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Abstract

Background: Much of our understanding of the age-related progression of systolic blood pressure (SBP) comes from cross-
sectional data, which do not directly capture within-individual change. We estimated life course trajectories of SBP using
longitudinal data from seven population-based cohorts and one predominantly white collar occupational cohort, each from
the United Kingdom and with data covering different but overlapping age periods.

Methods and Findings: Data are from 30,372 individuals and comprise 102,580 SBP observations spanning from age 7 to
80+y. Multilevel models were fitted to each cohort. Four life course phases were evident in both sexes: a rapid increase in
SBP coinciding with peak adolescent growth, a more gentle increase in early adulthood, a midlife acceleration beginning in
the fourth decade, and a period of deceleration in late adulthood where increases in SBP slowed and SBP eventually
declined. These phases were still present, although at lower levels, after adjusting for increases in body mass index though
adulthood. The deceleration and decline in old age was less evident after excluding individuals who had taken
antihypertensive medication. Compared to the population-based cohorts, the occupational cohort had a lower mean SBP, a
shallower annual increase in midlife, and a later midlife acceleration. The maximum sex difference was found at age 26
(+8.2 mm Hg higher in men, 95% CI: 6.7, 9.8); women then experienced steeper rises and caught up by the seventh decade.

Conclusions: Our investigation shows a general pattern of SBP progression from childhood in the UK, and suggests possible
differences in this pattern during adulthood between a general population and an occupational population.
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Introduction

Systolic blood pressure (SBP) is an important indicator of

cardiovascular function as it has a strong, positive, and continuous

relationship with cardiovascular disease (CVD) and mortality [1].

In prospective studies that measured SBP in adolescence or early

adulthood, SBP has been shown to predict future risk of CVD with

the same magnitude of association as that seen in studies

measuring blood pressure (BP) in middle age [2–5]. Despite a

tendency for SBP to track through life [6,7], randomised

controlled trials demonstrate that it is a highly modifiable risk

factor [8]. Understanding the progression of SBP through life and

factors affecting this progression is clearly important to determin-

ing the best methods for preventing future CVD.

Textbook descriptions of age-related changes in BP are based

on cross-sectional studies of different age groups [9]. These show

marked increases in SBP in the first year of life (from ,70 mm Hg

to 95 mm Hg), followed by steady increases of 1–2 mm Hg per

year to the late 20 s, after which the rise is more marked to age 80,

when it begins to level off. Cross-sectional data cannot directly

measure within-individual change, and thus the tempo of age-

related BP may be misrepresented by the monotonic secular

decline in BP over the last six decades [10–12], also called

‘‘cohort’’ effects, or by contextual changes related to specific

historical periods. Whilst there are a small number of published

population-based longitudinal studies on age-related BP changes

in children [13] and adults [14–16], to date no study to our

knowledge has repeat BP measurements from childhood to late

adulthood, and it will be some decades before existing birth

cohorts that do have repeat infant and childhood measurements

reach middle and old age. An alternative to examining life course

trajectories in a single cohort, and a potential improvement over

cross-sectional analyses, is to compare data from multiple cohorts

with repeated measurements that cover different and overlapping

periods of life.

We obtained longitudinal data on BP from eight UK Medical

Research Council funded cohort studies, each covering different

age periods. The objectives of this paper are to (1) describe the

average unadjusted SBP trajectory in each cohort, (2) examine the

extent to which these trajectories are modifiable by adjusting for a

strong determinant of SBP, adiposity, as marked by concurrent

body mass index (BMI) [8,17], and (3) investigate gender

differences in SBP trajectories. In addressing these questions, we

also explore the methodological issues that arise when using

multiple cohorts to investigate life course BP.

Methods

Study Population
All cohorts included in these analyses were receiving funds from

the UK Medical Research Council and had at least two repeat

measurements of BP. Seven cohorts drawn from the general

population, in the sense that they were sampled in a way that

made them approximately representative of a geographical area,

were included. These were the Caerphilly Prospective Study

(CaPS), which includes only men [18], the Hertfordshire Ageing

Study (HAS) [19], the Medical Research Council National Survey

of Health and Development (NSHD) (1946 British birth cohort)

[20], three cohorts from the West of Scotland Twenty-07 study (T-

07) [21], and the Avon Longitudinal Study of Parents and

Children (ALSPAC) [22]. The Whitehall II study (WHII) [23],

which is an occupational cohort, was the eighth study included. All

cohorts received ethical approval [18–23]. The NSHD is in most

respects a nationally representative sample from England, Scot-

land, and Wales [20] while the other cohorts were sampled from

single towns, cities, or counties in the UK. The T-07 study

comprises three separate cohorts born 20 y apart (1932/1933,

1952/1953, 1972/1973) with measures across the three cohorts

occurring at similar dates. Two sampling schemes were used in the

T-07 study; for these analyses we used data from the regional

sample [21] as it is population representative and was followed up

at all waves of data collection. WHII is a prospective cohort study

of civil servants aged 35 to 55 y working in the London-based

offices of 20 Whitehall departments [23].

Blood Pressure Measurement
Table 1 describes the BP measurement protocols in each cohort.

All studies used trained nurses or fieldworkers, a seated posture,

appropriate cuff sizes for arm circumference, and allowed at least

2 min rest prior to measurement. ALSPAC and HAS used an

automated oscillometric (AO) device. CaPS, NSHD, T-07, and

WHII used a manual random zero sphygmomanometer (MRZ) at

earlier waves and switched to an AO device for the most recent

waves of data collection (Table 1). To make the BP readings from

separate waves within each cohort comparable, we used published

equations [24] to convert the AOmeasurements at wave 5 in CaPS,

wave 3 in NSHD, waves 4 and 5 in T-07, and wave 4 inWHII to an

MRZ value. Failing to correct for a device switch leads to a biased

trajectory by making the trajectory steeper between ages where the

device was switched (see Text S1). However, while SBP tends to be

higher when measured with an AO compared to MRZ device, a

sensitivity analysis using the T-07 cohorts, which have three repeat

measures with each type of device, suggested that the slopes of the

trajectories were largely unaffected by device type (see Text S1). At

least two readings were taken at each wave in all cohorts except

CaPS. In the T-07 cohorts at wave 3, the first reading was taken

with a MRZ and the second with an AO device. To maintain

consistency between cohorts, we report results from the first reading.

A sensitivity analysis using the second reading where available

showed that this choice did not qualitatively alter our findings on the

overall life course trajectory (see Text S1).

Blood Pressure Medication
Nurses or trained field workers recorded any prescribed

medications, and antihypertensive drugs (HypRx) were subse-

quently coded using the British National Formulary books. In

ALSPAC, none of the children had taken antihypertensive

medication. Medication data were unavailable for wave 2 in the

youngest T-07 cohort (1972/1973) (mean age: 18.6 y), so we made

the assumption that none were taking medication at this age given

that none of this cohort were on HypRx at the first wave and fewer

than 1.2% were on HypRx at wave 3.

Cohort Characteristics
At each wave, height and weight were measured and BMI was

calculated (weight [in kilograms]/height [in meters]2). Adult

socioeconomic position (SEP) was defined based on own

occupation for men and on the husband’s occupation for women

or woman’s own occupation where no data existed for the

husband or the woman was unmarried. SEP was defined

according to the Registrar General’s classification system.

Analysis
Unadjusted life course pattern of SBP (aim 1). To

describe the distribution of SBP across age and between cohorts,

the observed median and 10th and 90th centiles were calculated at

each wave. To estimate the mean SBP trajectory as a function of
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age, multilevel models were fitted to each cohort. Cubic and

quadratic polynomials were used to describe non-linear

trajectories (more details on the modelling strategy are in Text

S2). To account for the influence of HypRx on the SBP trajectory,

a constant of 10 mm Hg was added to SBP values that were

observed while on treatment. This value was selected on the basis

of previously reported estimates for the effect of medication on

reducing BP [25–27], though our findings were robust to the

choice of constant (see Text S1). The approach assumes that

treatment effects are the same across age, period, and cohort, but

has been shown to be a reasonable way of reducing treatment bias

[25] and was adopted because we were interested in the age-

related progression of SBP in the general population unaffected by

the increasing prevalence of HypRx use. Likewise, excluding or

censoring individuals on treatment would omit an important

subgroup from the population we wish to describe. A sensitivity

analysis also showed that our findings in the unadjusted models

were unlikely to be biased under an assumption that the data are

missing at random (see Text S3).

Modifiability of trajectories (aim 2). As BMI generally

increases with age, to see how these increases might influence the

age-related SBP trajectory, models were fitted including BMI as a

time-varying covariate, adjusting the SBP trajectory as if BMI

remained at 23 kg/m2 through adult life. This value was chosen

because it approximates the median BMI at the final age of the UK

1990 growth reference (age 23 y) [28] and is within

recommendations for normal weight. For the cohorts where data

collection began in childhood (ALSPAC and T-07 1972/1973), we

adjusted the SBP trajectory to the median age- and sex-specific BMI

values from the UK 1990 growth reference [28]. We also adjusted

for baseline height differences in these cohorts using the same

growth reference. Text S2 contains more details on these models.

Gender differences (aim 3). Differences between the sexes

were tested and described by fitting models that included sex

interactions on all the fixed effects of each model; this was done for

both the unadjusted and adjusted models.

A restricted maximum likelihood algorithm was used for

estimation, and Stata (version 10) was used for all analyses.

Results

Data are from 30,372 individuals comprising 102,580 data points

(Table 2). Each cohort was overlapped to some extent by at least one

other cohort with data at a similar age. The birth dates of the

cohorts spanned the years 1918 to 1992, and BP data were collected

over a 29-y period from 1979 to 2008 (Table 3). The oldest T-07

cohort (1932/1933) and the HAS and CaPS cohorts had the highest

proportion of individuals working in manual occupations (Table 3)

and were more likely to be from the manual social classes in

childhood, reflecting secular changes in the UK labour market.

WHII is predominantly a white collar cohort, with less than 10%

employed in manual occupations and none in classes IV and V.

The prevalence of individuals on HypRx was similar in men and

women, rising sharply from,40 y (Figure 1). For example, in the T-

07 1932/1933 cohort, 13% were on medication at 55 y, and 62% at

75 y. For a given age, treatment was more prevalent in the more

contemporary cohorts, although the pattern of uptake with age was

consistent across cohorts. Figure 1 also shows the observed distribution

of SBP with age in each cohort. The distribution widened with age in

both sexes from the fourth to seventh decade, as illustrated by

comparing waves 1 to 3 between the T-07 1952/1953 and 1932/1933

cohorts where the same measurement device was used.

Unadjusted SBP Life Course Trajectories
Figure 2 shows the predicted mean SBP trajectories and annual

SBP change estimated from the unadjusted models in each cohort,

while Table 4 shows the coefficients for the age effects from these

models. The steepest rises in SBP were in adolescence, reaching

5.2 mm Hg per year (95% CI: 5.1, 5.3) in ALSPAC boys and

3.6 mm Hg per year (95% CI: 3.5, 3.8) in ALSPAC girls from 14

to 15 y. From 15 to 30 y, the annual rate of change decreased in

T-07 men from 0.9 mm Hg per year (95% CI: 0.6, 1.1) at age

Table 1. Blood pressure measurement protocols used in each cohort at each wave.

Protocol Feature Study

ALSPAC T-07 NSHD CaPS HAS WHII

Posture Seated Seated Seated Seated Seated Seated

Operator Trained field
workers

Nurse Nurse Waves 1 to 4:
physician; wave 5:
trained field worker

Nurse Nurse

Minimum rest before
reading

2 min 5 min 5 min 5 min 5 min 5 min

Number of readings at
each wave

Waves 1 to 6: 2 Wave 1: 2 Waves 1 to 3: 2 Wave 1: 1 Wave 1: 2 Waves 1 to 4: 2

Wave 2: 2 Wave 2: 2 Wave 2: 3

Wave 3: 2 Wave 3: 1

Wave 4: 2 Wave 4: 1

Wave 5: 3 Wave 5: 1

BP devicea Waves 1 to 6: AO(D) Wave 1: MRZ Wave 1: MRZ Wave 1: MRZ Wave 1: AO(D) Wave 1: MRZ

Wave 2: MRZ Wave 2: MRZ Wave 2: MRZ; A(C) Wave 2: AO(D) Wave 2: MRZ

Wave 3: MRZ; AO(O) Wave 3: AO(O) Wave 3: MRZ Wave 3: MRZ

Wave 4: AO(O) Wave 4: MRZ Wave 4: AO(O)

Wave 5: AO(O) Wave 5: AO(O)

aMRZ, Hawksley MRZ (auscultatory); AO(D), AO (Dinamap); AO(O), AO (Omron); AO(C), AO (Copal UA-231).
doi:10.1371/journal.pmed.1000440.t001
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15 y to 0.2 mm Hg per year (95% CI: 20.0, 0.4) at age 35 y. In

T-07 women there was a relatively stable linear increase of

0.5 mm Hg per year (95% CI: 0.4, 0.6) from 15 to 35 y. In both

men and women, there was then evidence of a midlife SBP

acceleration beginning at ,35 y, and reaching a velocity of

,1.0 mm Hg per year by age 50 in both the T-07 1952/1953 and

NSHD cohorts. The rate of SBP change reached a midlife peak at

55 y of 1.5 mm Hg per year (95% CI: 1.1, 1.9) in men and

1.4 mm Hg per year (95% CI: 1.1, 1.8) in women of the T-07

1932/1933 cohort. SBP increases then slowed and eventually

began to decline at age 65, 66, and 70 y in the CaPS, HAS, and T-

07 1932/1933 male cohorts, respectively, and at 77 y in the T-07

1932/1933 female cohort. SBP was already declining by age 65 y

in the HAS female cohort. Compared to the population-based

cohorts, SBP remained lower through midlife in the WHII

occupational cohort, and the midlife acceleration in SBP occurred

later (Figure 2). For example, at age 60 y, mean SBP in WHII was

17.5 mm Hg and 15.5 mm Hg lower than that of the T-07 1932/

1933 cohort for men and women, respectively, and reached a

velocity of 1 mm Hg per year at age 75 y in men and 65 y in

women, compared with 50 y in the other cohorts.

We carried out several post hoc analyses to investigate possible

reasons for the deceleration and decline seen in the older cohorts.

An underestimation of the effect of HypRx was unlikely to have

Table 2. Number of participants and median age (years) at each wave in each population-based cohorts, stratified by sex.

Sex Study Childhood Early Adulthood Mid Adulthood

Late

Adulthood Totals

Male ALSPAC Age 7.5 9.8 10.6 11.7 12.8 15.3

n 4,139 3,762 3,666 3,455 3,299 2,426 20,747

T-07 1972/
1973

Age 15.7 18.6 24 29.6 36.6

n 459 431 313 266 286 1,755

T-07 1952/
1953

Age 36 40 44.5 49.7 57

n 409 373 322 305 312 1,721

NSHD Age 36 43 53

n 1,637 1,598 1,449 4,684

WHII Age 43 49 54.8 60.2

n 6,754 5,522 4,573 4,536 21,385

T-07 1932/
1933

Age 55.9 59.1 63.5 68.8 75.9

n 443 400 318 241 189 1,591

CaPS Age 52.8 57.7 62.4 65.9 73.4

n 2,507 2,366 2,046 1,793 863 9,575

HAS Age 67.5 76.8

n 454 172 626

n (male) 62,084

Female ALSPAC Age 7.5 9.8 10.6 11.8 12.8 15.4

n 4,024 3,866 3,778 3,576 3,426 2,659 21,329

T-07 1972/
1973

Age 15.7 18.6 24 29.6 36.6

n 489 475 347 303 335 1,949

T-07 1952/
1953

Age 36.1 40.1 44.5 49.7 56.9

n 514 475 417 359 360 2,125

NSHD Age 36 43 53

n 1,649 1,590 1,477 4,716

WHII 44 50 55.6 60.8

2,707 2,044 1,620 1,625 7,996

T-07 1932/
1933

Age 56 59.2 63.6 68.8 76

n 530 456 385 293 234 1,898

HAS Age 67.1 76

n 363 120 483

n (female) 40,496

n (all) 102,580

doi:10.1371/journal.pmed.1000440.t002
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caused an artefact in the patterns we observed in old age (see Text

S1). Excluding individuals who had ever taken HypRx in order to

capture the trajectories in a healthy untreated sub-group explained

a large part of the declining pattern observed at older ages (see

Text S4). For example, in the T-07 1932/1933 cohort, the SBP of

this non-medicated group continued to rise in a linear manner

through old age, and in CaPS, the average untreated trajectory

continued to rise for a longer period in later life and reached a

plateau rather than exhibiting decline as in the primary analyses

including treated individuals. The additional exclusion of those

individuals who had suffered a myocardial infarction in this cohort

further emphasised this plateau. Survivor bias (i.e., survival of

those who are most healthy and least prone to common causes of

premature mortality such as CVD) was unlikely to explain the

general declining pattern of SBP, as the average trajectory of those

who were still alive at the last wave of measurement still showed a

deceleration and decline in the older population-based cohorts (see

Text S4).

Table 3. Cohort information and baseline characteristics by sex.

Characteristic ALSPAC T-07 1972/1973

T-07 1952/

1953 NSHD

T-07 1932/

1933 CaPS HAS WHII

n malesa 4,876 478 428 1,841 456 2,951 454 6,892

n femalesa 4,815 514 529 1,820 542 — 363 3,413

Year(s) of birth 1991–1992 1972–1973 1952–1953 1946 1932–33 1918–1939 1920–1930 1930–1953

Age range, yearsb 7–16 15–37 34–60 36–53 55–77 44–83 63–81 35–75

Number of waves 7 5 5 3 5 5 2 4

Years of data
collection

1998–2008 1987–2008 1987–2008 1982–1999 1987–2008 1979–2005 1994–2005 1985–2004

Population Children of women
attending antenatal
clinics in three
health districts of
Bristol.[22]

Stratified sample
from Central
Clydeside, Greater
Glasgow, Scotland
[21]

Stratified
sample from
Central
Clydeside,
Greater
Glasgow,
Scotland [21]

UK
representative [20]

Stratified
sample from
Central
Clydeside,
Greater
Glasgow,
Scotland [21]

All men aged
45–59 y living
in Caerphilly,
Wales [18]

Permanent
residents of
North
Hertfordshire
[19]

Civil servants
based in 20
offices in
Whitehall,
London [23]

Baseline

characteristics

Males

BMI (kg/m2),
median (IQR)

0.13 (UK90)c 0.07 (UK90)c 25.0 (22.8, 27.1) 24.6 (22.7, 26.7) 26.0 (23.6, 28.4) 26.1 (23.9,
28.2)

26.5 (24.1, 29.1) 24.3 (22.6, 26.2)

Height (m), mean
(sd)

0.19 (UK90)c 20.09 (UK90)c 1.74 (0.07) 1.75 (0.07) 1.71 (0.07) 1.71 (0.06) 1.72 (0.07) 1.76 (0.07)

SEP, n (%)d

I 644 (10.8) 40 (8.4) 47 (10.9) 246 (11.5) 23 (4.9) 117 (4.0) 30 (6.6) 2,647 (38.4)

II 1,990 (33.5) 95 (19.8) 122 (28.2) 769 (35.9) 107 (22.6) 482 (16.5) 115 (25.3) 3,607 (52.3)

III—non-manual 732 (12.3) 72 (15.0) 61 (14.1) 213 (9.9) 41 (8.7) 297 (10.2) 40 (8.8) 505 (7.3)

III—manual 1,821 (30.6) 172 (35.9) 141 (32.6) 644 (30.0) 185 (39.1) 1,455 (49.8) 169 (37.1) 136 (2.0)

IV 591 (9.9) 71 (14.8) 41 (9.5) 204 (9.5) 80 (16.9) 422 (14.4) 90 (19.8) 0 (0)

V 170 (2.9) 29 (6.1) 20 (4.6) 68 (3.2) 37 (7.8) 150 (5.1) 11 (2.4) 0 (0)

Females

BMI (kg/m2),
median (IQR)

0.13 (UK90)c 0.12 (UK90)c 23.2 (21.3, 26.0) 22.7 (20.9, 25.2) 25.0 (22.6, 28.1) 26.6 (24.0, 29.7) 24.0 (22.5, 28.0)

Height (m), mean
(sd)

0.14 (UK90)c 20.2 (UK90)c 1.60 (0.06) 1.62 (0.06) 1.59 (0.07) — 1.59 (0.06) 1.62 (0.07)

SEP, n (%)d

I 581 (10.4) 36 (7.0) 39 (7.7) 204 (9.9) 48 (8.5) 29 (8.1) 381 (11.2)

II 1,894 (33.7) 99 (19.3) 125 (24.7) 715 (34.5) 11 (19.5) 74 (20.6) 1,336 (39.1)

III—non-manual 684 (12.2) 68 (13.3) 88 (17.4) 253 (12.2) 97 (17.1) 52 (14.4) 991 (29.0)

III—manual 1,711 (30.5) 196 (38.3) 168 (33.2) 615 (29.7) 170 (29.9) 126 (35.0) 705 (20.7)

IV 583 (10.4) 74 (14.5) 69 (13.6) 213 (10.3) 91 (16.0) 57 (15.8) 0 (0)

V 162 (2.9) 39 (7.6) 17 (3.4) 72 (3.5) 51 (9.0) 22 (6.1) 0 (0)

aThe number of participants with at least one BP measurement.
bThe 1st centile of wave 1 and 99th centile of the last data collection wave.
cReferenced to the UK 1990 growth reference in z-score units [28].
dThis is father’s SEP for the ALSPAC and T-07 1972/1973 cohorts.
IQR, inter-quartile range; sd, standard deviation.
doi:10.1371/journal.pmed.1000440.t003
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BMI Adjusted Trajectories
ALSPAC children were taller than the T-07 1972/1973 cohort

at baseline when compared on the UK 1990 growth scale

(+0.28 z and +0.16 z in ALSPAC versus T-07 boys and girls,

respectively; Table 3). The median BMI (UK 1990 z-score) was

similar in these cohorts, but individuals in the upper centiles of

ALSPAC had a larger BMI than those in the upper centiles of

T-07 1972/1973 (Figure 2). At age 15 y, SBP in ALSPAC was

,10 mm Hg higher than in T-07. Adjusting the SBP trajectory

to the UK 1990 growth reference made little difference to this

cohort difference (Figure 3).

BMI increased through adult life in all cohorts, with steeper rises

seen in early to mid adulthood (20 to 50 y) (Figure 3). Adjusting

the SBP trajectory for BMI at each age in each cohort appeared to

slow some of the SBP rise seen between 30 and 40 y, but the

biggest impact of the BMI adjustment was on the intercept,

shifting each cohort’s mean SBP trajectory downwards (Figure 4).

Table 5 shows the association between BMI and SBP in each

Figure 1. Observed SBP and prevalence of antihypertensive therapy. Observed median and 10th and 90th centiles for SBP (in millimetres of
mercury) at each wave in each cohort (for the CaPS and WHII cohorts this is the median in 10-y intervals to allow for the wide age distribution at each
wave) and the prevalence (percent) of HypRx use (filled circles) in men (A) and women (B). Individual SBP data points are also plotted. Data presented
here do not include an added constant to account for BP medication.
doi:10.1371/journal.pmed.1000440.g001

Figure 2. Predicted SBP from unadjusted models. Predicted mean SBP trajectories (in millimetres of mercury) and velocities (millimetres of
mercury per year) estimated from unadjusted multilevel models in men (A) and women (B) in each cohort. The thin lines are the 95% CIs.
doi:10.1371/journal.pmed.1000440.g002
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cohort. Among adult cohorts there was a suggestion that the

association was largest at 50 to 60 y.

Sex Differences
Figure 5 shows the sex differences in SBP in each cohort. The

pattern of these differences was unaffected by adjustment for BMI

(unadjusted not shown). From age 7 to 12 y, ALSPAC girls had a

slightly higher SBP; boys caught up by age 13 and then overtook girls

such that by age 15 y the mean SBP in boys was 5.0 mm Hg higher

(95%CI: 4.5, 5.6). Similar sex differences were seen at age 15 y in the

T-07 1972/1973 cohort. The maximum sex difference occurred at

age 26 y (+8.2 mm Hg in men, 95% CI: 6.7, 9.8) in the T-07 1972/

1973 cohort. Women experienced steeper early adulthood and

midlife rises, and by the sixth decade there was no evidence of a sex

difference in SBP in the T-07 1932/1933 cohort. However, in the

HAS cohort, women had a higher SBP from 64 to 72 y, andmen had

a higher SBP from age 72 y. The pattern of sex difference in WHII

followed the trends in the population-based cohorts.

Table 4. Regression coefficients (standard errors) for the fixed effects from the main unadjusted multilevel models displayed in
Figure 2.

Group Study Intercept Agea Intercept Age Age2 Age3

Men ALSPAC 7 99.6 (0.21) 0.757 (0.211) 0.034 (0.060) 0.031 (0.005)

T-07 1972/1973 15 113.8 (0.6) 0.897 (0.137) 20.018 (0.006) —

T-07 1952/1953 35 123.2 (0.82) 0.32 (0.142) 0.019 (0.006) —

NSHD 36 123.9 (0.39) 0.031 (0.096) 0.038 (0.005) —

T-07 1932/1933 55 137.4 (1.2) 1.54 (0.220) 20.046 (0.010) —

CaPS 44 135.0 (0.75) 1.27 (0.08) 20.03 (0.002) —

HAS 64 158.1 (1.87) 0.40 (0.575) 20.126 (0.036) —

WHII (occupational cohort) 35 125.4 (0.290) 20.340 (0.032) 0.015 (0.001) —

Women ALSPAC 7 100.4 (0.22) 0.145 (0.218) 0.351 (0.060) 20.008 (0.005)

T-07 1972/1973 15 107.0 (0.56) 0.63 (0.129) 20.005 (0.006) —

T-07 1952/1953 35 115.2 (0.80) 0.86 (0.134) 20.007 (0.006) —

NSHD 36 118.1 (0.42) 0.37 (0.104) 0.028 (0.006) —

T-07 1932/1933 55 136.7 (1.01) 1.482 (0.203) 20.348 (0.01) —

HAS 64 167.8 (2.6) 20.63 (0.84) 20.14 (0.054) —

WHII (occupational cohort) 35 116.7 (0.494) 0.006 (0.054) 0.017 (0.001) —

aThis is the year that age was centred to in each model.
doi:10.1371/journal.pmed.1000440.t004

Figure 3. Observed BMI (kg/m2) in each cohort. The lines represent the median, 10th and 90th centile at each wave in each cohort in men (A)
and women (B). The grey lines from 0 to 23 y are centiles from the UK 1990 growth reference (see reference 26) spaced approximately 2/3 of a
standard deviation apart (2nd, 10th, 25th, 50th, 75th, 90th and 98th centiles).
doi:10.1371/journal.pmed.1000440.g003
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Discussion

Main Findings
Our analysis describing the unadjusted pattern of SBP over life in

population-based studies showed four chronological phases: (1) a

rapid increase in SBP coinciding with peak adolescent growth, (2)

more gentle increases in early adulthood, (3) a midlife acceleration

beginning in the fourth decade, and (4) a period of deceleration in

late adulthood, where increases in SBP slowed. These phases were

not explained by increases in BMI through adulthood, but the

deceleration in old age was less evident when restricting the analyses

to individuals who had never taken antihypertensive therapy.

Compared to the population-based cohorts, the occupational cohort

(WHII) had a lower mean SBP, a shallower annual increase in

midlife, and a later midlife acceleration. Men and women had

different life course trajectories but a similar mean SBP by the

seventh decade—females had lower increases during adolescence,

but steeper rises from early to mid adulthood. Given population

differences in SBP [29], our results may not be generalisable to

populations with a different distribution of BP-related exposures.

Comparison with Other Studies
The mean level of SBP and annual increases found in childhood

and adolescence were within the range seen in population-based

cross-sectional data from the UK [30] and in longitudinal data

from the US [13]. These increases are typically viewed as a

concomitant of growth in size and stature. Cross-sectional [10,31]

and longitudinal data [14,16,32] in western populations also

substantiate the gentle increases in SBP from early adulthood and

the midlife acceleration in the fourth decade.

In WHII, SBP was similar to that of the population-based

cohorts at age 35 y, but the midlife increases occurred later,

resulting in a lower mean SBP through to late adulthood. These

differences are supported by the lower mortality rate in WHII

compared to the general UK population [33]. WHII can be seen

as a population sub-group nested within the UK population at

large. Similar patterns of BP differences can also be seen in within-

population comparisons from the US [34].

These unadjusted mean trajectories reflect both any underlying

effects of ageing together with the distribution of lifetime BP

influencing exposures in each cohort. To test how a strong

determinant of BP might affect the shape of the trajectory, we

adjusted for concurrent BMI at each age. The associations

between BMI and SBP were similar in these observational studies

to those reported in randomised controlled trials and Mendelian

randomisation studies [8,17]. We found that although mean SBP

was lower after adjustment for BMI, BMI did not greatly influence

the magnitude of age-related increases in SBP. One possible

exception was the period around 30 to 40 y, where the rate slowed

after adjustment—this was also the period of most rapid weight

gain in our cohorts, which might explain this finding.

Similar to our study, other population-based longitudinal studies

in western societies have reported a deceleration and a decline of

SBP in old age (.65 y) [16,35–37]. Some cross-sectional studies

did not show a decline [9,38], although this may be partly

obscured by secular decreases in BP [10,11]. Our sensitivity and

post hoc analyses (see Text S4) suggested that incorrect adjustment

for HypRx in old age or survivor bias were unlikely to explain this

general pattern in old age. However, some of the deceleration and

decline was no longer evident after excluding individuals who had

taken HypRx. This finding is in line with previous studies that

have made similar exclusions in order to capture BP trajectories in

healthy individuals [16,39], and is supported by studies that have

shown an association between SBP decline and higher mortality

among the elderly [35]. A decline in SBP in old age has been

linked to deteriorating health [35,40], and a low BP to impaired

cardiac output [41], suggesting decreasing BP is a feature of ageing

in western populations. The deceleration and decline was not yet

apparent in the WHII cohort, which may be a reflection of the

better health and lower mortality of this cohort [33].

Figure 4. Predicted mean SBP and velocity after adjusting for BMI. Coloured and black lines are the predicted mean SBP trajectory (in
millimetres of mercury) and velocity (millimetres of mercury per year) after adjusting for BMI as a time-varying covariate (see Methods and Text S2 for
full details of this adjustment) in men (A) and women (B). The grey areas are the 95% CIs from unadjusted models.
doi:10.1371/journal.pmed.1000440.g004

Lifetime Systolic Blood Pressure

PLoS Medicine | www.plosmedicine.org 8 June 2011 | Volume 8 | Issue 6 | e1000440



The steep declines in SBP in the HAS cohort were larger than

those in other studies [16,35–37], particularly in women, and were

less reduced in the healthy sub-sample. These results should be

interpreted with caution because of the small sample size and

reliance on only one follow-up measure of BP. It is also possible

that the trajectory in HAS is affected by systematic measurement

differences between the two waves [42], and if so, errors in the

estimation of the trajectory are likely to be exaggerated when

based on only two observation points.

Gender Differences
Similar to our study, other longitudinal studies have shown boys

to have greater SBP rises during adolescence [13] and women to

have steeper rises from midlife [14,16,37]. The latter pattern has

also been shown in aggregated cross-sectional data from almost all

World Health Organization global sub-regions [38]. One

exception to this pattern is in unacculturated societies such as

the Yi in China [43], where gender differences were not observed.

Heightened sodium sensitivity due to hormonal changes accom-

panying menopause is one proposed pathway to explain the

gender dimorphism of BP around midlife [44]. The lack of gender

differences in isolated populations where salt intake is low supports

such a mechanism [43].

Interpretation and Implications
Given the general similarity in measurement methods, birth

years, and period of data collection, it seems reasonable to

attribute some of the more favourable BP trends in WHII

compared to the other cohorts to socially patterned and modifiable

BP-related exposures such as lifestyle and diet [45] that act across

the life course. Selection on the basis of being fit enough to work is

also likely to mean that this cohort was healthier at baseline than

the general population. And it is possible that either because of

their higher SEP or as a result of work-based initiatives,

participants in this cohort may be more likely to be treated earlier

with antihypertensive therapy. This is suggested by the fact that

the prevalence of HypRx use in this cohort in midlife was similar

to that of other cohorts crossing the same age period, but the

average BP in WHII was lower. However, some of the differences

in WHII could be explained by variation in BP measurement,

although given the differences in the shape of the trajectory, it

seems unlikely that this would explain all of the disparity.

Our study was not designed to answer how much of the increase

in SBP with age is a natural physiological feature of ageing. There

are a number of cross-sectional studies in isolated communities that

show virtually no age-related increase in BP [43]. These

communities typically have a predominantly vegetarian diet with

very low salt content, physically arduous lifestyles, and very low or

non-existent levels of obesity. One study also showed that

individuals who had undergone a rural to urban migration from

one of these isolated communities quickly went on to adapt the BP

profiles of their adopted communities [43]. The stronger effect of

age-related BMI increases on the intercept rather than slope of the

SBP trajectory seen in our analysis might also reflect the importance

of factors other than BMI, as shown by the opposing secular trends

of falling BP but rising obesity levels seen in recent decades [10–12].

The trajectories in each cohort can be seen as a reflection of the

Table 5. Association (b) between concurrent BMI (per z-score
increase in UK 1990 growth reference units in cohorts where
data collection began in childhood or adolescence and per
kilogram/metre2 in adult cohorts) and SBP (millimetres of
mercury) in each cohort based on models including BMI as a
time-updated covariate.

Sex Study Age b 95% CI

Male ALSPACa 7 to 16 2.29 2.12, 2.46

T-07 1972/1973a 15 to 37 3.63 3.01, 4.24

T-07 1952/1953 34 to 60 0.85 0.59, 1.11

NSHD 40 0.65 0.48, 0.82

50 1.07 0.90, 1.25

WHIIb 40 1.00 0.89, 1.12

50 1.18 1.09, 1.27

60 1.18 1.07, 1.29

70 0.93 0.67, 1.19

T-07 1932/1933 55 to 77 1.07 0.72, 1.43

HAS 63 to 81 0.56 0.04, 1.08

CaPSb 50 1.38 1.17, 1.59

70 0.92 0.72, 1.10

Female ALSPACa 7 to 16 2.53 2.36, 2.70

T-07 1972/1973a 15 to 37 2.73 2.18, 3.28

T-07 1952/1953 34 to 60 1.01 0.83, 1.20

NSHD 40 0.47 0.33, 0.61

50 0.76 0.63, 0.89

WHIIb 40 0.54 0.40, 0.69

50 0.82 0.72, 0.92

60 0.86 0.74, 0.99

70 0.61 0.33, 0.90

T-07 1932/1933b 60 1.08 0.81, 1.34

70 0.56 0.27, 0.84

HAS 63 to 81 0.49 20.09, 1.08

aBeta is per z-score increase on the UK 1990 growth reference scale (28).
bResults are presented at several ages in cohorts where there was evidence that
the association between concurrent BMI and SBP differed across age.
doi:10.1371/journal.pmed.1000440.t005

Figure 5. Mean sex difference in SBP (men minus women) (in
millimetres of mercury) and 95% CIs. Estimated from multilevel
models adjusting for current BMI (all cohorts) and with additional
adjustment for baseline height in the child cohorts (ALSPAC and T-07
1972/1973). Positive values indicate a higher SBP in males.
doi:10.1371/journal.pmed.1000440.g005

Lifetime Systolic Blood Pressure

PLoS Medicine | www.plosmedicine.org 9 June 2011 | Volume 8 | Issue 6 | e1000440



dynamic aggregate of lifetime BP-related exposures. In this sense,

one might expect the population-based trajectories to take a form

more similar to that of WHII if the general population had similar

lifetime exposures and ways of living.

The midlife acceleration in SBP is interesting because of the

transition from a period of flatter increases in early adulthood.

Several studies suggest that individuals with a high SBP in midlife

are at risk of more rapid arterial ageing, characterised by a

stiffening of the large arteries [14,46]. In contrast, the smaller

changes seen in early adulthood may reflect more capacity for

vascular repair or adaptation at this age [47,48]. The delayed

acceleration in WHII and widening distribution of SBP from 40 to

60 y might indicate that this is a point of transition when some

individuals experience an earlier rise. Understanding the variation

in midlife trajectories and factors driving this acceleration may be

important for understanding the development and prevention of

CVD risk. This is of particular importance given that a prolonged

shift of just a few millimetres of mercury in SBP could remove a

substantial burden of CVD at a population level [1].

Strengths and Limitations
A key strength of our investigation is the use of individual-level

longitudinal data and formal statistical modelling to describe SBP

trajectories. The measurement protocols were relatively well

standardised within each cohort, and we showed through a series

of sensitivity analyses that our findings with regards to the slope of

SBP were unlikely to be qualitatively affected by within- and

between-cohort differences in the methods of BP measurement.

However, comparisons of the mean SBP at overlapping ages

between cohorts may still be subject to bias because of device

differences and other unaccounted for methodological variation

[42], hence the difficulty of attributing cohort or period effects.

Thus, while we saw large differences in mean SBP at age 15 y

between the ALSPAC and T-07 cohorts that were not explained

by BMI or adolescent growth, we cannot rule out the contribution

of device effects [42] because we could find no appropriate device

conversion equations for younger populations.

Despite the measurement issues, the use of multiple cohorts with

longitudinal data to make inference on the change in BP over life

seems viable when the methodology has been well standardised

across waves. An extension to this approach is to join the

trajectories from each cohort under certain assumptions and study

the effect of lifetime exposures on the lifetime trajectory. This will

require methodological development, but the use of this approach

with commonly collected measures of biological function such as

BP could provide a better and more dynamic understanding of

when and how in the life course health is compromised.

Conclusion
We have described several lifetime phases in the age-related

progression of SBP and have shown that the typical increases in

BMI that accompany ageing are more strongly related to the mean

BP than to the age-related changes in BP that we see in our

population. We have also shown sex differences in BP change that

are consistent with the hypothesis of a menopause-related effect on

salt sensitivity. Lastly, our results provide some evidence that an

occupational cohort with generally higher SEP than the general

UK adult populations studied here has a slower midlife increase in

BP and hence lower average levels in their 40s , 50 s, and 60 s.

Whilst our study is unable to identify the key determinants of age-

related increases in BP, it does suggest that these are modifiable,

but perhaps not by exposures that largely influence BP through the

increases in BMI that tend to accompany ageing. Further research

should try to understand which factors affect this trajectory and

when in the life course such factors exhibit most influence.
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Editors’ Summary

Background. About a third of US and UK adults have high
blood pressure (hypertension). Although hypertension has
no obvious symptoms, it can lead to life-threatening heart
attacks, stroke, and other forms of cardiovascular disease
(CVD). It is diagnosed by measuring blood pressure—the
force that blood moving around the body exerts on the
inside of large blood vessels. Blood pressure is highest when
the heart is pumping out blood (systolic blood pressure
[SBP]) and lowest when the heart is re-filling with blood
(diastolic blood pressure [DBP]). Normal adult blood pressure
is defined as an SBP of less than 130 millimeters of mercury
(mm Hg) and a DBP of less than 85 mm Hg (a blood pressure
of 130/85). A reading of more than 140/90 indicates
hypertension. Many factors affect blood pressure, but
overweight people and individuals who eat fatty or salty
food are at high risk of developing hypertension. Moreover,
blood pressure tends to increase with age. Mild hypertension
can often be corrected by making lifestyle changes, but
many people take antihypertensive drugs to reduce their
blood pressure.

Why Was This Study Done? Several trials have indicated
that SBP is an important, modifiable risk factor for CVD. But,
to determine the best way to prevent CVD, it is important to
understand how SBP changes through life and how lifestyle
factors affect this age-related progression. Textbook
descriptions of age-related changes in SBP are based on
studies that measured SBP at a single time point in groups
(cohorts) of people of different ages. However, such ‘‘cross-
sectional’’ studies do not capture within-individual changes
in SBP and may be affected by environmental effects related
to specific historical periods. The best way to measure age-
related changes in SBP is through longitudinal studies in
which SBP is repeatedly measured over many years in a
single cohort. Such studies are underway, but it will be some
decades before individuals in these studies reach old age. In
this study, therefore, the researchers use data from multiple
UK cohorts that had repeated SBP measurements taken over
different but overlapping periods of life to investigate the life
course trajectory of SBP.

What Did the Researchers Do and Find? The researchers
used statistical models to analyze data from longitudinal
studies of SBP in seven population-based cohorts (the
participants were randomly chosen from the general
population) and in one occupational cohort (civil servants).
SBP measurements were available for 30,372 individuals with
ages spanning from seven years to more than 80 years. The
researchers’ analysis revealed four phases of SBP change in
both sexes: a rapid increase in SBP during adolescent
growth, a gentler increase in early adulthood, a midlife

acceleration beginning in the fourth decade of life, and a
period in late adulthood when SBP increases slowed and
then reversed. This last phase was less marked when people
taking antihypertensive drugs were excluded from the
analysis. After adjusting for increases in body mass index (a
measure of body fat) during adulthood, the magnitude of
the SBP age-related changes was similar but the average SBP
at each age was lower. Compared to the population-based
cohorts, the occupational cohort had a lower average SBP, a
shallower annual increase in SBP, and a later midlife
acceleration, possibly because of socially determined
modifiable SBP-related factors such as diet and lifestyle.
Finally, although women had lower SBPs in early adulthood
than men, they experienced steeper midlife SBP rises
(probably because of a menopause-related effect on salt
sensitivity) so that by the seventh decade of life, men and
women had similar average SBPs.

What Do These Findings Mean? These findings describe
the general pattern of age-related progression of SBP from
early childhood in the UK. The findings may not be
generalizable because other populations may be exposed
to different distributions of modifiable factors. In addition,
their accuracy may be affected by differences between
cohorts in how SBP was measured. Nevertheless, these
findings—in particular, the slower midlife increase in SBP in
the occupational cohort than in the population-based
cohorts—suggest that the key determinants of age-related
increases in blood pressure are modifiable and could be
targeted for CVD prevention. Further research is now needed
to identify exactly which factors affect the life course
trajectory of SBP and to discover when these factors have
their greatest influence on SBP.

Additional Information Please access these Web sites via
the online version of this summary at http://dx.doi.org/
XXXXXXXXXX.
This study is further discussed in a PLoS Medicine Perspective
by YYYYY and ZZZZZ
The US National Heart Lung and Blood Institute has patient
information about high blood pressure (in English and
Spanish)
The American Heart Association provides information on
high blood pressure and on cardiovascular diseases (in
several languages)
The UK National Health Service Choices Web site also
provides detailed information for patients about hyperten-
sion and about cardiovascular disease
MedlinePlus provides links to further information about high
blood pressure, heart disease, and stroke (in English and
Spanish)
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