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Abstract 

Background: Interaction fingerprints (IFP) have been repeatedly shown to be valuable tools in virtual screening to 

identify novel hit compounds that can subsequently be optimized to drug candidates. As a complementary method 

to ligand docking, IFPs can be applied to quantify the similarity of predicted binding poses to a reference binding 

pose. For this purpose, a large number of similarity metrics can be applied, and various parameters of the IFPs them-

selves can be customized. In a large-scale comparison, we have assessed the effect of similarity metrics and IFP con-

figurations to a number of virtual screening scenarios with ten different protein targets and thousands of molecules. 

Particularly, the effect of considering general interaction definitions (such as Any Contact, Backbone Interaction and 

Sidechain Interaction), the effect of filtering methods and the different groups of similarity metrics were studied.

Results: The performances were primarily compared based on AUC values, but we have also used the original 

similarity data for the comparison of similarity metrics with several statistical tests and the novel, robust sum of rank-

ing differences (SRD) algorithm. With SRD, we can evaluate the consistency (or concordance) of the various similarity 

metrics to an ideal reference metric, which is provided by data fusion from the existing metrics. Different aspects of 

IFP configurations and similarity metrics were examined based on SRD values with analysis of variance (ANOVA) tests.

Conclusion: A general approach is provided that can be applied for the reliable interpretation and usage of similarity 

measures with interaction fingerprints. Metrics that are viable alternatives to the commonly used Tanimoto coefficient 

were identified based on a comparison with an ideal reference metric (consensus). A careful selection of the applied 

bits (interaction definitions) and IFP filtering rules can improve the results of virtual screening (in terms of their agree-

ment with the consensus metric). The open-source Python package FPKit was introduced for the similarity calcula-

tions and IFP filtering; it is available at: https ://githu b.com/david bajus z/fpkit .
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Introduction
Interaction fingerprints are a relatively new concept in 

cheminformatics and molecular modeling [1]. As molec-

ular fingerprints are binary (or bitstring) representations 

of molecular structure, analogously, interaction finger-

prints are binary (or bitstring) representations of 3D 

protein–ligand complexes. Each bit position of an inter-

action fingerprint corresponds to a specific amino acid 

of the protein and a specific interaction type. A value of 

1 (“on”) denotes that the given interaction is established 

between the given amino acid and the small-molecule 

ligand (a 0, or “off” value denotes the lack of that specific 

interaction). Two such fingerprints are most commonly 

compared with the Tanimoto similarity metric (taking a 

value between 0 and 1, with 1 corresponding to identi-

cal fingerprints, i.e. protein–ligand interaction patterns). 

In the most common setting, the Tanimoto similarity 

is calculated between a reference fingerprint (usually 

belonging to a known active molecule) and many query 

fingerprints.

Despite the straightforward definition, interac-

tion fingerprints have been implemented by various 

research groups and commercial software  developers 
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with slight differences in the specifics. �e first inter-

action fingerprint was termed structural interaction 

fingerprint (SIFt) and was introduced by Deng et  al. 

[2]. �is implementation contained originally seven 

interaction types (any contact, backbone contact, side-

chain contact, polar contact, hydrophobic contact, 

H-bond donor and acceptor), and was later extended 

to include aromatic and charged interactions as well 

[3]. �is modified version is implemented in the pop-

ular Schrödinger molecular modeling suite, which 

we also applied in this work, see Table  1 [4]. A simi-

lar implementation was published by Cao and Wang 

[5], containing 10 interactions per residue, and termed 

ligand-based interaction fingerprint (LIFt).

A widely-applied variant, simply termed interaction 

fingerprint (IFP) was introduced by Marcou and Rognan 

[6], containing seven interactions per residue. A marked 

difference between SIFt and IFP is that IFP differentiates 

aromatic interactions by their orientations (face-to-face 

vs. edge-to-face), and charged interactions by the specific 

charge distribution (i.e. cation on the ligand vs. anion 

on the ligand). Furthermore, IFPs can be configured to 

include less common interaction types, such as weak 

H-bonds or cation–π interactions. Later, the same group 

has introduced triplet interaction fingerprints (TIFPs), 

which encodes triplets of interaction points to a fixed 

length of 210 bits [7].

Mpamhanga et  al. [8] have introduced three types 

of interaction fingerprints in their work in 2006, out of 

which the one termed CHIF is probably the most promi-

nent. Atom-pairs based interaction fingerprint (APIF) is 

a variant implemented by Pérez-Nueno et  al. [9] in the 

MOE SVL scripting language [10]. APIF accounts for the 

relative positions of pairs of interactions (based on their 

binned distances) and stores them in a count-based fin-

gerprint with a fixed length (294 bits).

Da and Kireev [11] have introduced SPLIF (Structural 

protein–ligand interaction fingerprints), whose main 

difference with respect to SIFt is that the interactions 

are encoded only implicitly by encoding the interacting 

ligand and protein fragments (whereas in SIFt the inter-

action type explicitly defines the given bit in the bit-

string). In the same year, Sato and Hirokawa [12] have 

introduced another approach called PLIF (protein–ligand 

interaction fingerprints), which relies on the per-residue 

identification of the number of interacting atoms (with 

the ligand). To our knowledge, the most recent novel 

interaction fingerprint implementation is the PADIF 

(Protein per atom score contributions derived interac-

tion fingerprint) approach of Jasper et  al. [13]. PADIF 

incorporates the strengths of the different interactions by 

exploiting the per atom score contributions of the protein 

atoms, which are calculated for each pose during dock-

ing with GOLD, or with any other scoring function that 

can output atom contributions [14]. As a consequence, 

PADIF is an atom-based interaction fingerprint.

Interaction fingerprints have been applied numerous 

times to complement docking scores in virtual screen-

ing campaigns, e.g. for the discovery of GPCR (G-protein 

coupled receptor) ligands [15] or kinase inhibitors [16]. In 

more complex examples, they have been applied for inter-

preting activity landscapes [17], for training machine learn-

ing models [18], and for identifying covalently targetable 

cysteine residues in the human kinome [19]. Additionally, 

interaction fingerprints are applied to support large, spe-

cialized structural databases, such as GPCRdb (for GPCRs) 

[20], KLIFS (for kinases) [21, 22] or PDEstrian (for phos-

phodiesterases) [23].

Table 1 Summary of  the  bit de�nitions of  the  modi�ed SIFt implemented in  the  Schrödinger Suite and  applied in  this 

work

Abbreviation Short de�nition Description

Any Any contact A ligand atom is within the required distance of a receptor atom

BB Backbone interaction A ligand atom is within the required distance of a receptor backbone atom

SC Sidechain interaction A ligand atom is within the required distance of a receptor side chain atom

Pol Polar residues A ligand atom is within the required distance of an atom in a polar residue of the receptor (ARG, ASP, GLU, 
HIS, ASN, GLN, LYS, SER, THR, ARN, ASH, GLH, HID, HIE, LYN)

Hyd Hydrophobic residues A ligand atom is within the required distance of an atom in a hydrophobic residue of the receptor (PHE, 
LEU, ILE, TYR, TRP, VAL, MET, PRO, CYS, ALA, CYX)

HBA Hydrogen bond acceptor The ligand forms a hydrogen bond with an acceptor in a receptor residue

HBD Hydrogen bond donor The ligand forms a hydrogen bond with a donor in a receptor residue

Aro Aromatic residue A ligand atom is within the required distance of an atom in an aromatic residue of the receptor (PHE, TYR, 
TRP, TYO)

Chg Charged residue A ligand atom is within the required distance of an atom in a charged residue of the receptor (ARG, ASP, 
GLU, LYS, HIP, CYT, SRO, TYO, THO)
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Binary similarity measures are applied in various scien-

tific fields to compare binary and continuous data vectors. 

To our knowledge the most comprehensive collection of 

similarity measures was published by Todeschini et al. [24], 

listing 51 similarity measures (out of which seven have 

been shown to perfectly correlate with others).

For binary data (e.g. for two interaction fingerprints), 

similarity measures are calculated from the contingency 

table (or confusion matrix) shown in Table  2, containing 

the frequencies of four events: (a) 1–1 (interaction present 

in both complexes), (b) 1–0 (interaction present in the first 

complex and absent from the second), (c) 0–1 (interaction 

absent from the first complex but present in the second), 

and (d) 0–0 (interaction absent from both complexes). 

With these parameters (along with the fingerprint length 

p), various similarity measures can be calculated, as exem-

plified here:

In the examples, SM is the simplest similarity coefficient 

(called simple matching, or Sokal–Michener), JT corre-

sponds to the Jaccard–Tanimoto coefficient (the de facto 

standard of the cheminformatics community), and BUB 

is the Baroni–Urbani–Buser coefficient that was sug-

gested in our recent work as a good similarity metric for 

metabolomics fingerprints [25].

�e values of similarity measures usually range from 0 

to 1 (as for the above examples), but many of them (e.g. 

correlation-based measures) are defined to other ranges, 

such as − 1 to + 1. Such measures can be rescaled to the 

range [0, 1], based on this formula:

where α and β are the scaling parameters compiled by 

Todeschini et al. [24]. Similarity measures can be catego-

rized according to symmetricity and metricity. A simi-

larity coefficient is called symmetric (S) if it considers d 

(number of common off bits) equally to a (number of 

common on bits), intermediate (I) if d is underweighted 

with respect to a, or asymmetric (A) if d is not considered 

at all. Additionally, the work of Todeschini et al. denotes 

(1)SM =
a + d

p

(2)JT =
a

a + b + c

(3)BUB =

√
ad + a

√
ad + a + b + c

(4)s
′
=

s + α

β

correlation-based metrics with the letter Q. Metric-

ity specifies whether a similarity measure can be trans-

formed into a metric distance, i.e. one that complies with 

the criteria of non-negativity, identity of indiscernible, 

symmetry (dA,B = dB,A) and triangle inequality. �ese can 

be called (similarity) metrics and are denoted with M, 

while non-metric measures are denoted with N. In this 

work, we have adapted the abbreviations introduced by 

Todeschini et al. [24].

In our related earlier works, we have confirmed the 

choice of the Tanimoto coefficient for molecular finger-

prints (by a comparison of eight commonly available 

measures) [26], and more recently we have suggested the 

Baroni–Urbani–Buser (BUB) and Hawkins–Dotson (HD) 

coefficients for metabolomic fingerprints [25]. We should 

note however, that due to the highly different data struc-

ture, these conclusions are not transferrable to interac-

tion fingerprints (or other fingerprint types).

In this work, our goals were to (1) compare and rank 

these 44 similarity measures for their use with interaction 

fingerprint data, and (2) to dissect the interaction fin-

gerprints and investigate how changes in the data struc-

ture affect the ranking of similarity coefficients. Also, 

we aimed to answer some specific questions considering 

interaction fingerprints, regarding e.g. the usefulness of 

IFP filtering schemes (i.e. exclusion of certain bit posi-

tions or blocks), or of general interaction definitions (e.g. 

“Any contact”). We note here that we use the abbrevia-

tion IFP throughout this work to refer to interaction fin-

gerprints in general, not to the specific fingerprinting 

method of Marcou and Rognan [6]. (�e specific method 

we used here is a modified version of SIFt [2], imple-

mented in the Schrödinger Suite [4].)

Methods
Datasets

Ten protein targets were applied for the comparison, 

which were selected from the DUD datasets [27] based 

on the following criteria: (1) a crystal structure of the 

Table 2 Confusion matrix for  a  pair of  interaction 

�ngerprints, containing the  frequencies of  common 

on  bits (a), common o�  bits (d), and  exclusive on  bits 

for Complex 1 (b) and Complex 2 (c)

p = a + b + c + d Complex 2

1 (interaction 
present)

0 
(interaction 
absent)

Complex 1

1 (interaction present) a b

0 (interaction absent) c d
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human protein from the PDB database must be avail-

able, (2) the co-crystallized ligand should have a reported 

bioactivity data (if more structures were available, the 

one with the most active ligand was selected), and (3) we 

strived to compile a set of proteins that are as diverse as 

possible. �e applied protein targets and ligand sets are 

summarized in Table 3.

�e case studies correspond to ten virtual screening 

scenarios, where IFPs are used for retrieving the active 

molecules from among the chemically similar, but not 

active decoy compounds. A standard tool for evaluat-

ing virtual screenings is the area under the receiver 

operating characteristic curve (ROC AUC, or AUC for 

even shorter). �e AUC can take values between 0 and 

1, and corresponds to the probability of ranking a ran-

domly selected active compound higher than a randomly 

selected inactive compound (as a consequence, an AUC 

value of 0.5 corresponds to random ranking) [28]. In this 

work, we have used AUC values as a first approach to 

evaluating the various IFP-similarity measure combina-

tions, followed by a more detailed statistical analysis, as 

explained below.

Generation of interaction �ngerprints

All the preprocessing procedures for the protein tar-

gets and ligands were carried out with the relevant 

Schrödinger software (LigPrep, Protein Preparation Wiz-

ard etc.) [29]. Standard (default) protocols were used 

for grid generation and ligand docking (Glide) [30, 31]. 

�e IFPs were also generated with a Schrödinger mod-

ule based on the docked poses, and contained by default 

all of the nine interactions listed in Table  1. To study 

the effects of the more general interaction definitions 

(bits), we have generated two more sets of IFPs, where 

we have omitted (1) the Any Contact (Any), and (2) the 

Any Contact (Any), Backbone Interaction (BB), and Side-

chain Interaction (SC) definitions. We have labeled the 

resulting IFPs ALL (original), WO1 (without Any), WO3 

(without Any, BB and SC).

Additionally, we have implemented two IFP filtering 

rules to get rid of the large set of bits in the IFPs, which 

are consistently 0 across the whole ligand set. Briefly, 

residue-based filtering (RES) excludes any residue from 

the IFP that is found to be consistently non-interacting 

across the whole dataset, while interaction-based filter-

ing (INTS) additionally omits any individual interaction 

that is never established in the whole dataset. �e filter-

ing rules are summarized and illustrated in Fig. 1.

Similarity metrics

We have implemented a Python module (FPKit) to calcu-

late 44 similarity measures (collected by Todeschini et al. 

[24]) on plain bitstrings. �e definitions of these similar-

ity measures can be found in the original publication of 

Todeschini et al., and as a supplement to our recent (open 

access) article on metabolomic profiles [25]. �ose meas-

ures that do not, by definition, produce values in the [0, 

1] range are scaled with the α and β scaling parameters, 

published together with the definitions (see also Eq. 4). In 

some instances, we needed to correct some of these scal-

ing parameters and implement additional checks to avoid 

division-by-zero errors: these are summarized in Addi-

tional file 1. �e Python module additionally contains the 

implemented filtering rules, and is available at: https ://

githu b.com/david bajus z/fpkit .

Statistical analysis

Sum of ranking differences (implemented as a Micro-

soft Excel VBA macro) was used for the evaluation 

of the similarity values in each of the ten datasets. �e 

similarity measures were scaled with Eq.  4 using the α 

and β parameters published in [24] (and corrected by us 

in a few cases, see Additional file 1), but even after scal-

ing, some of the measures produced similarity values in 

Table 3 Summary of the applied protein targets and ligand sets

Short name Name Uniprot Protein family PDB code No. actives No. inactives

1 ACE Angiotensin-converting enzyme P12821 Hydrolase 4CA5 49 1727

2 ACHE Acetylcholine esterase P22303 Hydrolase 4M0F 105 3708

3 ALR2 Aldose reductase P15121 Oxidoreductase 4XZH 26 917

4 AR Androgen receptor agonists P10275 Transcription factor 4OEA 64 2234

5 CDK2 Cyclin dependent kinase 2 P24941 Protein kinase 1AQ1 48 1763

6 COMT Catechol O-methyltransferase P21964 Transferase 3BWM 11 428

7 ER Estrogen receptor antagonists P03372 Nuclear receptor 3ERT 39 1388

8 PARP Poly(ADP-ribose) polymerase P09874 Transferase 4PJT 33 1175

9 SRC Tyrosine kinase SRC P12931 Protein kinase 2H8H 155 5784

10 VEGFr2 Vascular endothelial growth factor 
receptor kinase

P35968 Transferase 3VHE 71 2617

https://github.com/davidbajusz/fpkit
https://github.com/davidbajusz/fpkit
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highly different ranges between 0 and 1, therefore addi-

tional data pretreatment was used to obtain a balanced 

set of data, which can be compared in a fair way. �e fol-

lowing options were considered for data pretreatment: 

autoscaling (a.k.a. standardization), rank transformation 

(i.e. assigning ranks to the values according to increas-

ing magnitude) and range scaling (sometimes wrongly 

termed interval scaling). �e workflow for generating 

the input matrices for SRD analysis is presented in Fig. 2. 

Ninety variants of SRD input matrices were calculated 

based on the different bit selections and filtering rules 

for each protein target. �e input data matrices for SRD 

analysis contained the similarity values of the molecules, 

calculated with each of the 44 similarity measures.

SRD is a novel algorithm based on the calculation of 

the differences between the object-wise ranks produced 

by a vector (corresponding to a method, model, similar-

ity metric, etc.), as compared to a reference vector [32, 

33]. �e reference can be experimental values as a gold 

standard, or a consensus produced by data fusion, such 

as row-average, minimum or maximum, etc. �is is 

related to the basic idea of multicriteria decision making, 

where the objective is to rank the objects simultaneously 

by each criterion: using that terminology, the criteria 

would be the various similarity measures in this case. �e 

basic steps of the protocol are the following: (1) ranking 

the samples (here, ligands) in their order of magnitude 

by each column vector (similarity measure), (2) for each 

sample (ligand), calculating the differences between the 

ranks produced by each similarity measure and the ref-

erence, and (3) summing up the absolute values of the 

differences for each similarity measure. �e resulting 

sums are called SRD values and can be used to compare 

the similarity measures: the smaller the SRD value, the 

closer the measure is to the reference (in terms of ranking 

behavior). A detailed animation of the calculation proce-

dure can be found as a supplement to our earlier work 

[26]. �e method is validated with cross-validation and a 

randomization test as well. �e MS Excel SRD macro is 

freely available for download at: http://aki.ttk.mta.hu/srd

We should note that besides SRD, a number of meth-

ods for the comparison of rankings is reported in the 

Fig. 1 a Docked complex of a small-molecule virtual hit (green sticks) to JAK2 [16]. Potentially interacting residues in the vicinity of the ligand 

are highlighted in red. b Excerpt from the interaction fingerprint of the docked complex. Interacting residues are highlighted in red, while 

non-interacting residues are represented as gray blocks. Inside the red blocks, those interactions are grayed out that cannot be established by 

definition. c Short definition of the SIFt filtering rules implemented in this work. Residue-based filtering (RES) omits any residue that is found to be 

consistently non-interacting across the whole docked dataset. Interaction-based filtering (INTS) additionally omits any individual interaction that is 

not established even once across the whole dataset. The latter includes (but is not restricted to) those interactions that cannot be established by 

definition (grayed-out interactions inside red blocks); for example the “Aromatic” bit will be 0 for any residue that lacks an aromatic ring

http://aki.ttk.mta.hu/srd
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literature, or used routinely by statisticians. Spearman’s 

rank correlation coefficient—probably the most com-

monly used rank-based statistical test—has been com-

pared to SRD in the paper of Héberger and Kollár-Hunek 

[34] as early as 2011, and we have also shown in our 

recent work the more sophisticated discriminatory power 

of SRD as compared to Spearman’s rho [35]. An interest-

ing novel application of SRD is in Post-Pareto optimality 

analysis, where it was clearly shown to be a well-suited 

decision support tool (by ranking the solutions along the 

Pareto front) [36].

More generally: while it is also based on a compari-

son of rankings, the SRD workflow can be clearly distin-

guished from rank-based statistical tests, as it involves 

not one, but three essential steps. �e first of these is the 

definition of the reference vector (i.e. reference ranking), 

which—depending of the problem—can be a “gold stand-

ard” (such as experimental values for the comparison 

of computational methods for modeling/predicting the 

same property) or a consensus of the existing (compared) 

methods, produced with a suitable data fusion technique, 

such as average, minimum, maximum, etc. �is is again 

problem-dependent, as the reference vector must always 

represent a hypothetical optimum (or ideal) ranking. 

(It may involve more than one data fusion technique, if 

necessary, e.g. in the present work, the hypothetical best 

similarity measure would be one that produces the high-

est possible similarity value for active molecules and the 

lowest possible value for inactives, so our current solu-

tion involved the use of maximum values for actives, and 

minimum values for inactives, see Results section.) Defi-

nition of a reference vector is not part of any rank-based 

statistical test we are aware of.

�e second step is the calculation of the distance meas-

ure itself between the reference vector (ranking) and the 

rankings produced by the compared methods (here, simi-

larity measures). In the current implementation of SRD, 

the Manhattan distance is applied: in the case where 

there are no tied ranks, this is identical to another rank-

based distance measure, the Spearman footrule metric 

[37]. Koziol related SRD to another distance measure for 

permutations—namely, the inversion number [38], but 

it has less discriminatory power, and has not found any 

applications yet (to the best of our knowledge).

�e third step is the application of a meticulous valida-

tion approach, involving a randomization (permutation) 

test and leave-one-out or leave-many-out cross-valida-

tion. �is step instantly provides answers to two impor-

tant questions: whether the SRD values characterizing 

two compared methods (i.e. rankings) are significantly 

different from each other (cross-validation), and whether 

there is any among the compared methods (i.e. rank-

ings) that is not significantly better (i.e. not closer to the 

reference vector) than random rankings (randomization 

test).

�e further statistical analysis of SRD values was car-

ried out by factorial analysis of variance (ANOVA). �is 

method is based on the comparison of the average values 

for the different groups of samples. �e input matrices 

contained the SRD values and several grouping factors 

such as similarity metrics, symmetricity, metricity, bit 

selection and filtering rule. �e complete procedure of 

statistical analysis was carried out three times with dif-

ferent pretreatment methods (rank transformation, range 

scaling, autoscaling). STATISTICA 13 (Dell Inc., Tulsa, 

OK, USA) was used for the analysis.

Results and discussion
Comparison based on AUC values

As a first strategy, we have used AUC values for the 10 

datasets as a basis for comparison and analysis. �e 

AUC values were calculated with the scikit-learn Python 

package for each dataset and for each of the 44 similar-

ity measures [39]. However, a detailed factorial ANOVA 

analysis revealed that the AUC values are not fit for the 

proper evaluation of similarity metrics, because the 

applied ten protein datasets have very different AUC val-

ues, leading to different means and very high standard 

deviations. In this sense, the AUC values are not sensi-

tive enough to find the most or least consistent similarity 

Fig. 2 Workflow of the input matrix generation and the complete 

protocol of the study
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measures, when using more than one dataset. Figure  3 

illustrates the big differences between the protein targets 

in terms of AUC values, ranging from excellent classifica-

tion (2H8H and 3ERT, or SRC kinase and estrogen recep-

tor, respectively) to worse than random classification 

(4M0F and 4XZH, or acetylcholine esterase and aldose 

reductase, respectively). �ere is also no clear consen-

sus regarding the relative performances of the various 

similarity measures, as the shapes of the curves in Fig. 3 

are visibly different (and in some cases display opposite 

trends).

Results based on SRD values

Because of the problem detailed above, we have decided 

to apply the SRD method for the statistical comparison. 

Selecting the reference value (data fusion) was not trivial 

in this particular case, since we have active and inactive 

ligands as well, where the ideal behavior for a similarity 

measure is to produce the highest and the smallest simi-

larity values, respectively. �us, the reference was defined 

as the minimum or maximum value among the similarity 

values, depending on the activity of the specific ligand (if 

it was active, the row-maximum was used, if it was inac-

tive, then row-minimum was used). �e analysis was run 

90 times altogether, corresponding to each possible com-

bination of 10 protein targets, 3 bit selections, and 3 fil-

tering rules.

�e original input matrices contained the 44 similar-

ity measures for the different molecules in each case 

study, but the ranges of these measures were sometimes 

very different. For example, values close to 0 were typi-

cal for the Mou (Mountford) similarity, but values close 

to 1 were typical for the Yu1 (Yule) similarity. Obviously, 

in such cases, taking the row minimum as the reference 

value would favor the former, regardless of the ligand 

being active or inactive. �us, an additional round of data 

pretreatment was essential for the analysis, to provide a 

valid basis of comparison. Autoscaling, range scaling and 

rank transformation were applied for this purpose.

One example of the original plots produced by the 

SRD script can be seen in Additional file  1: Figure S1, 

where the normalized (scaled) SRD values are plotted 

in increasing magnitude and the distribution of random 

SRD rankings (for random numbers) is plotted as a basis 

of comparison.

Fig. 3 Factorial ANOVA with the use of the protein targets and the similarity measures as factors. (AUC values are plotted against the similarity 

metrics.) The protein targets (with PDB codes) are marked with different colors and marks on the plot. Average values (dots) and 95% confidence 

intervals (lines) are shown in each case
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SRD analysis was performed with fivefold cross-val-

idation to every combination of the original parameters 

(bit selection, filtering, scaling) and the results (the SRD 

values) for each similarity measure were collected from 

every dataset (see Fig.  2) for a final factorial ANOVA 

analysis. �e collected SRD values for the ten datasets 

(i.e. target proteins) were used together for the further 

ANOVA analysis, to allow us more general conclusions.

First, we have compared the data pretreatment meth-

ods, to select a suitable one for the rest of the analyses. 

�e effect of pretreatment was significant according to 

ANOVA, meaning that the results were significantly dif-

ferent for the different scaling options, as seen in Fig. 4. 

For the further analyses, we have chosen to use autoscal-

ing, as range scaling and rank transformation are more 

biased and more sensitive to outliers. Additionally, autos-

caling can be considered as a consensual choice between 

the other two (see Fig. 4).

From this point on, standardized data were used for the 

further ANOVA analyses. �e input matrix contained 

a total of 23,760 rows, corresponding to SRD values 

for each possible combination of 44 similarity meas-

ures, three filtering rules, three types of bit selections, 

six cross-validation rounds (fivefold cross-validation, 

including one round using the whole dataset, “All”), and 

ten datasets. (Part of the input matrix can be seen in 

Additional file  1: Table  S1 for the better understanding 

of the ANOVA procedure.) We examined all the possible 

factors: similarity measures (44), bit selections (3), filter-

ing rules (3), symmetricity (4) and metricity (2). With the 

use of these dependent factors, we can conclude whether 

their effects (one by one, or in combination) were signifi-

cant on the α = 0.05 level based on the normalized SRD 

values. In the case of similarity measures the final out-

come can be seen in Fig. 5.

We can observe that there are some measures with very 

high SRD values (i.e. producing very different rankings 

as compared to the reference/consensus method), for 

example RR (Russel–Rao), Mic (Michael) or CT3 (Con-

sonni–Todeschini 3). On the other hand, one can iden-

tify the best measures (i.e. closest to the reference) as SM 

(simple matching) [40], RT (Rogers–Tanimoto) [41], SS2 

(Sokal–Sneath 2) [42], CT1 (Consonni–Todeschini 1), 

CT2 (Consonni–Todeschini 2) [43] or AC (Austin–Col-

well) [44]. �ese similarity measures are closer to the 

reference and can be recommended for usage. �e JT 

(Jaccard–Tanimoto) metric, which is the de facto stand-

ard of cheminformatics (simply called the “Tanimoto 

Fig. 4 Factorial ANOVA with the use of scaling and similarity metrics as factors. Normalized SRD values [%] are plotted against the similarity metrics. 

The different scaling methods are marked with different symbols and lines. (RGS: range scaling, RANK: rank transformation, AUTO: autoscaling.)
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coefficient” in most of the related scientific literature) is 

located relatively close to the reference, but somewhat 

farther than those mentioned above, meaning that the 

SM, RT, SS2, CT1, CT2 and AC metrics could be consid-

ered as viable alternatives of the Tanimoto coefficient.

If we examine the effects of the bit selection and filter-

ing rule together, the ANOVA plot can be seen in Fig. 6. 

Significant differences between the filtering methods and 

the bit selections can be clearly observed. Interaction-

based filtering (INTS) clearly improves the results, and 

so does residue-based filtering (RES) to a smaller extent. 

�e differences between the bit selections are also clear: 

omitting the “Any contact” bit (WO1), results in a slight, 

but significant improvement, but omitting the BB and 

SC bits (Backbone and Sidechain interactions) causes 

a serious deterioration of SRD values. In summary, the 

best combination is the use of interaction-based filtering 

(INTS), while omitting the “Any contact” bit.

�e similarity measures can be grouped by sym-

metricity and metricity (see Introduction). ANOVA 

plots based on these factors are included in Fig.  7. It 

is clearly seen on Fig.  7a that metric similarity meas-

ures give, on average, much closer results to the ideal 

reference method than non-metric measures. Accord-

ing to Fig. 7b, symmetric and intermediately symmetric 

similarity measures tend to give more consistent results 

with the reference method. Both factors gave statisti-

cally significant differences (at α = 0.05) between the 

groups.

�e preference for symmetric measures over asym-

metric ones is somewhat surprising, considering that 

one would expect symmetric measures to be affected by 

the amount of “off” bits (and consequently, the number 

of common “off” bits, d) more than asymmetric ones. 

If we look at the effects of the filtering rules (and there-

fore the amount of “off” bits) on the SRD values of the 

similarity metrics separately (Additional file 1: Figure S2), 

we find that this assumption is confirmed, but only par-

tially: similarity measures, where we can observe major 

differences are Mic (Michael), HD (Hawkins–Dotson), 

Den (Dennis), dis (dispersion), SS4 (Sokal–Sneath 4), Phi 

(Pearson–Heron), Coh (Cohen), Pe1, Pe2 (Peirce), MP 

(Maxwell–Pilliner), and HL (Harris–Lahey). �ese are 

symmetric and correlation-based coefficients, without 

exception. �e associated ANOVA plots are included in 

Additional file 1: Figure S2.

Fig. 5 Factorial ANOVA with the similarity measures as the factor. Average values are marked with blue dots and the blue lines below and above 

the dots denote 95% confidence intervals. Normalized SRD values [%] are plotted against the similarity measures. The red dashed lines are arbitrary 

thresholds defined to select the best few metrics, and to identify the region with the less consistent similarity measures
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Summary and conclusion
In this study forty-four similarity measures were com-

pared based on ten case studies, corresponding to inter-

action fingerprint-based virtual screening scenarios. �e 

effects of the applied set of bits (interaction types) and 

filtering rules were studied in detail. �e comparison was 

carried out with a novel algorithm, sum of ranking differ-

ences (SRD), coupled with analysis of variance (ANOVA). 

Fig. 6 Factorial ANOVA with the bit selection and the filtering rule as dependent factors. SRD values [%] are plotted against the bit selection 

options. Interaction based filtering (INTS) is marked with a blue dotted line, no filtering (NO) is marked with a red continuous line and residue based 

filtering (RES) is marked with a green dashed line

Fig. 7 The result of ANOVA analysis with metricity (a) and symmetricity (b) as factors. SRD values [%] are plotted against the different groups of 

similarity measures. Average values are plotted and the 95% confidence intervals are indicated with whiskers
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�is work complements our earlier comparative studies 

on metabolomic fingerprints [25] and molecular finger-

prints [26].

�ere are several similarity metrics that are worth con-

sideration as viable alternatives of the popular Jaccard–

Tanimoto coefficient, namely: Sokal–Michener (SM), 

Rogers–Tanimoto (RT), Sokal–Sneath 2 (SS2), Con-

sonni–Todeschini 1 and 2 (CT1, CT2) and Austin–Col-

well (AC). �ese six similarity measures gave the most 

consistent results with the “ideal” (hypothetical best) ref-

erence method in our evaluations using 10 highly diverse 

protein data sets. We can also conclude that metric simi-

larities are usually more consistent with the reference 

method than non-metric ones. Similarly, symmetric and 

intermediately symmetric measures gave more consistent 

results than asymmetric and correlation-based ones.

Finally, there are important and significant differences 

with regard to the applied bit definitions and filtering 

rules. As a general conclusion, we can recommend omit-

ting the “Any contact” bit definition from IFP-based 

analyses, as it will not deteriorate the results in a virtual 

screening scenario (however, omitting the backbone 

and sidechain interaction bits, BB and SC, is not recom-

mended). Similarly, applying a bit filtering rule, such as 

interaction-based filtering (omitting any interaction that 

is not established even once in the whole dataset) can 

improve the results on average. �e open-source Python-

based FPKit (FingerPrint Kit) package applied for IFP 

filtering and similarity calculations is freely available at: 

https ://githu b.com/david bajus z/fpkit .

List of abbreviations
�e abbreviations and definitions of similarity metrics 

can be found in the work of Todeschini et al. [24] and our 

recent open access article on metabolomics fingerprints 

[25].

Bit selections

ALL: all interactions; WO1: all interactions, except “Any 

contact”; WO3: all interactions, except “Any contact”, 

“Backbone interaction” and “Sidechain interaction”.

Filtering rules

INTS: interaction-based filtering; NO: no filtering; RES: 

residue-based filtering.

Statistical methods

ANOVA: analysis of variance; SRD: sum of (absolute) 

ranking differences.

Data pretreatment

AUTO: autoscaling (or standardization); RGS: range 

(interval) scaling; RANK: rank transformation.

Additional �le

Additional �le 1.  Supplementary information.
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