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Lie theory and the wave equation in space-time. 5. R

separable solutions of the wave equation lJitt-Ll3lJi = 0 

E. G. Kalnins 
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W. Miller, Jr. 

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455 

(Received 9 November 1976) 

A detailed classification is made of orthogonal coordinate systems for which the wave equation 

til" -<l3til = 0 admits an R-separable solution. Only those coordinate systems are given which are not 

conformally equivalent to coordinate systems that have been found in previous articles. We find 106 new 

coordinates to give a total of 367 conformally inequivalent orthogonal coordinates for which the wave 

equation admits an R -separation of variables. 

INTRODUCTION 

In this article we continue our investigation of the 

orthogonal R-separable coordinate systems for which 

the wave equation in space-time, 

admits an R-separation of variableso 1-4 In a previous 

article4 we have studied coordinate systems for which 

the Klein-Gordon equation 

(**) 

admits a separation of variables. Such coordinate sys

tems also admit a separation of variables for the wave 

equation (*) 0 In Paper 4 of this series we found 261 con

formally inequivalent coordinate systems of this type, 

It is the purpose of this article to find coordinate sys

tems for which (*) admits a strictly R-separable solu

tion. By this we mean those coordinate systems for 

which (*) admits an R-separable solution and for which 

there is no conformally equivalent coordinate system 

such that (*) is simply separableo As with the treatment 

of the wave equation in two space dimensions, 5 we clas

sify the different types of orthogonal coordinate systems 

whose coordinate curves are cyclides or their degen

erate forms, 

The content of the article is arranged as follows. In 

Sec. I we discuss the relevant details concerning co

ordinate systems whose coordinate curves are cyclides 

of most general type This is a development of the 

methods in the fundamental book by Bacher. S Also in 

this section we give the various differential forms cor

responding to the coordinate systems of interest. In 

Sec. II we present the coordinate systems together with 

the corresponding separation equations and triplet of 

mutually commuting operators {L1' L 2, L 3} which de

scribe each such system. 

I. R-SEPARABLE DIFFERENTIAL FORMS FOR THE 
WAVE EQUATION 

Here we classify orthogonal differential forms for 

which the wave equation (*) admits a strictly "R-sepa

rable" separation of variables. We recall that if ib is a 
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solution of (*) which is R-separable in terms of some 

new coordinates xi (i = 1,2,3,4), then J! can be written 

in the form 

(1. 1) 

where the equation for the function ~6 is such that it ad

mits a separation of variables. The factor expQ is 

called the modulation function and has a definite form 

for each R-separable coordinate system. In addition no 

part of the function Q should contain the sum of functions 

fi of only one of the variables Xi For a strict R-sepa

rable system the modulation function Q should not be 

zero, In a previous article5 where we treated the wave 

equation in two space variables, it was shown that only 

cyclidic coordinate systems whose coordinate surfaces 

were degenerate forms of confocal cyclides of the most 

general type were strictly R-separable. All remaining 

cylidic R-separable coordinate systems could be trans

formed into coordinate systems for which the Klein 

Gordon equation (a tt - ll.2)1' 0:= A4' also admits a separa

tion of variables. This was done by a suitable trans

formation of the 0(3, 2) conformal symmetry group of 

(a tt - ll.2)1~ = O. The same situation holds in the case of 

three spatial dimensions, and it is accordingly the pur

pose of this section to discuss confocal families of cy

clides of general type and their degenerate forms. We 

now briefly outline the properties of cyclides of this 

type and refer the reader for details to our previous 

article5 and the book by Bacher. S Families of confocal 

cyclides have their natural setting in a six-dimensional 

projective space. Elements of this space are specified 

by six homogeneous coordinates 1'1: "2 :\'3 : .1'4: .\'5: .l's, 

which are not all simultaneously zero and which are 

connected by the relation 

(1. 2) 

The space-time coordinates are related to the homo

geneous coordinates via the relations 
Y1 = i (p 2 _ q 2 _ y2 _ 82 + ",2), 

Y2=p2_ q2_ r- 8 2 _ /{.'2, 

Y3 = 2pu}, Y4 = 2iqu', (1. 3) 

Y5=2iyw, Ys=2i8W, 
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where t=p/w, x=q/w, y=r/w, z=s/w. A cyclide is 

then defined as the locus of points lying on the quadric 

surface 

6 

<I> = £ a1jYIYj=O 
iJ=l 

with alj =a jj and det(aiJ) *0. The classification of cy

clides under the group of orthogonal transformations 

which preserves the form 

6 
'\' 2 
LJ YI 
i =1 

is then the problem of classifying the intersections of 

two quadratic forms in six-dimensional projective 

space. This is performed by the method of elementary 

divisors applied to the two quadratic forms. (For the 

details of this classification see Refs. 5,6)0 

The equation describing the most general family of 

confocal cyclides in this six-dimensional projective 

space is 

~ YI
2 

~ 2 
LJ-,--=O, .0Yi =0. 
i=l,,-e l 1=1 

(1. 4) 

Here \ is one of the new curvilinear coordinates and 

e l * e j , if i * j (i,j = 1, ... ,6). If we choose an ortho

gonal coordinate system in space-time whose coordi

nate surfaces have equations of the type (1. 4), then the 

line element in terms of these new coordinates becomes 

d 
2 _ 1 [>1, (Xi - Xj)(X j - Xk)(X I - Xl) d ~ 

S --;;-=::I !...J ( ) XI 
4(JW 1=1 j Xi 

(1. 5) 

where 

The coordinates Y i are related to the curvilinear coor

dinates XI via the equations 

(1.6) 

where ¢(\)=O]=l(\-Xj ). If we write the solution if! of 

the wave equation as 

(1. 7) 

then <I> satisfies the differential equation 

B.4 [(---.-!-( .) aa

2

,<I>.2\ + 3X j <I>1 _ 2(t e~ <I> = 0, 
J =1 ¢ X J Z J i} j , =1 i} 

(1. 8) 

where 2dv j = dx JJ j{x jlo This equation admits separable 

solutions for the function <I>, i. e. , 

4 

<I> = 0 Ej(x). 
j=l 

Each of the functions E j satisfies the differential 

equation 

We now proceed to classify coordinate systems of this 

type by considering the expression inside the square 

brackets in (1. 5) and finding out what ranges of the co

ordinates XI permit this differential form to have over-
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all negative signature. We must also consider degen

erate forms of these general coordinate systems which 

result when some of the e i become equal. In addition 

we should mention that two confocal families of cyclides 

of type (1.4) are equivalent under the action of real 

linear transformations of the coordinates Yi which pre

serve the quantity L ~=1 Y / if their parameters ei , e;' 
and coordinates XI, x;' are related by the equations 

ax;' + {3 
x - -'0----7 

i - YX;' + 0 ' 

where a, {3, Y, 0 E. R and GO - {3y* O. 

(1. 10) 

We now give the classification of the strictly R

separable coordinate systems, in particular the differ

ential forms. 

[1] The first type of differential form corresponds to 

R-separable coordinate systems of the type (1. 6) for 

which all the e l are real. In addition the relations (1. 10) 

can be used to standardize these quantities so that e1 

=00, e2 =a, e3 =b, e4=c, 1'5=1, 1"6=0 with a'='b">c 

"> 1. The differential form then becomes 

dS 2 =(-Y.l2)[t (Xi-,\)(X\-;k)(XI-Xl)dXi2] (1.11) 
4ll i=l Iz XI 

where h(x)=(x-a)(x-b)(x-c)(x-1)xo The ranges of 

variation of the variables Xi are 

(1. 12) 

Xl > a >. iJ > X 2 -. C -. X3 > x4 > 00 

[2] The differential forms of this type are as in (1. 11) 

but with b = a* = a - i{3, a, {3 E. R. The ranges of variation 

of the variables Xi are 

(1. 13) 

[3] In this case the quantities e i can be taken to be 

e1=00, e2*=c3 =Y+iO, 

1'4 = 1"5 = a + i{3, 1'6 = 0, a, {3, Y, 0 E R. 

The differential form is given as in (1. 11) with 

h(x) = [(x _ y)2 + 02][ (x _ a)2 + {32]X. 

The ranges of variation of the variables X i are then 

(1. 14) 

The simplest types of degenerate differential forms 

corresponding to cyclides of general type (L 4) are ob

tained by allowing pairs of the quantities e l to become 

equal. This is achieved by the prescription given by 

Bacher,6 e. g" if e1 and e2 become equal then they do 

so according to the prescription 

(1. 15) 

where E is a first order quantity. With this substitution 

and the subsequent use of the relations (L 10) to take 
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e2 =00, the differential form becomes 

d8 2=(_ (Y1
2

+Y2
2
») 

4w4 

[ 
dX1'z ~'(Xi-Xj)(Xi-Xk)d .z~ (1.16) 

x '(' ) - L...J () x,, 
Xl Xl - 1 i=Z h Xi 

where h(x) = (x - a)(x - b)(x - c)(x - d). If we make the 

same substitution in (1. 6) relating the coordinates y/, 
we obtain 

Z (xz-es)(xs-eS)(x4-eS) 

.1'3 = (es - ('4)(eS - e
S
)(e

3 
- e

6
)' 

Z (XZ - e4) (X3 - e4 )(x4 - e4) 

Y4 = (e4 - e3) (e4 - e
5

) (e4 - e
6

) , 

Z (XZ - es) (x3 - es) (x4 - e5) 

."s ) ( (es - ('3)(e S - ('4 ('5 - e6) , 

Z (XZ - e6)(x3 - ('6)(X4 - ( 6) 

)'6 = «('6 - ('3)(e6 - ('4)(rS - ('s)' 

(1. 17) 

In addition we note that the coordinate surface for the 

coordinate Xl' has the equation 

Y1
2
/(X1' -1) +:1'22

/.\/ =0. (1. 18) 

From the form of the coordinates in (1. 6) we see that 

the real linear transformations which preserve the 

quantity :zt1 1'i2 form a group isomorphic to 0(4, 2). In 

fact the representation of a point in space-time by the 

six coordinates is such that the generators Lii = )'/o,j 

- :VioYi are directly related to the canonical generators 

of the conformal symmetry group of the wave equation. S 

More specifically we have the relations 

L12 = HKo - Po), L 13 = (i/2)(K1 - P1), L14 = (i/2)(K2 - P 2), 

L 1S =(i/2)(K3-P3), L16 =iD, L 23 =iN1, L 24 =iN2, 

L 2S =iN3, L 26 = (i/2)(P o +Ko), L 34 =M3, L3S=M2J 

L 36 =-i(P1+K1), L4S=M1' L 46 =-HP2+K2), 

(1. 19) 

Here we have used the notation of Refs. 3 and 4 for the 

generators of the conformal symmetry groupo 

Taking note of these relations, we see that coordi

nate systems of the type given by (1. 17) correspond to 

the diagonalization of the generator L12 =)'1 0Y2 - ~'2aY1' 

This generator may correspond to a rotation or a hyper

bolic rotation in pentaspherical space. If a hyperbolic 

rotation, we may always use an 0{4, 2) group motion 

to ensure that L12 = D. The resulting coordinate system 

in space-time is then equivalent to one of the radial 

coordinate systems discussed in reference 4. According

ly in classifying differential forms of type (1. 16) we 

need only consider those for which 0 < Xl' < 1. 

[4J If we choose a~h ~c=l 'd=O then we have the 

possibilities 

1743 

a"> .'1'2'> b > .'1'3> 1 '.'1'4 ' 0, 

x2> a '.'1'3> b > 1 '> x4 '0; b > x 2 "> 1 > X3, x4 > 0; 

.'1'2, x3, .'1'4 "> a; b ' . .'1'2' .'1'3' .'1'4 > 1; 0> .'1'2' x3, X4, 

J. Math. Phys., Vol. 18, No.9, September 1977 

b>x3,x4 >1, 0>X3,X4, b>x3>1>0>x4; 

b > X2, Xs > 1 > 0> X4; b > Xl > 1 > 0 > X3, x4; 

a> x z, X3 > b; b"> X4 > 1, 0> X4; 

a> Xz > b > 1 > X3 > 0 > x4 • 

[5] Ifa=b*=a+i{3, a,{3ERandc=1, d=O, then we 

have the possibilities 

Xz, .'1'3' .'1'4 > 1; xz, X3 > 1 > 0 > .'1'4; 

XZ>1>X3,X4 >0. 

(1. 21) 

[6] If we have a=b* as above and c=d* =Y+io, Y,O 

E R then the variables Xl' xs, X4 can be any real numbers. 

If in addition we allow es and e4 to become equal ac

cording to the prescription of Bacher, 6 

(1. 22) 

The differential form is then 

12- (- (\'1
2

+)'Z2») [ dx1 'z 
(8 - 4wr- X

1
'{X

1
'-1) 

(e4 - .'1'3)('4 - .'1'4) dx2 '2 

+ (e4 - ('S)(p4 - ('6) x 2'(1- xz') 

. ( dxs 
2 

dX/)] + (.\4 - .'1'3) ph) - P{x
4
) , (1,23) 

where P{x) = (x - e4)(x - es)(x - es). For all such differ

e~tial forms 0 < .'1'2' < 1. Differential forms of this type 

fall into classes in which the quantities e4 , es, e6 can be 

chosen as 0, 1, or a. 

[7]('4=0, es =l, es=a; a'·1. 

The variables xs, .'14 vary in the ranges: 

0<x3<1<x4<a; 1<x3<a<x4; x3<0<1<x4 <a. 

(1. 24) 

Now by the usual prescription, the differential form 

becomes, with e4 = 1 and es = 0, 

d _(-tV1
z

+Y2
2»)[ dX1'Z (10) dxz'z 

s - 4 " + - "4' , 
4w Xl (Xl -1) .'1'2 (1-.'1'2) 

dX3'2 dX/] 
+ x4 '( , + . 

.'1'3 1 - Xs) .'1'4(1 - x4) 
(1. 26) 

There is only one differential form of this type. 

[9] For this case all the variables x;' (i ,= 1,2,3), x4 

lie in the interval [0, 1]. 

A further class of differential forms can be obtained 

by taking 

('4=e6+aE, eS =e6 +E, x i =e6+Ex;', i=3,4. 

(1. 27) 

If we also put e6 = 00 in the resulting differential form 

we obtain 

d8=f-(Y4
z

+YS
2

+Y6
Z») [(X -X)( dX1Z_ dX/) 

'\ 4w2 
Z 1 P(X1) P(Xz) 

, , (dx3'2 dX/2)] 
+ (X3 - .'1'4 ) \Q(X

s 
') - Q(x/) , (1. 28) 
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where P(x) = (x - el)(x - e:J (x - es) and Q(x) = (x - a) 

x (x - l)x. This differential form corresponds to the re

ductions 0(4,2):=1 0(3)0 0(2, 1) and 0(4,2):=1 0(2,1) 

o 0(2, 1) when expressed in elliptic coordinates in the 

case of the two reductions 0(3):=1 Land 0(2, 1):=1 L'. 

Here Land L' are second order symmetric operators 

in the enveloping algebras of 0(3) and 0(2,1), 
respectively. 

With the exception of the reduction 0(2, 1)::J 0(1, 1), 

which can be conformally transformed into a radial sys

tem, we can in principle write down all the differential 

forms corresponding to the reductions of type 0(4,2) 

:=1 0(3)0 0(2, 1) and 0(4,2):=1 0(2, 1)00(2,1) by consider

ing degenerate forms of the differential form (1. 28), 

but we do not do this here. 

The remaining distinct type of differential form of 

interest in this section is obtained by taking x2 = e
6 

+ E'Xz' and e3 = e6 + E' subsequent to the substitutions 

(1. 27) and then allowing e6 - co. We then obtain the dif

ferential form 

d 2_ ((v3
2

+Y4
2

+Y5
2

+Y6
Z
)) [dX1

2 
dXz'2 

S - \: 4w4 Xl (1- Xl) + xz'(xz' - 1) 

'.' , f. dx3'z dX4'Z)] 
+ Xz (x3 - x4 ) \Q(x

3 
') - Q(x

4
'). (1. 29) 

[10] In each class we have 0 < Xl < 1, 0 < x 2' < 1. The 

remaining variables vary in the ranges 

0< x 3 ' < 1 < x4 ' < a; 1 < x 3 ' < a < x4 '; 

x/<O<l<a<x/; X 3'<0<X4 '<1. 

[11] A further dEferential form can be obtained 

from taking the limits a = 1 + E", x 3 ' = 1 + E"X3 If. This 

gives one new differential form 

ds 2 =(- (y/+y/t Y32 +y/)\ [ dX12 

\ 4w "/ Xl (1- Xl) 

+ X/1:44:~ 1))] (1. 30) 

where all the variables lie between 0 and 1. 

We have shown in this section how to get orthogonal 

coordinate systems by various limiting procedures ap

plied to coordinate systems of the most general cyclidic 

type. We have as yet not fully understood in what sense 

these procedures are complete. 

II. R-SEPARABLE COORDINATES FOR THE WAVE 
EQUATION 

In this section we give the coordinate systems cor

responding to the differential forms in section I together 

with the separation equations. We also present the trip

let L1 , L z, L3 of mutually commuting second order sym

metric operators in the enveloping algebra of 0(4, 2) 

whose eigenvalues are the separation constants for each 

coordinate system presented. We tabulate the coordi

nate systems of interest starting with the most general 

real cyclidic type. 

1744 J. Math. Phys., Vol. 18, No.9, September 1977 

Coordinate systems of Class I 

(1)-(5): (a) A suitable choice of coordinates is 

t =1. [_ (Xl - a)(xz - 0)(x3 - a)(x4 - 0)] 1 /2 

R (a-b)(a-c)(a-l)a ' 

x _.!. [(X1 - b)(x2 - b)(X3 - b)(x4 - b)J 1/2 

" - R (h - a)(b - c)(b - l)b ' 

v _.!. [(Xl - c) (X2 - c) (X3 - c)(X4 - C)J 1 /2 

. - R (c - a)(c - b)(e - 1)c , 

z _.!. [(X1 -1)(X2 -1)(X3 -1)(x4 -l)J l/z 

'-R (1-a)(1-b)(1-c) , 

where R = (1 + [Xl-~2:~X4J 1/2). 

(2.1) 

The solution of the wave equation then assumes the form 

zp=R¢, where ¢ =nL1Ei(Xi) typically. The separation 

equations for the functions Ei are 

d
2
E. 1( 1 1 1 1 1)dE j 
~+- ---+--+--+--+- -
dx j 2 x j - a x j - b x j - c x j - 1 X j dx j 

(- 2xj
3 + 11X/ + 12xj + 13) E. _ 0 (2.2) 

+ 4(x
j 

- a)(x
j 

- b)(x
j 

- c)(x
j 

_ 1)x
j 

J - • 

The operators Li whose eigenvalues Ii are the separa

tion constants are 

Ll = ~(a + h + c)(Pa + Ka)Z + Ha + b + 1)(Pz + Kz)Z 

+}(a + C + 1)(P1 + Kl)2 -1 (b + c + 1)(Po +Ko)2 

+ (a + b)M1
Z + (a + C)M2

2 - (b + c)1'13
2 

- (c + 1)1'11
2 - (b + 1)1'1/ + (a + 1)Ma

2
, 

L z = Hac + be + ab)(P3 +Ka)2 

+ (ab + a + b)(Pz + K z)2 + t(ac + (/ + c)(p1 + K1 )Z 

- Hbc + b + c)(Po + Ko)Z + abM12 

+ aeM2
2 

- bc1'1/ - c1'11
z - b1'1z

z + aA132, 

L3 = - tabc(P3 + K3)Z - tab(Pz + K z)2 

- }ac(P1 + K1)2 + tbc(P o + Ko)z. 

The coordinates Xi vary in the ranges 

Xl '. a "> b " X Z ~ C '. X3 ~. 1 ~ x 4 ~ O. 

(2.3) 

There are four more coordinate systems of this type. 

We list below the complex transformation of the space 

time coordinates which relates the coordinates of type 

(a) to the new system, together with the new ranges of 

variation of the coordinates Xi' The separation equations 

for the Elx j ) are the same in each case and the basis 

defining operators can be obtained by the substitution 

given. We now list the possibilities: 

(b) (t, x, y, z) - (iz, x, 1', it), 

(c) (t, X, 1', z) - (x, t, iy, iz), 

(d) (t, x, .1', z) - (it, ix, iV, iz), 

Xl, X Z :> a "> b :> x 3 -. C -. X 4 " 1. 

(e) (t, x,)" z) - (t, ix, :V, iz), 
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(6)-(7) A suitable choice of coordinates is 

.t 1 [2(X1 - a)(x 2 - a)(x3 - a)(x4 - a)J liz 
X+Z --

- R (a- b)(a- c)(a-1)a ' 

v _~ f(Xl - C)(X2 - C)(X3 - C)(X4 - C)] liz 

. - R l (C - a)(c - b)(c - 1)c , 

z _~ [(Xl - l)(xz - 1)(x3 - 1)(x4 - 1)Jl/2 
-R (l-a)(1-b)(l-c) , 

where R= [1 + (X1XZx3x4/abc)1/2] and a =b* = a+if3, 

a, f3 E JR. 

(2.4) 

The solution of the wave equation has the form Ij!=ReJ>, 

where each of the Ej satisfy Eq. (2.2). The operators 

whose eigenvalues are the separation constants are 

L1 = H2O' + c)(P3 + K3)Z + H2O' + 1)(P2 + K2)2 

+ 2aM1
2 + H 0'+ c + 1)[ (P1 + K1)Z - (Po +Ko)Z] 

- (f3/4){(P o+Ko,P1 +K1} + (a+c)(M2Z- N3Z) 

+ i3{N3, M3} + (a + 1)(M32 - N/) 

+ i3{Nz, M3} - (c + 1)N2
2, 

L2 = - H2ac + 0'2 + f3 Z)(P3 + K3)2 

_ H2O' + 0'2 + (32){P2 +K2)2 

- (0'2 +!32)M/+ Hac + a+c)[(Po+Ko)2 

- (P1 +K1)2] + tf3(c + 1){P1 +K1' Po +Ko} 

+ ac(N/ - M22) - ci3{M2, NJ + cNlz 

+ a(N2
2 

- M3
2

) - i3{M3' N~}, 

L3 = - Ha2 + (32)[c(P3 + Ka)2 + (Pz +Kz)2] 

+ (ac/4)[(Po +KO)2_ (Pl +K1)2] 

(2.5) 

- (c!3/4j{P1 + K l , Po + K o}, where {A, B} =AB + BA. 

The coordinates Xi can vary in the ranges 

(a) xl, X2 > C > X3 > 1 ~ x4 > O. 

(b) (t, x, y, z) - (it, ix, iy, iz), 

where xl> X2, X3 '. C ~X4 > 1 ~ o. 

(8) A suitable choice of coordinates is 

t + iv = [2(X1 - c)(x2 - c)(x3 - c)(x4 - C)] l/2/
R 

. (c-a)(c-b)(c-d)c , 

x = 1m [2 (Xl - a)(x2 - a)(x3 - a)(x4 - a)J l/2/ R (2.6) 
(a - b)(a - c)(a - d)a ' 

z = [- X1xzX3x4/abcd]1/2 /R, 

where 

R = 1 + Re [_ 2(xl - a)(x2 - a)(x3 - a)(x4 - a)] 1/2 
(a - b)(a - c)(a - d)a 

and (J=b* = 0'+ if3, c =d* = y+io, a, f3, y, OE R. 

The solution of the wave equation has the form Ij! 

=ReJ>, where each of the E j satisfy the equation 

d
2
Ej + 1 (1 1 1 1 1)~ 

dx/ 2' Xj - a + Xj - b + xi - C + Xi - d + Xj dXj 

(- 2x/ +llX/+lzXi +l3) 

1745 J. Math. Phys., Vol. 18, No.9, September 1977 

The operators whose eigenvalues are the separation 

constants are 

+ (2y+ a)[M22- i(P3 - Ky] 

+1{3{M2, P 3 - K3} + h(Po- KO)2- 2 aN/ 
+ (a + f3m(P o _KO)2 - Hpz - K2)2 +M32 - N12] 

+ ~{3{Nl' Po - Ko} + io{Po-Ko, P 2 - KJ 

- o{Nt. M3} - (j3/2j{M3, P 2 - KJ, 

L 2= (0'2 + f32 + 2ay)(lv32- M12) - 2ao{M1N3} 

+ (y + 02 + 2ay)[HP3 - K3)2 - M/]- yi3{M2' P 3 - K3} 

+ (0'2 + (32)N2
2 + Hy + 62)(Pl - K1)2 

+ ay[i(P2-Kz)2-Hpo-Ko)2+N/-M32] 

- (yf3/2){Po - Ko, N1} - (a6/4){P o - Ko, P 2 - K2} 

- (j36/2j{M3 ,Po-Ko}- (j36/2){Nl ,P2-K2} 

+ ao{Nl , M3} + (yj3/2){P 2 - K2, M3}, 

L3 = (0'2 + (32)[ Y(N3
2 - M12) - 6{N

3
, M l }] + (y + /)2) 

X [a(i(P3 - K3)2 - M22) - (f3/2){P3 - K3, M2}]. 

(2.8) 

The variables Xi can vary in the ranges Xl> 0 > X 2, X 3, x4 

and Xl, X 2, X3 > 0 > X 4 • 

Coordinate systems of Class II 

These are the coordinate systems in which the opera

tor 1 (p 0 - K 0) is diagonal. 

As has been discussed in Ref. 3, the R-separable 

solutions of (*) then have the form Ij!= (Yo - coslj!) 

Xexp[i(2F+1)1j!)cI>(Yo, Y l , Y 2, Y3 ), where Y o
2 +y12+y/ 

+ y 3
2 = 1 and the space-time coordinates are given by 

sinlj! 
, x 

Yo-coslj! 

Y l 

Yo-coslj!' 

Y 2 Y3 Y z 
Yo-coslj!' Yo-coslj!' 

(2.9) 

i(2F + 1) is the eigenvalue of the operator i(p 0 - K o), 

and F is a positive integer or half-integer. The function 

eJ> satisfies the equation 

(rf2 + rf3 + rf4 + r~3 + r~4 + r~4)eJ> = - 4F(F + 1)eJ>, 

(2.10) 

where r12=-~(P1 +K1), r13=-Hp2+K2), r 14 =-Hp3 
+K3), r 23 =M3, r24=-M2' and r 34 =M1. Here we are 

using the notation of ReL 3. The problem of separation 

of variables for coordinate systems in which Hpo-Ko) 

is diagonal reduces to the problem of separation of vari

ables on the three-dimensional sphere S3 in 4-space. 

Acting on the functions eJ>, the operators given above 

have the form 

r 12 =yoo1 - Ylo O, r 13 =yoo2- y 200, 

(2. 11) 

r 24 =y1 03 - Y 3 0l , r 34 =y2 03 - Y 3 02 • 

This problem has been solved by Olevski7 and the six 

coordinate systems on S3 for which (2.10) admits sepa

ration of variables have recently been investigated. 8 
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In the interest of completeness we give here the six 
coordinate systems, the separation equations, the op

erators describing the separation, and some comment 

on the actual solutions. 

(9) Ellipsoidal coordinates: A suitable choice of co

ordinates is 

Y z __ (Xl - a)(xz - a)(x3 - a) 
o - (b _ a)(l - ala ' 

y z (Xl - b)(xz - b)(x3 - b) 
1 = - (a _ b)(l- b)b ' 

(2.12) 

Y z _ (Xl - l)(xz - 1)(x3 - 1) 
z - - (a _ l)(b _ 1) , 

where 0 < X3 < 1 < Xz < b < Xl < a. The separation equations 

for <P = E1 (Xl) Ez(xz) E3 (x3) have the form 

dEI+.!.[_l_+_l_+_l_+l.] dEl 
dXj 2 Xi - a Xj - b XI - 1 Xi dXi 

[4F(F+1)x jz +l1Xj+lz] E·-O 
+ 4(xi - a)(x j - b)(x j - l)Xi • - . 

(2.13) 

The operators whose eigenvalues are the separation 

constants II and lz are 

L1= Hp1 +K1)z+tb(Pz+Kz)z+Hb+1)(P3+K3)Z 

+ aM/+ (a + l)Mz
Z

- (a +b)M1
Z, 

L z = ib(P3 + K3)Z - aMz
z - abM1

z. 

(10) Elliptic cylindrical coordinates oj Type I: A 

suitable choice of coordinates is 

YO=vx1xZ/a coscp, Y1=vlx1xZ/asincp, 

where 0 < Xl < 1 < Xz < a. 

(2.14) 

(2.15) 

The separation equations have the form for <P = E1 (Xl) 

x Ez(xz)A(cp): 

d
2
Ej 1 [1 1 2J dEl -.:1::2+- --+--+- -

dXj 2 Xi - a Xi - 1 Xi dX I 

+ [4F(F + l)xi
Z 
+ llXI t [z] E, = 0 

(x j - a)(x/ - l)x j • 

where i = 1, 2, 

dZA 
a~+l0=0. 

The operators whose eigenvalues are the separation 

constants II and lz are 

L1 =M/ + Hpz +Kz)Z + a[MzZ +Hps +K3)2] 

+ Ha + 1)(P1 + K 1)Z, 

L z = - ta(P1 + K1)Z; 

(2.17) 

an alternative choice of coordinates is obtained by taking 

Xl = snZ(pt. k) and Xz = (l/kZ) dnZ(pz, k') where a = l/kz. 
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We then have that 

Yo = snP1 dnpz coscp, 

Y1 = snP1 dnpz sincp, 

)'z = dnP1 snpz, 

)'3 = cnP1 cnpz. 

(2.18) 

where 0", P1 <- 2K and - K' < Pz < K'. [Note: sn(z, k) is a 

Jacobi elliptic function. ] In terms of these coordinates 

the solution for <P has the form 

<P = (snP1 dnPz)m K~~(dllPz) 

XKPS(k ) rcosmcp 
Fn SllP1 Lsinmcp 

(2.19) 

Here K~~(z) is an associated Lame polynomial as de

fined in Ref. 8. 

(11) Elliptic cylindrical coordinates oj Type II: A 

suitable choice of coordinates is 

Yo = vi (Xl - l)(xz - 1)/(1- a) coscp, 

Y1 = vi (Xl - l)(xz - 1) /(1- a) sincp, 

y 2 =,j x1 xzla, 
(2.20) 

where 0 < Xl < 1 < x 2 < a. 

The separation equations have the form q, = E1 (Xl) 

x Ez(xz)A(cp): 

d
2
EI 1 [1 2 1] dEl 
~+- --+--+- -
dx/ 2 XI - a XI - 1 XI dx/ 

[4F(F+1)x/+l1x I +Z zl E 
-0 

+ 4(x/ - a)(xi - 1)2x/ 1-
(2.21) 

where i = 1, 2, 

The operators whose eigenvalues are the separation 

constants II and lz are 

L1 = M 1
z + t(a - 1)(P1 + K1)2 + a(M3 2 + t(P2 + K2)2), 

(2.22) 

L2 = H1- a)(P1 +K1)Z. 

These coordinates can also be written in terms of 

Jacobi elliptic functions by the same substitution as 

used for system 10. We then obtain 

Yo = cnP1 cnpzcoscp, 

Y1 =cnP1 cnPzsincp, 

Ys = snP1 dnpz, 
(2.23) 

Y4 = dnP1 snpz. 

In terms of these coordinates the solution for <P has 

the form 

<P = (cnp1 cnpz)m JG;~(- (ik' /k) cnpz) 

x PS( ) [cosmcp KFn cnP1 . A, 
smm,/-, 

(12) Spheroelliptic coordinates: A suitable choice of 
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coordinates is 

Yo = sina..J x l x 2!a, Yl = sina..J (Xl - l)(x2 - 1)/(1- a), 

(2.25) 

Y2=sina..J (Xl- a)(x2- a)/a(a-l), Ys =cos a , 

where 0 < Xl < 1 < x 2 < a, 0 < a < 71. 

The coordinate system can also be written in terms 

of elliptic functions as with coordinate systems 10 and 

11. This gives the parametrization: 

Yo=sinasnPl dnP2, Yl =sinacnPlcnP2, 

Y2=sinadnPl Snp2' Ys = cosa. 
(2.26) 

A typical solution for cl> is of the form A(a)El (Pl)E2(P2), 

where 

(2.27) 

a product of Lame polynomials defined in Ref. 7 and 

A(a) = (sina)IC~l_l(cosa). 

[Here C':,.(z) is a Gegenbauer polynomial. ] The two op

erators characterizing this system are 

Ll =t(Pl +Kl)2 + HP2 +K2)2 +MS2, 

L 2=Hpl +Kl )2+ta(P2+K2)2 
(2.28) 

with eigenvalues - l (l + 1) and A~q, respectively. 

(13) Spherical coordinates: A suitable choice of co

ordinates is 

Yo =sinasin(3cos¢, Yl =sinasin(3sin¢, 

Y2=sinacos(3, Y3=cosa, 
(2.29) 

where 0 ~ a, (3 ~ 71, 0 ~ ¢ < 271. 

A typical solution of the form A(a)8((3)C(¢) is 

cl> = (sina)1 C~l_l(cosa)P~(cos(3) exp(im¢), (2.30) 

The two operators characterizing this system are 

Ll =i{Pl +Kl)2 +HP2 +K2)2 + MS2, 

(2.31) 

with eigenvalues - l(l + 1) and - m 2
, respectively. 

(14) Cylindrical coordinates: A suitable choice of co

ordinates is 

Yo = sin a cos(3, Y 2 = sin a sin(3, 

Y3 = cosacos¢, Y 3 = cosasin¢, 

where 0 < a < 71 and 0 < (3, ¢ < 271. 

A typical solution A(a)8((3)C(¢) is 

cl> = exp[im¢ + ip(3](sina)a+b(cos a)2F-a-b 

x 2Fl (b - F, a - F, a + b + 1; _ tan2 a), 

(2.32) 

(2.33) 

where m = a + b, P = a - b. The two operators charac

terizing this system are 

Ll =i{Pl +Kl)2 and L2=M12 (2,34) 

with eigenvalues - p2 and _ rn2, respectively. 

Coordinate systems of Class III 
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These are the analogs of the elliptical coordinates of 

type 9. The difference is that coordinate systems of 

this type correspond to the diagonalization of M3
2 rather 

than HPo-Ko)2. We now list the possibilities. 

(15) (a) A suitable choice of coordinates is 

t = (I/R)..J (x2 - a) (X3 - a)(x4 - a) /(b - a)(a - l)a, 

X = (I/R) cos¢, y = (I/R) sin¢, (2.35) 

z = (I/R)..J (x2 - b)h - b)(x4 - b)/(b - a)(b - l)b 

where 

The typical solution of the wave equation is </J =Rcl>, 

where 8=E2(x2)E3(x4)A(¢). The separation equations 

are the same as for system 9 with A(¢) = exp[i(2F + 1)¢]. 

The variables x 2 , X 3 , x4 vary in the ranges 

The operators whose eigenvalues are the separation 

constants are 

Ll = (a + b)D2 - t(a + 1)(Ps - K3)2 

+ t(b + I)(P 0 - KO)2 + ta(Ps + K3)2 

- tb(Po +KO)2 - 1'1/, (2.36) 

L2 = abD2 + ta(P3 - K3)2 + tb(Po - KO)2, 

and, of course, L3=M32. 

There are five further coordinate systems of this 

type. In each case we choose the x and y coordinates 

to be of the form 

X = (I/R) cos¢, ,,= (l/R) sin¢, and the operator 

L3 =M3
2
, 

The separation equations are the same as in system 9. 

For each of these five systems we give the choice of R 

and the coordinates t and z together with the form of 

the operators Ll and L 2 • 

(16) (b) The modulation function R is 

R = [..J (x2 - 1)(xs - l){x4 - 1)/(a - l){b - 1) 

+.,j (x2- b)(xs - b)(x4 - b)/(a - b)(b - l)b] (2.37) 

and the coordinates t and z are given by 

z = (l/R).,j (x2- a)(x3 - a)(x4 - a)/(a- b)(a-l)a. (2.38) 

The operators Ll and L2 are 

Ll = i{a + b)(Po +KO)2 - t(a + 1)(Po - KO)2 

+ (b + 1)1'1/ + aD2 - tb(ps + Ky + t(P3 - K3)2 

(2.39) 

The ranges of variation of the coordinates X 2, xs, and 
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x 2 '> a > x 3, x4 > b; x 2 > a > b > x 3, x4 > 1; 

x z, x3, x4 > a; b >x 2, x 3 , x4 '> 1; 

a>xz,x3>b>x4>1; andx2 >a>b,>1>O>x3,x4 • 

(17) (c) This coordinate system is related to 16(b) via 

the transformation (t, x, y, z) - (it, ix, iv, iz) of the space

time coordinates. The variables x 2, x 3 , x4 vary in the 

ranges 

(18) (d) This coordinate system is related to 16(b) via 

the transformation (t, x, y, z) - (z, it, iv, t) of the space

time coordinates. The variables x 2, x 3, and x4 vary in 

the ranges X2, X3 > a > b > 1 > 0 > x4 ; b > Xa, X3 > 1 > 0 > X4 , 

and a>' Xa, X3 > b > 1 '> O~' x4 • 

(19) (e) This coordinate system is related to 15(a) via 

the transformation (t, x,)" z) - (z, ix, iy, t) of the space

time coordinates. The variables xa, X 3 , and x
4 

vary in 

the ranges x 2 ~. a > b '> X 3, X4 > 1. 

(20) (f) This coordinate system is related to 16(b) via 

the transformation (t, x, y, z) - (iz, x, y, it) of the space

time coordinates. The variables x 2 , X3 and x4 vary in 

the ranges a'> x 2 > b ::. 1 > X3 ::. 0 ::. x4 • 

In addition to the six types of coordinate systems we 

have discussed in Class III we will also include co

ordinate systems corresponding to the differential form 

of type (1. 16). 

(21) A suitable choice of coordinates is 

(z + it) =~ f2{xz - a)(x3 - a)(x4 - a)] liz 
R l (a- b)(a-1)a ' 

1 
x =OR cos!jJ, 

where 

1 . A. 
V =- Sin", . R' 

(2.40) 

(2.41) 

The separation equations are given by (2. 13). The op

erators whose eigenvalues are 11 and la are 

L1 == 2aDa + ;;(a + 1)[(P3 - K3)a - (Po - Ko)aJ 

- tf3(PoP3 + KoK3) + ~ a[(P3 + K3)2 - (Po +KO)2J - Na
z
, 

(2.42) 

L z = (aZ + (32)D2 + -~ a[(P3 - K3)2 - (Po - KO)2) 

+ i(:3{P3 - K3, Po - Ko}. 

The variables x 2, X3 and x4 vary in the ranges 

xa'~l >·0-·X3,X4 • 

(22) Coordinate systems of this type can be obtained 

from those of type 21 via the transformation (t, x, y, z) 

- (it, ix, i,', iz). The variables x 2 , x 3 , and x4 lie in the 

ranges x 2 , X3 > 1 >, 0 > x4 ; 0'> x 2 , x3 , x 4 ; and 1::. X 2, X3::' 0 

~' "4' 
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(23) A suitable choice of coordinates is 

( 'f) _! [2(X 2 - a)(x3 - a)(x4 - a)] 1/2 

Z+1 -R (a-b)(a-c)(a-rI) ) 
(2.43) 

1 1 . ri, 
x =R coset), y =li S1l1'1'} 

where 

R=Rew- Imw, 

_ [2(X 2 - c)(x3 - c)(x4 - Cl] liz 
w_ (c-a)(c-b)(c-d) . 

The separation equations in the variables x 2, x 3' and 

x4 are 

The operators whose eigenvalues are 11 and 12 are 

L1 = - 2 aDz - 2rN3z + ha + Y)[{P3, K3t -{po, Ko}] 

+ }o[POZ - P 3 Z + K3 2 - Ko21-}(:3{po, K3} +{P3, Kor, 

L2 == (aZ + (32)D2 + (y + 02)N3 Z + ~ ay[{P3, K3}-{PO, Ko} J 

+ ~ao[PoZ - P3
2 +K32 - Ku

2
J + f30(P r?3 - KoK3) 

- ~f3Y[{P3' Koh{p 0, K 3}1; 

(2.44) 

(2.45) 

the variables X 2 , X
3

,. and x4 can assume any real values. 

(24) A suitable choice of coordinates is 

2 [(x1 - a)(xz - a)(x3 - a)J
1/

2 

t+z==R lm (a_b)2 , 

t _ z = ~ 1m [_1 __ !{_1_ + _1_ + _1_}] 
R (a-b) 2 Xl-a xz-a "3-a ' 

x =~ cos(i), .\' =~ sin¢, 

2 [(x1- a)(xz - a)(x3 - a)] 1/2 
where R = Re (a _ /))2 . 

The separation equations in the variables xz, '3' 
are 

rIzE; [1 1 J dE; --+ --+-- -
dY j Xi-a xj-h dx; 

(2 46) 

[4F(F+1)Xj2+Z1X;+/2JE ~O (2.47) 
+ 4(x

1 
_ a)2(x; _ /})2 ; - • 

The operators whose eigenvalues are 11 and lz are 

L1 = a[ \(P3 - P o- K3 - Ku)Z - (D + .\\)Zl 

+~f3{P3-Po-K3-Ko, D+N11-

+ aC! (P u +P3 + K3 - KO)2-: (P O-P3 +K,; + K3)Z 

- (N1 - lJ)2 + Hp'J +P3 +Ku -K3)zJ 

-~{PU+](3' P3 +Pu +K,,- K3r, 
L z = -~ (P 0 + ](3)2 + i( a 2 + f3z)l: (P u + P 3 + K3 - K 0)2 

- HP O-P3 +Ko + K3)z- (N1 - D)2 (2.48) 

-; (po + P 3 + Ku - K3)2\ -\- ~(aZ - f3Z
) 

x[ ~(P3 - Po - Ko - K3)2 - (D +<'1/\)2] 

- ~ ap{P3- P o- K3 - Ko, D +N1} 

+ :{(Po +K3 ), f3(D - N1) -} a(Po + P 3 + Ko- K3)}' 
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(25) This coordinate system is of similar type to co

ordinate systems 10 and 11 appearing in Class II. A 

suitable choice of coordinates is 

t = (l/R)v' (Xl - a)(xZ - arrara-=-n, 

X = (1/R) cosiJ!v' (Xl - 1)(x~;=-il7(n-=-n, 

y = (l/R) cos</l, Z = (1/R) sin</l, 

where (2.49) 

The solution iJ! of the wave equation has the form iJ! 

== ReI>. The separation equations for eI> = El (xl)Ez(x 2) 

XA(cp)B(iJ!) are 

dZE i 1 [1 2 1JdE i J.:2+- --+--+- -
dx i 2 Xi - a Xi - 1 Xi dx i 

[ 4F(F + 1) (x i-I) z + 11 (x i-I) + lzl E _ 0 
+ 4(x i - a)(xi _ l)Zx

i 
i - , 

where i = 1, 2: 

dZA dZB 
...,-:;-z(iA. =- (2F+1)ZA, (a-1)-:z-=lzB. 

'r d1J 

(2.50) 

The operators whose eigenvalues are the separation 

constants are 

Ll = (a - 1)[DZ + ~(Pl - Kl)Z] 

- [N1
Z +Hpo + K o)Zl + Ha - 2) (Pl + Kl)Z 

L z =t(a-1)(Pl +Kl)Z, L3=Mlz, 

(26) A suitable choice of coordinates is 

x = liB cosiJ!V - x;;:;/a;-

y = (1/R) cos</l, Z -= (1/ R) sincp, 

where 

(2.51) 

(2.52) 

The solution ~} of the wave equation has the form 1! 
=,ReI>. The separation equation for eI>=El(xl)EzC,z) 

XA(</l)BU) are 

~+~ [_I __ + __ I_+~J dE-.i 
dX i 2 'i-a x;-1 Xi (Ix; 

+ [4F(~ + l)Xi~ + IlXi.i!.J Ei = 0 
4(\; - a)(x; - 1)\ i 

where i = 1,2: 

(2.53) 

The operators whose eigenvalues are the separation 

constants are 

Ll = - a[D
Z 

+ Hpl - Kl)Z] - ."If + ! (P z + Kz)Z 

+l(a + I)(Pl + Kl)Z, 

L 2=-ia(Pl +Kl)2, L3=M12. 
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(2.54) 

This completes the list of coordinate systems of Class 

III. 

Coordinate systems of Class IV 

Coordinate systems of this type correspond to the two 

direct product reductions SO(4, 2)=:l SO(2, 1)1& SO(2, 1) 

and SO(4, 2):=J SO(3)0 SO(I, 2). In each of these cases 

coordinates can be chosen from the nine separable 

classes of orthogonal coordinates on the two-sheeted 

and one-sheeted two-dimensional hyperboloids and the 

two separable classes of orthogonal coordinate systems 

on the two-dimensional sphere. The coordinate systems 

on these manifolds are given in the Appendix. In classi

fying coordinates of this type we give the general form 

of space-time coordinates in terms of the above men

tioned two-dimensional manifolds. 

(1) Coordinate systems corresponding to the reduction 

SO(4, 2):=J SO(3) 1& SO(I, 2). 

A suitable choice of space-time coordinates is 

(2.55) 

y = S2/(~1 + ~3)' Z = S3/(~1 + ~3)' 

where ~12_ ~22 - ~32= - 1 and 1:1
Z + S22 + 1:32= 10 

With the exception of coordinate systems of type 8 

(which can always be chosen such that D is diagonal) 

there are 16 coordinate systems of this type on the sin

gle and double sheeted hyperboloids. 

In each case the solution of the wave equation has the 

form 

~! = (~l + ~3)</l(Sl' S2' 1:3)e(~1' ~2' ~3)' 

where the functions </l and e satisfy the equations 

(M1
2+M/+M3

Z)</l =-1(1 + l)cp, 

[{Po,Ko} +DZ]e=I(1 + l)e, 
(2.56) 

and I is a positive integer. The operators correspond

ing to each of the 16 possible coordinate systems can 

then be read off from the Appendix, if we make the 

identifications N 1 =1(Po+Ko), Nz=D, and M3=~(PO 

- Ko) in the case of the SO(I, 2) coordinates. 

(2) Coordinate systems corresponding to the reduction 

SO(4, 2):=J SO(2, 1)('; SO(2, 1). 

A suitable choice of space-time coordinates is 

t=1:1/(~1+~3)' X=~2/(~1+~3)' 

Y = 1:2/(~1 + ~3)' Z = S3/(~1 + ~3)' 

where 1:12- S2Z
- 1:3

Z
= E, ~lZ_ ~ZZ=_ E, E=± 1. 

(2.57) 

Again with the exception of coordinate systems of 

type 8 there are 64 coordinate systems. In each case 

the solution of th.e wave equation has the form iJ! 

= (~1 + ~3)CP(~i> ~2 ~3)8(1:i> S2' 1:3), where the functions cp 

and e satisfy the' equations 

(."12
2 +N3 2

- M12)8=j(j + l)e, 

[- {Pi> K1} + D2]</l = j(j + 1)</l, 

E.G. Kalnins and W. Miller, Jr. 
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and j = - t + iq, 0 < q < 00, for globally defined 
solutions. 

The operator corresponding to the 80(2, 1) algebra 

associated with the vector (~1' ~2' ~3) can be read off from 

the Appendix with the identification N2 = i(P1 - K1), N2 

= D, and M3 = t(P1 + K 1 ), 

We have looked at four classes of coordinate systems 

for which the wave equation (*) is strictly R-separable 

and found 106 distinct such coordinate systems. This 

added to the results of ReL 4, gives a total of 367 in

equivalent R-separable coordinate systems for the wave 

equation (*). 

APPENDIX 

In this appendix we list the orthogonal separable co

ordinate systems for the two-dimensional sphere, 

single-sheeted and double-sheeted hyperboloids. In each 

case we list the symmetric second order operator in 

the enveloping algebras of the symmetry groups of these 

manifolds which describes the coordinate system. The 

coordinates (with the exception of the single-sheet hy

perboloid) can be found in the article by Olevski7 and 

the operator characterization is due to Winternitz et 

al. 9 

I. Coordinate systems separable on the two-dimensional 
sphere 

S1 2 + S22 + S32= 1 

If we write the generators M1 = S2a~3 - S3a~2' A12 = Sl a~3 

- S3a~1' and M3 = Sl 0C2 - S20~1 the coordinate systems 

and operators are: 

(sf1 »)2 = X1 x2/a, (s~l »)2 = (Xl - 1)(1 - X 2) /(a - 1), 

(sP »)2 = (Xl - a)(x2 - a)/a(a - 1), 0 < Xl < 1 < x 2 < a. 

The coordinates on the single-sheeted hyperboloid;· ~ 

= - 1 are obtained via the substitution ~ - i ~ and 1 < Xl, 

x 2<aj x1,x2>a. The operator is L=N12-aM32. 

(A5) 

~(3).~(3)=L For ~(3)\ ~(3)=-lwehave ~-i~and 

Xl' X2 > O. The operator is L = a(M32 - IV}) + {3{M3' N 2}. 

~1(4)+ ~2(4)=~, 

~1 (4) - ~2 (4) = V - xt/X2 + V - X2!x1 + V-X1/X 2, 

~3(4)=v(1-X1)(X2-1), x1<0<1<x2. (A6) 

~(4). ~(4) = 1. The coordinates on the Single-sheeted 

hyperboloid are obtained via the substitution ~ - i; 
with Xl, X2 > 1; 0 < Xl, X2 < 1; Xl, X2 < O. The operator is 

L=N12- (N2+M3)2. 

;1 (5) + ~2 (5) = J X
1

X
2

' 

;1 (5) - ~2 (5) = - (,[x17X; + v X
2
/X1 + ,[:X;h ), 

;/5) =,[ex:;. - 1j(X2 - 1), 0 < Xl < 1 < x 2, (A7) 

~(5). ~(5) = 1. The coordinates on the Single-sheeted 

hyperboloid are obtained via the substitution ~ - i ~ 

with Xl < 0 <x2 < 1. The operator is L =N1
2 + (N2 +M3)2. 

;1 (6) + ';2 (6) =,[ - X1X
2

' 

~1 (6) _ ';2 (6) = (Xl - X2) /[ 4(- X1X2)3 /2], 

1;3(6)=Mv-X27x~-V-X1/X2]' Xl <0<x2. (A8) 

~(6) • ~(6) = 1. The coordinates on the Single-sheeted 

hyperboloid are obtained via the substitution ~ - i ~ 

with Xl, X2 > O. The operator is L ={Nl , N2 - M 3t. 

(AI) ';1 (7) + ';2(7) =,[Xl> ~1 (7) - ~2(7) = l/,[Xl + {X1X/, 

1;3 (7) =X
2
,[ Xl, Xl> X2~' O. (A9) 

1;(2) = (COSX1, sinx1 COSX2' Sin.Y1 Sinx1 sin.y2). (A2) 

The operator is L = 1\,-'112. 

II. Coordinate systems on the one- and two-sheeted two
dimensional hyperboloids 

;12 _ ';22 - ~3 2 = ± 1 . 

We adopt the notation N1 = 1;10'2 + 1;2°'1' N 2= ~la{3 

+ ';30'1' and /\113 = 1;20'3 - ';3°'2' 

Wl»)2=X1X2/a, (.;~1»)2=(X1-1)(X2-1)/(a-l), 

(~?»)2= (Xl - a)(a- x 2)/(1(a -1), 1 < Xl <, (1 <X2, 

~(1) • ~(1) = (~P »)2 _ (.;~1 »)2 _ (~P »)2 = 1. (A3) 

The coordinates on ~. ~ = - 1 are obtained by the sub

stitution ~(1) - H(l) and Xl < 0 < 1 < x
2 

< a. The operator 

is L=Nl2+aN22. 
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W2»)2 = (Xl - 1) (1 - x2)/(a - 1), 

(~~2»)2 = _ X1 x2/a, 

(';~2»)2 = (Xl - (1) (a - x2)/a(a - 1), 

Xl < 0< 1 < a <x2, 1;(2). ~(2) =L 

J. Math. Phys., Vol. 18, No.9, September 1977 

(A4) 

~(7). 1;(7) = 1. The coordinates on the single-sheeted 

hyperboloid are obtained via the substitution ~ - i'; 

with Xl < 0 < x 2 ' The operator is L = (N2 + 1\.13)2. 

1;(8) = (coshxl coshx2, COShx1 sinlLY2, sinhxl), 

1;(8),1;(8) = 1, 

[(8) = (sinhxl coshx2, sinhxl sinlLY2, COShX1), 

t(8) (. . hx " hx ) ., = s1nX1 SIn 2' s1m1 cos 2, COSX1 , 

1;(8).1;(8) =- L 

The operator is L = N12. 

~(9) = (cosILY1 , sinhxl COSX2' sinILY1 sinx2), 

~(9) • ~(9) = 1, 

~(9) = (sinILY!, coshx! COSX2' coshx1 sinx 2), 

~(9) ~(9) = _ 1. 

E.G. Kalnins and W. Miller, Jr. 
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(All) 
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