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If a quantum field theory has a Landau pole, the theory is usually called ’sick’ and

dismissed as a candidate for an interacting UV-complete theory. In a recent study

on the interacting 4d O(N) model at large N, it was shown that at the Landau pole,

observables remain well-defined and finite. In this work, I study both relevant and

irrelevant deformations of the said model at the Landau pole, finding that physical

observables remain unaffected. Apparently, the Landau pole in this theory is benign.

I speculate about a relation between the 4d O(N) model and a Landau pole in QCD.
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I. MOTIVATION

In the early days of quantum field theory, Landau and collaborators studied quantum

electrodynamics in perturbation theory [1]. They found that QED has positive β-function

in perturbation theory, recognizing that this would lead to an uncontrolled growth of the

theory’s coupling constant as a function of energy. In modern notation, the QED running

coupling to leading order in perturbation theory becomes

α(µ̄) =
1

2
3

ln ΛLP
µ̄

, (1)

where it is customary to fix ΛLP = mee
3π

2α0 with me the electron mass and α0 ' 1
137

.

Landau noted that besides the dependence of the fine-structure constant α on the mo-

mentum scale µ̄, the form (1) implied that the running coupling is diverging (has a pole)

at a finite momentum scale µ̄ = ΛLP . Since the coupling diverges at this scale, it seems

that one cannot meaningfully probe momentum scales µ̄ > ΛLP in QED, so the theory does

not have a well-defined continuum limit. It has even been suggested that Landau was so

disturbed by this feature that he quit working on quantum field theory.

Modern physics deals with the issue of the Landau pole through a mix of denial and

shoulder shrugging. Denial adherents will rightly point out that (1) was derived in pertur-

bation theory, requiring α� 1, so that as a consequence (1) cannot be expected to correctly

capture features such as the Landau pole, where by definition α→∞. Shrugging adherents

will (also rightly) point out that

ΛLP = mee
3π

2α0 ' 10280 MeV (2)

puts the scale of the Landau pole beyond the Planck scale, so that in practice it is entirely

pointless to understand QED in that regime anyway. (However, it should be noted that

in the full Standard Model, ΛLP ' 1034 GeV is much lower than (2), but still extremely

high [2].) The prevailing dogma in both cases is that theories with a Landau pole should be

viewed as ’UV-incomplete’, or cut-off theories, that cannot be used to describe continuum

physics.

In this work, I will entertain an entirely different perspective, namely that physical ob-

servables of a quantum field theory could be well-behaved even when the coupling diverges

at the Landau pole, and beyond.
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Unfortunately, I am unable to test my perspective in QED (yet), even though other

groups have proposed similar ideas [3, 4]. Instead, I will focus on a quantum field theory

which can be solved non-perturbatively in the limit of a large number of components, namely

the O(N) model [5], using critically important input from PT -symmetric field theory [6]. I

will work in 3+1 dimensions where it is known to possess a Landau pole in the large N limit.

In a quantum field theory, the renormalized coupling is not directly observable – as is

apparent through the fact that it will depend on the fictitious renormalization scale µ̄. For

this reason, finite and well-defined physical observables at infinite renormalized coupling are

certainly possible. Indeed, the idea that physical observables turn out to be finite even when

the coupling diverges is well supported by several quantum field theory examples, such as

N = 4 SYM in 3+1 dimensions [7, 8] as well as bosonic and fermionic large N field theories

in 2+1 dimensions [9–12].

In this work, I build upon and extend this idea: if physical observables remain finite

when the renormalized coupling parameter diverges, maybe observables remain finite and

well-defined when the renormalized coupling parameter becomes negative or even complex.

After all, the renormalized coupling parameter is not directly observable, so nothing should

protect it from becoming complex as long as physical observables remain well-defined. Of

course this type of idea cannot be tested in perturbation theory, which is inherently a weak-

coupling expansion around non-interacting field theory. For this reason, I heavily employ

large N expansion techniques (which do not rely on a small perturbative coupling in order to

be applicable) as well as results from PT -symmetric field theory (which allow calculations

for negative or complex couplings via analytic continuation).

While this study is exploratory and somewhat speculative, I nevertheless hope that certain

aspects merit further consideration when trying to interpret quantum field theory in four

dimensions.

II. CALCULATION – THE O(N) MODEL IN 3+1 DIMENSIONS AT LARGE N

Let me first consider the case of the massless theory with quartic interaction, which is

essentially a repeat of the calculation in Ref. [5], but included here for completeness. The
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partition function for this theory is defined through the path integral

Z(λ, β) =

∫
Dφe−SE , (3)

with the Euclidean action

SE =

∫
d3x

∫ β

0

dτ

[
1

2
∂µ~φ · ∂µ~φ+

λ

N

(
~φ · ~φ

)2
]
, (4)

where ~φ = (φ1, φ2, . . . , φN) is an N-component scalar field and the theory is defined on the

thermal cylinder with β = 1
T

the inverse temperature.

The partition function may be rewritten in a more convenient form by introducing two

auxiliary fields σ, ζ with

1 =

∫
Dσδ(σ − ~φ2) =

∫
Dσ
∫
Dζei

∫
ζ(σ− ~φ2) . (5)

The resulting path integral for σ has quadratic action, such that σ can be integrated out.

One finds

Z(λ, β) =

∫
DφDζe−Seff , Seff =

∫
d3x

∫ β

0

dτ

[
1

2
~φ [−� + 2iζ] ~φ+N

ζ2

4λ

]
. (6)

Separating the auxiliary field into zero modes and fluctuations ζ(x) = ζ0
2

+ ζ ′(x), one can

verify that the path integral over fluctuations does not contribute to leading order in large N

to the partition function. Since ζ0 is a constant, the path integral over fields ~φ is quadratic

and can be done in closed form. One finds Z(λ, β) =
∫
dζ0e

NβV p(
√

2iζ0), with the pressure

per component in dimensional regularization

p(m) =
m4

16λ
+

m4

64π2

(
1

ε
+ ln

µ̄2e
3
2

m2

)
+
m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
, (7)

where βV is the space-time volume, µ̄ is the MS renormalization scale, Ki(x) denotes mod-

ified Bessel functions of the second kind and I have rewritten iζ0 = m2

2
to simplify the

appearance.

The expression (7) is divergent in the continuum lim ε → 0. However, it may be non-

perturbatively renormalized as
1

λ
+

1

4π2ε
=

1

λR(µ̄)
, (8)

which is standard procedure for large N field theories [13]. The resulting running coupling

is given by

λR(µ̄) =
4π2

ln
Λ2
LP

µ̄

, (9)
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FIG. 1. Running coupling in the O(N) model in 3+1 dimensions. Shown are results for the coupling

λR in the original theory (9) as well as for the coupling gR in the analytically continued theory

(PT -symmetric theory). Adapted from Ref. [5].

which has a Landau pole at µ̄ = ΛLP , cf. Fig. 1.

In order to make sense of the theory at the Landau pole, a procedure for analytically

continuing the theory beyond the Landau pole is necessary. This procedure has been provided

in the form of a conjecture in Ref. [6] for so-called PT -symmetric field theory1. Naively

continuing (9) for µ̄ > ΛLP , the sign of λR becomes negative. So in order to make sense of

the O(N) model beyond the Landau pole, one is led to consider a theory where the sign of

the coupling is flipped:

λ→ −g + i0+ , (10)

where the small imaginary part has been included in order to be able to ’go around’ the

Landau pole. Following standard nomenclature [14], the theory with flipped-sign coupling is

referred to as PT -symmetric field theory, and its partition function is denoted by ZPT (g, β).

Following Ref. [6], the analytic continuation of Z(λ, β) is given by

lnZPT (g, β) = Re lnZ(λ = −g + i0+, β) . (11)

To evaluate ZPT (g, β), one may directly employ the pressure function (7), where now the sign

of the coupling has been flipped. Regardless of the sign of the coupling, the expression for the

1 Note that the conjecture in Ref. [6] has been formulated at zero temperature and checks exist only for

d = 1 (quantum mechanics). I thank W. Ai for pointing this out to me.
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pressure (7) is divergent in the 4d continuum lim ε→ 0. The PT -coupling renormalization,

given by

1

g
− 1

4π2ε
=

1

gR(µ̄)
, (12)

differs from (8) by a sign, making the PT -symmetric theory asymptotically free. Using the

renormalized coupling gR(µ̄), one can express the renormalized pressure function as

p(m) = − m4

16gR(µ̄)
+

m4

64π2
ln
µ̄2e

3
2

m2
+
m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
. (13)

The pressure, being a physical observable, cannot depend on the choice of renormalization

scale µ̄, so dp
d ln µ̄

= 0. This fixes the running for the renormalized coupling gR(µ̄) and as a

consequence the form of the running coupling itself as

gR(µ̄) =
4π2

ln µ̄2

Λ2
LP

, (14)

which is the same as (9) up to a sign. Both running couplings are shown in Fig. 1, where

it can be seen that they diverge at µ̄ = ΛLP . Whereas µ̄ = ΛLP is the Landau pole in the

O(N) model, µ̄ = ΛLP looks a lot like the scale parameter for QCD (cf. section III).

Inserting the form (14) of the running coupling into (13), one obtains

p(m) =
m4

64π2
ln

Λ2
LP e

3
2

m2
+
m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
. (15)

At this point it is worth to pause and consider the following observations:

• Any dependence of p(m) on the unphysical renormalization scale µ̄ has dropped out

• The expression for the pressure is identical to (14) evaluated at a the Landau pole,

µ̄ = ΛLP

• The expression for the pressure in the PT -symmetric theory (with flipped sign coupling

and asymptotic freedom) is identical to the the pressure in the original O(N) model

with Landau pole, as can be seen by inserting (9) into (14)

• For generic values of m, the pressure at the Landau pole will be finite rather than

infinite.
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As a consequence of these observations, the O(N) model and the PT -symmetric O(N)

model are identical at large N, even though from Fig. 1 one of these has a Landau pole and

the other one is asymptotically free. For this reason I will refer to the scale µ̄ = ΛLP as ’the

Landau pole’ also in the PT -symmetric theory.

One can calculate the pressure for any temperature T by noting that the remaining single

integral over ζ0 in the partition function is again dominated by the saddle points at large N,

so that the physical pressure of the theory per component is given by (15) with m = m̄ the

solution to

0 =
dp(m)

dm2
=

m2

32π2
ln

Λ2
LP e

1

m2
− mT

4π2

∞∑
n=1

K1(nβm)

n
. (16)

If (16) has more than one solution (as it generically does), then in the large N limit, the

solution with the biggest Re p(m̄) will dominate over all others.

At zero temperature (a.k.a. the vacuum), a simple solution to (16) is m̄ = 0, which

corresponds to the usual starting point for perturbative calculations. However, there is

a second solution to (16) located at m̄ = ΛLP

√
e, which is usually dismissed as ’being too

close to the Landau pole’ [13]. However, the physical pressure per component for this second

solution is given by

p(m = ΛLP

√
e, T = 0) =

Λ4
LP e

2

128π2
, (17)

which is perfectly finite. In addition, since p(m = ΛLP

√
e) > p(m = 0), the solution (17) is

thermodynamically preferred over the perturbative vacuum.

Despite the presence of the Landau pole, observables in the bosonic theory seem to

make physical sense. For instance, one can calculate thermodynamic properties at finite

temperature by tracking solutions to (16) numerically, and evaluating p(m̄). As discussed in

Ref. [5], at small temperature the numerical solution m̄ of the thermodynamically preferred

phase is continuously connected to m̄(T = 0) =
√
eΛLP . The numerical solution m̄ becomes

complex above a critical temperature T = Tc ' ΛLP/
√
e, but using results from PT -

symmetric field theory [6], the analytically continued pressure is continuous across T = Tc.

A plot of the pressure as a function of temperature from Ref. [5] is reproduced in Fig. 2,

and results for the entropy and specific heat can be found in Ref. [5].
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FIG. 2. Pressure per component as a function of temperature for the O(N) model at large N,

adapted from Ref. [5]. Tc ' 0.616ΛLP denotes the location in temperature where the solution to

(16) for m becomes complex.

A. Adding Relevant Deformations

One might worry that the results from the previous sections are an artifact of tuning

away all relevant and irrelevant operators. For this reason, it is useful to consider repeating

the analysis for the Euclidean action

SE =

∫
d3xdτ

[
1

2
∂µ~φ · ∂µ~φ+

1

2
m2

bare
~φ2 − g

N

(
~φ · ~φ

)2
]
. (18)

Introducing the auxiliary fields as before in (5), one may again integrate out σ, and one

finds in complete analogy with the previous section the PT -symmetric pressure function

p(m) = −(m2 −m2
bare)

2

16g
+

m4

64π2

(
1

ε
+ ln

µ̄2e
3
2

m2

)
+
m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
. (19)

The explicit ε → 0 divergence can again be taken care of by using the same non-

perturbative renormalization as before (12). This leads to

p(m) =
2m2m2

bare −m4
bare

16g
+

m4

64π2
ln

Λ2
LP e

3
2

m2
+
m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
. (20)

Since the bare coupling 1
g

diverges as ε→ 0, there are residual divergences remaining in

(20). The first one of these can be taken care of by renormalizing the bare mass parameter
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as
m2

bare

g
=
m2
R(µ̄)

gR(µ̄)
, (21)

The running of the renormalized mass mR(µ̄) is again fixed by requiring that dp(m)
d ln µ̄

= 0,

which leads to

m2
R(µ̄) =

const

ln µ̄2

Λ2
LP

, or
m2
R(µ̄)

gR(µ̄)
= m2

0 , (22)

with constant and finite mass scale m0. This leads to

p(m) =
m2m2

0

8
− m4

bare

16g
+

m4

64π2
ln

Λ2
LP e

3
2

m2
+
m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
. (23)

For the remaining term, note that in the limit ε→ 0

m4
bare

g
= m2

0m
2
bare = m4

0g =
m4

0
1

gR(µ̄)
+ 1

4π2ε

→ 0 , (24)

so that the pressure function becomes

p(m) =
m2m2

0

8
+

m4

64π2
ln

Λ2
LP e

3
2

m2
+
m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
. (25)

For small values of m0, the properties of this theory are close to the unmodified version

considered in the previous section. The second-order phase transition at finite temperature

persists, but is pushed to higher values of Tc
ΛLP

.

B. Adding Irrelevant Deformations

Now let us consider what happens when adding irrelevant operators to the theory. In

this case, I study

SE =

∫
d3xdτ

[
1

2
∂µ~φ · ∂µ~φ−

g

N

(
~φ · ~φ

)2

+
α

N2

(
~φ · ~φ

)3
]
, (26)

where α is the bare sextic coupling parameter. Introducing the auxiliary fields as before in

(5), it is possible, but not very enlightening, to integrate out σ exactly. Instead, in the large

N limit it is again permissible to replace σ(x) by just its global zero mode σ0, so that

ZPT (g, β) =

∫
dσ0dζ0e

NβV p(m=
√
iζ0,σ0) , (27)

where

p(m,σ0) =
gσ2

0

N2
− ασ3

0

N3
+
σ0m

2

2N
+

m4

64π2

(
1

ε
+ ln

µ̄2e
3
2

m2

)
+
m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
. (28)
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At large N, the integral over σ0 is done with the saddle point method, with two saddles

located at

σ
(1,2)
0 =

gN

3α

(
1±

√
1 +

3αm2

2g2

)
. (29)

For small 3αm2

2g2 (justified below), one can expand the square root in this expression to obtain

σ
(1)
0

N
= −m

2

4g
+

3αm4

32g3
− 9α2m6

128g5
+
∞∑
n=3

O
(
α2n

g2n+1

)
,

σ
(2)
0

N
=

2g

3α
+
m2

4g
− 3αm4

32g3
+

9α2m6

128g5
+
∞∑
n=3

O
(
α2n

g2n+1

)
, (30)

for the two solutions. Inserting σ
(1)
0 into (28), one finds

p(m) = −m
4

16g
+
αm6

64g3
+

m4

64π2

(
1

ε
+ ln

µ̄2e
3
2

m2

)
+
m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
+
∞∑
n=1

O
(
m2n+6α2n

g2n+3

)
.

(31)

Renormalizing the coupling g as in (12), leads to

p(m) = − m4

16gR(µ̄)
+
αm6

64g3
+
m4

64π2
ln
µ̄2e

3
2

m2
+
m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
+
∞∑
n=1

O
(
m2n+6α2n

g2n+3

)
, (32)

but this implies that α
g3 is divergent. Thus the bare sextic coupling parameter also needs to

be renormalized as
α

g3
=
αR(µ̄)

g3
R(µ̄)

. (33)

This leaves the whole tower of additional terms α2n

g2n+3 , n ≥ 1 that are potentially divergent.

However, one finds that in the ε→ 0 limit

α2n

g2n+3
=
α2n
R (µ̄)

g6n
R (µ̄)

1

g3−4n
=
α2n
R (µ̄)

g6n
R (µ̄)

1(
1

gR(µ̄)
+ 1

4π2ε

)4n−3 → 0 , (34)

because n ≥ 1. Therefore, none of these terms contribute, and one is left with

p(m) =
m6

M2
+

m4

64π2
ln

Λ2
LP e

3
2

m2
+
m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
, (35)

where I have used the renormalization group invariance of the pressure to express

αR(µ̄)

64g3
R(µ̄)

=
1

M2
, (36)

with constant mass scale M . One observes that for the same reason as (34), expanding the

square root in (29) is justified for σ
(1)
0 .
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For the second solution σ0 = σ
(2)
0 , (28) becomes

p(m) =
4g3

27α2
+
gm2

3α
+
m4

16g
− αm

6

64g3
+

m4

64π2

(
1

ε
+ ln

µ̄2e
3
2

m2

)
+
m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
+ . . . (37)

The explicit 1
ε

divergence can by renormalizing the coupling g, but the sign of the countert-

erm must be flipped (and as a consequence, so must the sign of the running coupling). One

obtains

p(m) =
4g3

27α2
+
gm2

3α
+

m4

16gR(µ̄)
− αm6

64g3
+

m4

64π2
ln
µ̄2e

3
2

m2
+
m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
+ . . . (38)

Renormalizing the sextic coupling α as in (36), the square-root expansion in (29) is justified

also for σ
(2)
0 . Similar to (34), terms with positive powers of the bare coupling g in the

numerator vanish, so that one finds

p(m) =
M4

27 648 g3
− m6

M2
+

m4

64π2
ln

Λ2
LP e

3
2

m2
+
m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
(39)

This expression still has a divergent term ∝ 1
g3 , but this term is independent from m. For

this reason, this last divergence can be canceled by a vacuum pressure-counterterm in the

Lagrangian, leading to

p(m) = −m
6

M2
+

m4

64π2
ln

Λ2
LP e

3
2

m2
+
m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
. (40)

Inspecting (35) and (40), one finds that the two saddle point solutions for σ0 give rise to

the same form for the pressure function, except for the sign of the m6 term, which can be

attributed to the fact that the sign of gR(µ̄) is flipped for the solution σ
(1)
0 .

The final integral over ζ0 is done by finding the saddle point solution

0 =
dp

dm2
= ±3m4

M2
+

m2

32π2
ln

Λ2
LP e

1

m2
− mT

4π2

∞∑
n=1

K1(nβm)

n
, (41)

where ± corresponds to the solutions σ
(1,2)
0 , respectively. At zero temperature, where the

contribution from the modified Bessel function vanishes, there is a different number of solu-

tions depending on the sign in (41) and magnitude of M2. For positive sign (corresponding

to solution σ
(1)
0 above), and large M2, there are three solutions: m̄ = 0, m̄ ' ΛLP

√
e and

m̄ ∝M up to logarithmic corrections. Of these, the saddle with the largest pressure (lowest

free energy) is m̄ ' ΛLP

√
e, hence this is the dominant saddle point at large N. One thus
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again recovers the solution (17). As M2 decreased, the situation remains qualitatively the

same until M <∼ 84ΛLP , at which point solutions (except for m̄ = 0) become complex-valued.

However, close to the Landau pole where gR(µ̄ = ΛLP )→∞, (36) suggests that M2 →∞,

so I will not consider small values of M in the following.

For the negative sign in (41) and largeM2, there are two solutions m̄ = 0 and m̄ ' ΛLP

√
e,

where again the second solution is thermodynamically preferred. Therefore, one also recovers

the unmodified theory solution (17) for the second solution σ
(2)
0 .

C. Conclusions

The O(N) model in 3+1 dimensions has a Landau pole at large N. Physical observables at

the Landau pole remain finite and well-behaved. This feature does not change when adding

either relevant operators (e.g. mass terms) or irrelevant operators (e.g. sextic interactions)

to the theory. I therefore conclude that for the O(N) model in 3+1 dimensions at large N,

the Landau pole is a harmless feature of the theory, and not a sign that the theory itself is

’sick’. Most importantly, using the analytic continuation provided by PT -symmetric field

theory, the O(N) model does not need to be treated as a cut-off theory. It is UV complete,

and asymptotically free, despite (or perhaps because of ) the negative coupling constant.

An important omission in the present study is the question about 1
N

corrections – will they

destroy the features of the large N limit? While this question is without doubt important, I

cannot resist pointing out that (almost) the entirety of holography is built upon the strict

large N limit of field theory, without systematic discussion of 1
N

corrections [15]. Yet even

without systematic understanding of 1
N

terms, holography has indisputable been useful in

building our understanding of quantum field theory, so maybe a similar attitude could be

extended to the large N limit of the O(N) model.

III. SPECULATION – A LANDAU POLE IN QCD?

Let me conclude the discussion by speculating about a Landau pole in a seemingly unre-

lated theory – Quantum Chromodynamics. According to prevailing knowledge, QCD does

not have a Landau pole, so it seems that it should not be discussed here. However, QCD

does have asymptotic freedom, and since the PT -symmetric O(N) model at large N shares
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FIG. 3. Running coupling in QCD (with Λ ≡ ΛMS = 0.3 GeV) and large N PT -symmetric O(N)

model. In order to have a fair comparison, I’m converting the QCD running coupling αs(µ̄) to the

’t Hooft coupling by multiplying with a factor of Nc = 3, and I am dividing the PT -symmetric

O(N) model coupling by a factor of 4π. Lattice QCD point at µ̄ = 1.5 GeV is from Ref. [16], QED

point at the Z-pole mass µ̄ = MZ is from Ref. [17]. See text for details.

this property, one can nevertheless ask how different or similar these theories are.

It would seem more appropriate to attempt a comparison to QED rather than QCD,

but the experimental determination of the QED fine-structure constant does not extend

much beyond the Z-pole mass µ̄ = MZ ' 91 GeV. Since the QED Landau pole (2) is at

vastly higher energy, the resulting QED information (shown in Fig. 3) is not particularly

illuminating.

So instead of QED, in Fig. 3 I compare the running coupling from QCD to that in the PT -

symmetric O(N) model. For the QCD running coupling, I am using the 3-loop perturbative

QCD expression resulting from numerically integrating

∂as
∂ ln µ̄2

= −β0a
2
s − β1a

3
s − β2a

3
s , (42)

where as = αs(µ̄)
4π

and β0 = 11 − 2
3
Nf , β1 = 102 − 38

3
Nf , β2 = 2857

2
− 5033

18
Nf + 325

54
N2
f and I

am taking Nf = 5 [17, 18]. As can be seen from Fig. 3, the QCD running coupling obtained

from perturbation theory becomes very large at small scales µ̄. In fact, one finds that the

perturbative solution for αs(µ̄) thus obtain diverges for a particular value of µ̄ = ΛMS ' 0.3

GeV. This value is consistent with similar values reported by other methods [19], and indeed
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quarks with physical masses [20], with a cross-over temperature reported as Tc = 170(4)(3) MeV

[21] (full vertical line). Massless O(N) model results with a second-order phase transition located

at Tc ' 0.616ΛLP (dashed vertical line) are adapted from [5]. See text for details.

the running coupling αs(µ̄) is consistent with calculations from lattice QCD [16] at values

as low as µ̄ ' 5ΛMS (also shown in Fig. 3).

In my opinion, Fig. 3 indicates a certain qualitative similarity between QCD and the

O(N) model. Pushing the similarity further, this would lead to the interpretation that αs(µ̄)

actually does diverge at a finite momentum scale ΛMS, and that deep in the infrared αs

should be analytically continued to negative (or complex) values.

It is well-known that QCD becomes confining in the infrared, and that physical ob-

servables are well-behaved and finite for all momentum scales. In particular, thermo-

dynamic quantities such as the pressure are continuous as a function of temperature for

QCD, with a broad analytic crossover from confined to quark-gluon plasma phase around

Tc ' 170 MeV [21]. Normalizing the pressure by the Stefan-Boltzmann pressure pSB(T ) =

π2T 4

90

(
2(N2

c − 1) + 7
2
NcNf

)
with Nc = Nf = 3 for QCD and pSB(T ) = π2T 4N

90
for the O(N)

model, a comparison is shown in Fig. 4.

Similar to the case of the running coupling shown in Fig. 3, thermodynamic properties

for QCD and the O(N) model shown in Fig. 4 seem to have a certain qualitative similarity

when expressed in units of ΛLP ,ΛMS.
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IV. SUMMARY

In this work, I have considered the O(N) model in 3+1 dimensions at large N, which has a

Landau pole. Using technology borrowed from PT -symmetric field theories, I have extended

the theory beyond the Landau pole, and I have found that adding relevant and irrelevant

operators do not qualitatively change the behavior of the theory close to the Landau pole.

Physical observables in the O(N) model are finite and well-behaved at and close to the

Landau pole.

I take this to constitute evidence that at least at large N, the Landau pole in the O(N)

model is harmless, and the theory does constitute a UV-complete interacting and asymp-

totically free theory.

Moreover, I compared results from the large N O(N) model for the running coupling and

the finite temperature pressure to QCD, finding qualitative similarities between these two

theories.

Based on these observations, my interpretation is as follows: Landau poles are common

features for quantum field theories in 3+1 dimensions, since the O(N) model at large N, QED,

and even QCD possess diverging coupling constants at a finite momentum scale µ̄ = Λ. For

two of these theories (O(N) model and QCD), we know that nothing ’bad’ happens at this

scale. Instead, µ̄ = Λ merely marks the scale at which the O(N) model and QCD seem to

transition from a low temperature phase to a high temperature phase.

Perhaps it would be time to critically reassess the current dogma that Landau poles

constitute fatal flaws of interacting quantum field theories.
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