the mi-
nus sign occurs when 1 -k -8<0, For the case e=+1,
x,> 0, these integrals are evaluated in Ref. 6. A num-
ber of cases for € == 1 are also computed.

6. THE SCHRODINGER EQUATION

Now we consider the separable coordinate systems
for (2.1) such that the basis functions ¥ are eigenfunc-
tions of Py + P, : (P, +P)¥=ip¥, Setting ¥(x) =exp(isB)
X &(t, x,, x,), where 2s=x,+x,, 2{=x; —x,, we find that
the reduced equation satisfied by ¢ is the free particle
Schrodinger equation

(188, + 9,5 + 0,5} B (L, x,, x,) = 0, (6.1)
which admits as symmetries the operators
Pr=P, Py=Py,, E=Py+P,, K,=P =P,
Ky==-3(K T Ky)), M ==My, By=3(Mgy+My),
Bz=§(M03—M13), D=-(D+My). (6.2)
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All these operators commute with ¢ =P+ P; and they
form a basis for the nine-dimensional symmetry alge-
bra G, of (6.1). This algebra is discussed in Refs. 7

and 21. In Ref. 7 it is shown that (6. 1) admits R-separa-
ble solutions in 17 (nonorthogonal) coordinate systems.
Each system is characterized by a commuting pair of
symmetry operators from the enveloping algebra of g 2
one operator first-order and one second-order.

On /f the requirement (P, + P,)f=iBf implies f(k)
=ub(u - B)ly(v, w), where B>0, u=ky—ky, v="Fky, W=k,
The search for eigenfunctions /; reduces to a study of
the Hilbert space L,(R% on which the Schridinger alge-
bra acts via

6216’ /<-2::B_l:(v2 +w2):

Pi=—1iv, P,=-iw,

Kzz‘_‘}’?.(avﬁaww), M =03, ~wd,, (6.3)

Blzéeavy BZZ%BBW’ D:-(1+vav+waw)'

1t is known''?2 that these operators induce a unitary
irreducible representation of the Schrodinger group G,
on L,(R%. Once the eigenfunctions Jg,,{v, w) correspond-
ing to each separable system have been determined, the
corresponding separable solutions ¥,,,(x) of (2.1) follow

from
e;?:)(:‘gs) ff exp[——(v +u?)

~i{xv + xsw):llﬁap(v, w) dv dw.

‘I/Bot p(

(6.4)

Using the «, v, w coordinates we can now compute the
operator expla(K,+K,)] in /. Indeed the well-known
expression

exp(it(d,, +3,,) If(x, v)

—1 1 - 1 2
=Lim. [_[., exp{— 4it[(x—sl)

+ (V - sz)g]}f(sh 52) dsl d821 (6 5)

for time translation of solutions of the free-particle
Schrodinger equation, e.g.,” together with expressions
(6.2) and (6. 3) for K, leads to

exp[a(K0 + K IA(k)

4ma ff exp{ —4ai(k -k1)[ 2= 52"+ kg —s)]}

Xf(sg +s;i ~ (g = y)?

d cH.

7. THE GENERALIZED EPD EQUATION

We next look for solutions ¥ of (2. 1) such that I'yy¥
=¢mW¥, Then ¥(x) = exp(ime)d(xy, x,, 7) where
X3 =7 co8¢, X=vrsing

and ® satisfies the reduced equation

2
(aw- a,r_%a, +%_ an><1>:0.,

If ¢ is independent of x; then (7.1) reduces to the Euler—
Poisson—Darboux (EPD) equation. Expression (7.1) can

(7.1
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be written in the operator form (2. 24iv),

(T2, +T% - T4 —T§~T3-T)®=(T2, +1)¢ =1 - m»)e.

(7.2

The symmetry algebra of (7.1) is so(2, 2) with basis

{12, Tse, Tisy Tug, Tagy Tas) or alternate basis {Py, K, Py,
K;, D, My}. Separable coordinate systems for this in-
teresting equation will be classified in a later publication.

On A the requirement I',,f=imf implies f(k) = exp(im6)
xj(l, k) where m=0,+1,22, -+, 120, ky=ILcosb, k&,
=1sinb, ky=~k. The eigenfunction problem reduces to a
study of the Hilbert space /[ , of functions j(, k) Lebesgue
square integrable with respect to the measure dp(l, k)
=112+ k¥ /2dl dk. The inner product is
= [0 f_.,]'l]'zdp(l, k)y

(jhjz) jhjZELZ'

The symmetry algebra so(2, 2) acts on /[ , via

" .
Tpo =75 @y =3,y = 170, + w2 = 1) +ildyy = 0y,

r%:.’é(k2 +0 22y, <179, + MBI - 9y, +1),

Tys =%(k2 F (3, 170, = MBI + 0y, + 1),
(7.3)
o= 1410, + Ry,

ik
r%:%(- dup + 8y +ID, = M = 1) =13, ~ 00,

r25 - (kz + l2)1 /Zak.

A third basis of so(2, 2) for which the structure of the
Lie algebra becomes more transparent is

A =Ty +T,, Apy=Tg +T, Ay=T, + 1,

. 7.4)
By =T3~T1, B,=Tg5-Ty By=Ty-Ts, (
which commutation relations
(4, 4,]=-24,, [4,,4,]=24,, (4}, A4,]=24,,
7.5
[B,, B,]= - 2B,, [B,, B,]=2B,, (B, B,]=2B,, (7.5)
[Ai7 BJJ: 0-

With respect to this basis the isomorphism so(2, 2)
=g1(2) Xs1(2) is obvious. Moreover, it follows from (4.1)
and (4. 2) that in the eigenspace /4, of /{ corresponding
to the eigenvalue m of - iT',; there is an ON basis {fas}
such that

Ay fap=i(|m| +20+Vfas, Bifas=i(|m| +28+Dfys
a,8=0,1,2,+-"

Also A} - A2 - AZ=B} - BZ— Bi=1-m? onH,. It follows
that this action of s1(2)Xsl(2) on/,, is irreducible and
extends to a unitary irreducible representation DY ni1)/2
® DYy mia,se of SL(2, RYXSL(2, R) on,. Here Dj is a
representation of SL(2, R) belonging to the negative dis-
crete series.

Once the eigenbasis {gg,,} in 4, corresponding to a
separable system for (7.1) has been constructed, the as-
sociated separable solutions of (7.1) can be obtained
from the transform
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_explim(¢ - 1/2)] f” ©

\I',,,c,,(x) ——TZT)ijz—'—' A llem(l’i’) [u dk
- expli(xy (k2 + 122~ x, B)]i(l, k) /(B2 + 1B)* /2,

(7.6)

8. DIAGONALIZATION OF Ty, + 'y - g6

Finally we study the separable solutions of (2.1) for
which the basis functions ¥ are eigenfunctions of L
=T+ T4y =T L¥=~i(2¢+1)¥. By a tedious compu-
tation one can verify that (2. 1) is equivalent to the
equation

(3A2+A2+AZ+AZ- B~ Bi-C}- CHU=(3L%+3)¥,

(8.1)
where
Ag=Tg+ T +20, Ay=Ti3+Ty, A;=Tp-Ty,
Ag=Ty4=~ Ty, By=Ty=Ty5 B,=Ty5-T, (8.2)
C1=Ty5+ g Cp=Ty5+ 4.

Thus, the reduced equation is
(3A2+ A2+ A2+ A% B - BZ-C2 - CHV =(-p?/3+3)¥,
(8.3

The operators (8. 2) satisfy the commutation relations
for su(2, 1) and the expression on the left-hand side of
(8.3) is the Casimir operator for su(2, 1).

w=2x+1,

The usual model for su(2, 1) is the space of 3X3 com-
plex matrices A such that

ﬁtga,l +gz,174 =0,

where®
1 0
92,1: 1
0 -1
This real Lie algebra is eight-dimensional with basis
PR 010 i0 0
Ae=]0 i 0 |, Ai=]|-10 0|, A,=|0 —-i 0],
[0 0 -2 000 00 O
[0 i 0 001 000
As=|i 0 0|, B;=|0 0 0|, B,=|00 1], (8.4
000 100 010

Possible eigenvalues

004 0 00
C,={0 o0 of, C,=|0 0 i,
-i0 0 0 -7 0

and the basis elements satisfy the same commutation
relations as the corresponding operators (8.2). The
symmetry algebra of Eq. (8.3) is also su(2, 1).

It follows from (4. 1) and (4. 2) that the possible values
of kare 0,1, 2, -+ and for fixed «, the solution space of
(8.3) has an ON basis {¥; ;:1=0,1,2,-+, s=0,1,...,
x+1} such that

LY, =-i(2+ 1), A, =i(k+30+2)T,,,

A, =i(2s — k= D)¥,. (8.5)

The solution space of (8. 3) transforms irreducibly under
this action of su(2, 1) and the Lie algebra representation
lifts to a global unitary irreducible representation of
SU(2,1), see Ref. 24,

The problem of separation of variables for (8. 3) is
far from settled. The variables in (8. 3) are intertwined
in an extremely complicated manner and the standard
techniques for separating variables in the wave equa-
tion, e.g., Ref. 25, yield no nontrivial separable sys-
tems for this case. However, it follows from standard
Lie theory, Ref. 26, p. 49, that every pair of commut-
ing operators in su(2, 1) leads to a separable coordinate
system, It is not yet known whether there exist separa-
ble systems corresponding to second-order operators
in the enveloping algebra of su(2, 1).

9. CONCLUDING REMARKS

For completeness we classify the orbits in so(4, 2)
under the adjoint action of SO(4,2). This classification
has been given by Zassenhaus?” and later by many others
but we present the results here in an explicit form adapt-
ed to our notation. (This orbit analysis is useful because
we know that coordinate systems whose defining opera-
tors can be mapped into one another under an action of
the adjoint group are equivalent.) We list the possible
eigenvalues of a 6X6 matrix A ¢ so(4, 2) such that [
=TAT" for some T€S0(4,2), i.e., we list an element
on each SO(4, 2) orbit. It is easy to show that if X1 # 0 is
an eigenvalue then so are — X and X. We use the notation
Xn), n=2,...,5, to signify that A corresponds to a
generalized eigenvector x of rank n, i.e., n is the small-
est integer m such that (A — AE)"x =0 where E is the
6X 6 identity matrix.

Canonical form T

Y5 +B(Tgy + Tg5) + g5 +Ty4)

1. raxif, zi7,
a,B#0

2. tia, +B, +7, al'yp + Bl g5 + 9T 4
B2+¥2>0

3. +ia, +iB, =iv, ol'y, + BT, + 7Dy
a,B,v*0

da. +ia, i, 0, O, al’y, + By, or aly, +T,

a,B+0
3b. tia, 0, 0, 0, O o'y, or alg
279 J. Math. Phys., Vol. 18, No. 2, February 1977
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4, a(Z), —0(2), iiB’
a#0
5. ia(3), -ia(3)
6. ia(2), —ia(2), =iB
1
7. +a, 0(3), 0, aly t—=(Ty
a#0 2
8. +ia, 0(3), 0
9. 0(5), 0O

@(Dg5 + Tyg) T ATy, +3(Dgy + Dy T 1,5 +Tgy)

0Ty + gy +Tgg) +5(Tyg + Ty TTy5+ Ty
a(l“u + rss) T8I, +%(I‘34 T D5 T +T54)
+ L)

1 1
al’'y, +7‘§' (T35 + L) or aly, +"/—_§ (Tyg T Tyg)

1
é(I‘“ +F36 Ty +I‘55) +'\/——_E(FZ4 +Fzs)

From these results we can see why many operators I' € so(4, 2) do not directly correspond to a semisubgroup
coordinate system. For example, it is easy to check that an element of so(4, 2) which commutes with I' (case 1],
a, B, ¥ +#0) also commutes with each of the (commuting) operators I'y,, I's; ¥ I'g;, and I'y; ¥T',5. The coordinate sys-
tem associated with these operators is equivalent to a separable system for Eq. (7.1). By interpreting the remain-
ing cases in a similar fashion one can show that each case is in fact associated with at least one semisubgroup co-

ordinate system.
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